CN104425051B - 电流收集层结构 - Google Patents

电流收集层结构 Download PDF

Info

Publication number
CN104425051B
CN104425051B CN201310489220.0A CN201310489220A CN104425051B CN 104425051 B CN104425051 B CN 104425051B CN 201310489220 A CN201310489220 A CN 201310489220A CN 104425051 B CN104425051 B CN 104425051B
Authority
CN
China
Prior art keywords
graphene
conductive layer
layer
current collection
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310489220.0A
Other languages
English (en)
Other versions
CN104425051A (zh
Inventor
吴以舜
谢承佑
郑叡骏
谢淑玲
陈静茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ensemble Technology Co Ltd (limited Partnership)
Original Assignee
Beijing Etron Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Etron Technology Co ltd filed Critical Beijing Etron Technology Co ltd
Publication of CN104425051A publication Critical patent/CN104425051A/zh
Application granted granted Critical
Publication of CN104425051B publication Critical patent/CN104425051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种电流收集层结构,包含金属箔基层及石墨烯导电层,石墨烯导电层厚度为0.1μm~5μm,且电阻值小于1Ω·cm,石墨烯导电层包含多个石墨烯片,以及高分子黏结剂,高分子黏结剂用以将所述石墨烯片粘着于该金属箔基层之上,并且将所述石墨烯片相互黏接,且该高分子黏结剂与石墨烯导电层的重量百分比为0.01wt%至10wt%,藉由添加高分子黏结剂,增加了整体电流收集层结构的附着强度,形成完整的导电网络,且高分子黏着剂与电化学元件内活性物质的黏结剂兼容,使电化学元件的活性物质与石墨烯导电层紧密结合,将两者的接触电阻降至最低,进而大幅提升电化学元件性能。

