CN104407150B - 用于2,4,6-tnt检测的生物纳米传感器制备方法 - Google Patents

用于2,4,6-tnt检测的生物纳米传感器制备方法 Download PDF

Info

Publication number
CN104407150B
CN104407150B CN201410635214.6A CN201410635214A CN104407150B CN 104407150 B CN104407150 B CN 104407150B CN 201410635214 A CN201410635214 A CN 201410635214A CN 104407150 B CN104407150 B CN 104407150B
Authority
CN
China
Prior art keywords
solution
sulfhydrylation
polypeptide
tnt
trinitro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410635214.6A
Other languages
English (en)
Other versions
CN104407150A (zh
Inventor
刘清君
张迪鸣
卢妍利
张倩
姚瑶
李爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410635214.6A priority Critical patent/CN104407150B/zh
Publication of CN104407150A publication Critical patent/CN104407150A/zh
Application granted granted Critical
Publication of CN104407150B publication Critical patent/CN104407150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种用于2,4,6-TNT检测的生物纳米传感器制备方法,该方法采用标准化学合成方法合成2,4,6-三硝基甲苯(2,4,6-TNT)特异性敏感的巯基化多肽(WHWQRPLMPVSID-SH),并利用其巯基与纳米金属颗粒的共价连接将其固定于纳米传感器件表面;检测时,目标分子2,4,6-三硝基甲苯与巯基化多肽的特异性结合引起纳米传感器表面的光学折射特性的改变,导致传感器透过的透射光光谱的相应变化,实现对目标分子2,4,6-三硝基甲苯的检测;较已有用于2,4,6-三硝基甲苯检测的生物传感器,本发明由于巯基化多肽修饰具有灵敏度高、生物结构稳定性好和成本低廉的优点。

Description

用于2,4,6-TNT检测的生物纳米传感器制备方法
技术领域
本发明涉及一种生物传感器的制备技术,尤其涉及一种用于爆炸物2,4,6-三硝基甲苯(2,4,6-TNT)检测的生物纳米传感器的制备方法。
背景技术
爆炸物2,4,6-三硝基甲苯的快速敏感检测技术在公共安全领域具有十分重要的需求。对其现场检测,一般采用训练动物如警犬进行检查,或使用基于传统物理化学方法的快速检测仪器。但是,动物训练成本非常高,并带有很强的不可控制性。而完全的电子检测装置,其物理或化学传感作用同发生在生物嗅觉系统的生物化学感受过程存在一定的差距,以致传感器在敏感性、特异性等方面尚有所不足。多肽是一种能够人工设计特异性、化学合成的蛋白小分子,其具有结构简单、功能稳定和成本低廉的特点。它能够与特定的目标分子特异性结合,作为生物敏感元件与纳米传感器相结合,构建用于2,4,6-三硝基甲苯检测的生物纳米传感器。
发明内容
本发明的目的在于针对现有技术的不足,提供一种用于2,4,6-三硝基甲苯检测的生物纳米传感器制备方法。
发明的目的是通过以下技术方案来实现的:一种用于2,4,6-三硝基甲苯检测的生物纳米传感器制备方法,包括以下步骤:
(1)合成2,4,6-三硝基甲苯特异性敏感的多肽序列:采用标准Fmoc固相合成法从羧基端(C端)向氨基端(N端)依据多肽序列WHWQRPLMPVSID合成,以100μg/ml多肽溶液形式保存,溶剂为0.1MPBS缓冲液;
(2)特异性敏感多肽序列的巯基化:将5ml浓度为8mg/ml的EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)溶液和5ml浓度为12mg/ml的NHS(N-羟基琥珀酰亚胺)溶液加入10ml浓度为100μg/ml的多肽溶液中,活化多肽序列C端羧基;EDC溶液和NHS溶液的溶剂均为0.1MMES缓冲液;20min后,加入NaHCO3溶液调节pH至7.2-7.4,再加入10ml浓度为1mg/ml的2-硫基乙胺水溶液,室温下静止2h,使得多肽序列C端羧基与2-硫基乙胺的氨基作用形成稳定的酰胺键,进而完成多肽序列巯基化,得到巯基化多肽(WHWQRPLMPVSID-SH);
(3)固定巯基化多肽于传感器表面:首先依次使用无水乙醇和超纯水超声清洗纳米杯阵列传感器各5min;所述纳米杯阵列传感器具有在PET基底材料上构建的尺寸为纳米级的杯状结构,所述杯状结构成阵列排布,并在其表面沉积纳米金颗粒;将清洗后的纳米杯阵列传感器浸泡在100μg/ml的巯基化多肽溶液中,巯基化多肽溶液的溶剂为PBS缓冲液;纳米杯阵列传感器在4℃温度下浸泡12h,巯基化多肽一端巯基与传感器金表面形成金-硫键,然后,取出后用PBS缓冲液反复清洗,洗去纳米结构表面的多余的巯基化多肽,用氮气吹干,最终获得用于2,4,6-三硝基甲苯检测的生物纳米传感器,放在4℃条件下保存备用。
本发明的有益效果是,本发明采用标准生物合成方法合成对2,4,6-三硝基甲苯特异性敏感的巯基化多肽(WHWQRPLMPVSID-SH),并利用纳米金属颗粒与巯基的共价连接将其固定于纳米杯阵列传感器表面;检测时,目标分子2,4,6-三硝基甲苯与巯基化多肽的特异性结合引起纳米杯阵列传感器表面的光学折射特性的改变,导致传感器透过的透射光光谱的相应变化,实现对目标分子2,4,6-三硝基甲苯的检测;较已有用于爆炸物检测的生物传感器,本发明由于巯基化多肽