Description

电流收集层结构
技术领域
本发明涉及一种电流收集层结构,尤其是包含石墨烯导电层。
背景技术
单层石墨,又称为石墨烯(graphene),是一种由单层碳原子以石墨键(sp2)紧密堆积成二维蜂窝状的晶格结构,因此仅有一个碳原子的厚度,石墨键为共价键与金属键的复合键,可说是绝缘体与导电体的天作之合。2004年英国曼彻斯特大学Andre Geim与Konstantin Novoselov成功利用胶带剥离石墨的方式,证实可得到单层的石墨烯,并获得2010年的诺贝尔物理奖。
石墨烯是目前世界上最薄也是最坚硬的材料,导热系数高于纳米碳管与金刚石,常温下其电子迁移率亦比纳米碳管或硅晶体高,电阻率比铜或银更低,是目前世界上电阻率最小的材料,这些独特的电荷机械性质使得加入石墨烯的复合材料更多功能化,不但表现出优异的力学及电学性能,还具有优良的加工性能,为复合材料提供了更广阔的应用领域。但是结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其它介质(如溶剂等)相互作用较弱,且石墨烯的片与片之间存在较强的范德华力,容易产生团聚,使其难溶于水以及其它常用的有机溶剂,更难与其它材料掺混形成复合材料,因而大大限制了石墨烯的进一步研究与应用,过去多以其它石墨类或碳类材料作为复合材料应用。
美国专利US20120237782揭露一种碳涂布层铝箔片的制备方法,将碳原子以电浆的方式沉积于金属铝箔之上,此碳涂布层使得铝箔片的机械显著的增加,另外用于电容器上,电子导电度以及功率密度有所改善。
美国专利US20130171517揭露一种石墨烯涂布层于金属箔片的制备方法,将1~10层厚的石磨烯分散于具有挥发性的溶剂中,如:有机溶剂或水,形成0.05wt%~5wt%的石墨烯浆料,其石墨烯薄膜以含浸方式涂布于金属箔片上,其涂布厚度为0.8μm~5μm,再放置室温或加热方式干燥此石墨烯电流收集层。由于石墨材料与金属材料先天差异极大,亲合性不佳,因此石墨烯对于金属箔片的附着性较差,两者的界面反而会形成电阻层,再者以含浸方式制备其石墨烯电流收集层,对于涂布的厚度,其均一性较难调控。因此,此专利在制备石墨烯涂布层金属箔片上,其具有实行的困难性。
因此,应用石墨烯特有的导电性能来取代一般的碳涂布层,进而应用于现有的电化学产品上,实质上需要解决的问题在于各材料之间的亲合与接着特性,才能发挥石墨烯预期的效果。
发明内容
本发明的主要目的在于提供一种电流收集层结构,该电流收集层结构包含金属箔基层及石墨烯导电层,石墨烯导电层厚度为2μm~5μm,且电阻值小于1Ω·cm;石墨烯导电层包含多个石墨烯片,以及一高分子黏结剂,该高分子黏结剂用以将所述石墨烯片粘着于该金属箔基层之上,并且将所述石墨烯片相互黏接,且该高分子黏结剂占石墨烯导电层的重量百分比0.01wt%至10wt%。
本发明藉由高分子黏结剂的添加,使石墨烯片与金属箔片之间连接,并增加石墨烯片堆栈区块间的连接,增加了整体电流收集层结构的附着强度,形成完整的导电网络,且该高分子黏着剂与电化学元件内活性物质的黏结剂完全兼容,使电化学元件的活性物质与石墨烯导电层紧密结合,将两者的接触电阻降至最低,大幅提升电化学元件性能,从而能将本发明的电流收集层结构应用于各种电池、电容器中。
附图说明
图1为本发明的电流收集层结构的剖面示意图。
其中,附图标记说明如下:
1 电流收集层结构
10 金属箔基层
20 石墨烯导电层
具体实施方式
以下配合图式及元件符号对本发明的实施方式做更详细的说明,以令本领域技术人员参照说明书文字能够据以实施。
参阅图1,为本发明电流收集层结构的剖面示意图。如图1所示,本发明的电流收集层结构1包含一金属箔基层10及一石墨烯导电层20,该金属箔基层选自铝箔、铜箔、钛箔、镍箔中的任一种。石墨烯导电层20设置在该金属箔基层10的至少一表面上,厚度为0.1μm~5μm,且电阻值小于1Ω·cm;石墨烯导电层20包含多个石墨烯片,以及一高分子黏结剂,该高分子黏结剂用以将所述石墨烯片粘着于该金属箔基层10之上,并且将所述石墨烯片相互黏接,且该高分子黏结剂与石墨烯导电层20的重量百分比为0.01wt%至10wt%。
该石墨烯片呈片状,厚度为1nm~50nm,且平面横向尺寸为1μm~50μm。该高分子黏结剂选自聚偏氟乙烯、聚对苯二甲酸乙烯酯、聚氨酯、聚氧化乙烯、聚丙烯腈、聚丙烯酰胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚四甘醇二丙烯酸酯、聚酰亚胺、醋酸纤维素、醋酸丁酸纤维素、醋酸丙酸纤维素、乙基纤维素、氰乙基纤维素、氰乙基聚乙烯醇及羧甲基纤维素的至少其中之一,且该高分子黏结剂与电池的电解液接触后,形成为胶态。
以下以实际的实验示例,来说明本发明电流收集层结构的制作方法。首先,将石墨烯片放入N-甲基吡咯烷酮(N-methyl pyrrolidinone,NMP)溶剂中,再加入聚偏氟乙烯(Polyvinylidene fluoride,PVDF)作为高分子黏结剂,接着球磨数小时,而制成石墨烯的浆料。再将石墨烯浆料喷涂于以铝箔做成的金属箔基层,并烘干充分使N-甲基吡咯烷酮(NMP)溶剂挥发后,形成石墨烯导电层,而完成电流收集层结构,再以四点探针量测电阻值。
以下实验示例1—5的差异在于石墨烯电流收集层中添加聚偏氟乙烯的量不同,以及该石墨烯导电层的喷涂厚度的不同,其实验结果如表1所示。
表1
另外,该石墨烯导电层与该金属箔基层,经由3M型号600和610胶带进行百格测试结果,该石墨烯导电层对于该金属箔片附着强度大于或等于4B。
本发明的特点在于,藉由高分子黏结剂的添加,使石墨烯片与金属箔片之间连接,并增加石墨烯片堆栈区块间的连接,增加了整体电流收集层结构的附着强度,形成一完整的导电网络。另外,就电化学部分,该高分子黏着剂与电化学元件内活性物质的黏结剂完全兼容,使电化学元件的活性物质与石墨烯导电层紧密结合,将两者的接触电阻降至最低,大幅提升电化学元件性能。从而能够应用于各种电池、电容器中。
以上所述者仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,因此,凡有在相同的发明精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。

Claims (4)

1.一种电流收集层结构,其特征在于,包含:
一金属箔基层;以及
一石墨烯导电层,设置在该金属箔基层的至少一表面上,且该石墨烯导电层仅由多个石墨烯片,以及一高分子黏结剂所组成,该高分子黏结剂用以将所述石墨烯片粘着于该金属箔基层上,并且将所述石墨烯片相互黏接,其中所述石墨烯片呈片状,厚度为1nm~50nm,且平面横向尺寸为1μm~50μm,该高分子黏结剂与该石墨烯导电层的重量比为0.12wt%至0.46wt%之间,该石墨烯导电层的电阻值介于2.104×10-6~8.376×10-1Ω·cm之间,该石墨烯导电层对于该金属箔基层附着强度经过百格试验的结果大于或等于4B。
2.如权利要求1所述的电流收集层结构,其特征在于,该金属箔基层选自铝箔、铜箔、钛箔以及镍箔的至少其中之一。
3.如权利要求1所述的电流收集层结构,其特征在于,该高分子黏结剂选自聚偏氟乙烯、聚对苯二甲酸乙烯酯、聚氨酯、聚氧化乙烯、聚丙烯腈、聚丙烯酰胺、聚丙烯酸甲酯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯、聚乙烯吡咯烷酮、聚四甘醇二丙烯酸酯、聚酰亚胺、醋酸纤维素、醋酸丁酸纤维素、醋酸丙酸纤维素、乙基纤维素、氰乙基纤维素、氰乙基聚乙烯醇及羧甲基纤维素的至少其中之一。
4.如权利要求1所述的电流收集层结构,其特征在于,该石墨烯导电层的厚度介于0.1μm~5μm之间。
CN201310489220.0A 2013-08-28 2013-10-18 电流收集层结构 Active CN104425051B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102130858A TWI533497B (zh) 2013-08-28 2013-08-28 Current collection layer structure
TW102130858 2013-08-28

Publications (2)

Publication Number Publication Date
CN104425051A CN104425051A (zh) 2015-03-18
CN104425051B true CN104425051B (zh) 2017-05-17

Family

ID=52583690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310489220.0A Active CN104425051B (zh) 2013-08-28 2013-10-18 电流收集层结构

Country Status (3)

Country Link
US (1) US20150064571A1 (zh)
CN (1) CN104425051B (zh)
TW (1) TWI533497B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573208B (zh) * 2015-07-23 2017-03-01 國立清華大學 半導體內連線結構及其製造方法
CN105322178B (zh) * 2015-10-16 2019-01-01 广东烛光新能源科技有限公司 一种电化学电池电极、含有该电极的电化学电池及其制备方法
TW201723140A (zh) * 2015-12-31 2017-07-01 安炬科技股份有限公司 透明抗靜電膜
CN106784822B (zh) * 2017-01-16 2020-08-25 安徽益佳通电池有限公司 一种高体积能量密度的高电压锂离子电池
US10122020B2 (en) * 2017-03-06 2018-11-06 Nanotek Instruments, Inc. Aluminum secondary battery cathode having oriented graphene
WO2019040391A1 (en) * 2017-08-21 2019-02-28 Loose Joe F GRAPHENE POLYMER COMPOSITES FOR TOOLS AND HAIRSTYLING DEVICES
CN114243026B (zh) * 2021-11-17 2023-09-05 荣烯新材(北京)科技有限公司 一种石墨烯集流体的制备方法以及设备
CA3238946A1 (en) * 2021-12-02 2023-06-08 Kam Piu Ho Modified current collector for secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414878A (zh) * 2009-04-24 2012-04-11 大日本印刷株式会社 非水电解液二次电池用电极板、非水电解液二次电池用电极板的制备方法及非水电解液二次电池
CN102412065A (zh) * 2010-09-20 2012-04-11 海洋王照明科技股份有限公司 基于石墨烯-碳纳米管复合材料超级电容器的制备方法
CN102969162A (zh) * 2011-09-01 2013-03-13 海洋王照明科技股份有限公司 一种锂离子电容器正极片及其制备方法
CN103187576A (zh) * 2011-12-28 2013-07-03 清华大学 集流体、电化学电池电极及电化学电池
TW201332185A (zh) * 2011-12-14 2013-08-01 Envia Systems Inc 用於高容量鋰基電池之低溫電解質

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745047B2 (en) * 2007-11-05 2010-06-29 Nanotek Instruments, Inc. Nano graphene platelet-base composite anode compositions for lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414878A (zh) * 2009-04-24 2012-04-11 大日本印刷株式会社 非水电解液二次电池用电极板、非水电解液二次电池用电极板的制备方法及非水电解液二次电池
CN102412065A (zh) * 2010-09-20 2012-04-11 海洋王照明科技股份有限公司 基于石墨烯-碳纳米管复合材料超级电容器的制备方法
CN102969162A (zh) * 2011-09-01 2013-03-13 海洋王照明科技股份有限公司 一种锂离子电容器正极片及其制备方法
TW201332185A (zh) * 2011-12-14 2013-08-01 Envia Systems Inc 用於高容量鋰基電池之低溫電解質
CN103187576A (zh) * 2011-12-28 2013-07-03 清华大学 集流体、电化学电池电极及电化学电池

Also Published As

Publication number Publication date
CN104425051A (zh) 2015-03-18
US20150064571A1 (en) 2015-03-05
TW201508984A (zh) 2015-03-01
TWI533497B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN104425051B (zh) 电流收集层结构
TWI527935B (zh) Structure of electrochemical devices containing graphene
Hong et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices
Byon et al. Role of oxygen functional groups in carbon nanotube/graphene freestanding electrodes for high performance lithium batteries
Xu et al. Flexible asymmetric micro‐supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density
Zhao et al. Pressure-induced self-interlocked structures for expanded graphite composite papers achieving prominent EMI shielding effectiveness and outstanding thermal conductivities
Lv et al. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites
Xue et al. Improving the electrode performance of Ge through Ge@ C core–shell nanoparticles and graphene networks
Weng et al. A gum‐like lithium‐ion battery based on a novel arched structure
Feng et al. Flexible cellulose paper‐based asymmetrical thin film supercapacitors with high‐performance for electrochemical energy storage
Xiong et al. Graphitic petal electrodes for all‐solid‐state flexible supercapacitors
Kwon et al. Fabrication of graphene sheets intercalated with manganese oxide/carbon nanofibers: toward high‐capacity energy storage
Sun et al. Self‐healable electrically conducting wires for wearable microelectronics
CN103373724B (zh) 石墨烯复合材料的制备方法
Lu et al. H‐TiO2@ MnO2//H‐TiO2@ C core–shell nanowires for high performance and flexible asymmetric supercapacitors
Chen et al. Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2 hybrid films for high‐performance flexible pseudosupercapacitors
US9138965B2 (en) Conductive fibrous materials
CN101937776B (zh) 超级电容
Kang et al. Large scale patternable 3-dimensional carbon nanotube–graphene structure for flexible Li-ion battery
Yesi et al. Directly‐grown hierarchical carbon nanotube@ polypyrrole core–shell hybrid for high‐performance flexible supercapacitors
Ye et al. Uniquely Arranged Graphene‐on‐Graphene Structure as a Binder‐Free Anode for High‐Performance Lithium‐Ion Batteries
CN103545556A (zh) 薄膜锂离子电池的制备方法
Sridhar et al. Directly grown carbon nano-fibers on nickel foam as binder-free long-lasting supercapacitor electrodes
Moon et al. 3D highly conductive silver nanowire@ PEDOT: PSS composite sponges for flexible conductors and their all‐solid‐state supercapacitor applications
CN103545529A (zh) 薄膜锂离子电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161009

Address after: 100192 Beijing, Haidian District Road, science and technology, No. 8 (Science and technology wealth center) A block, floor 11

Applicant after: Beijing science and Technology Co., Ltd.

Address before: Taiwan County, Yilan, China five knot Li Road, No. 5, three

Applicant before: Enerage, Inc.

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100085 Building 301-16, No. 1 Hospital, Gaolizhang Road, Haidian District, Beijing

Patentee after: Beijing Ensemble Technology Co., Ltd. (Limited Partnership)

Address before: 11th Floor, Block A, 8 Xueqing Road, Haidian District, Beijing, 100192

Patentee before: Beijing science and Technology Co., Ltd.

CP03 Change of name, title or address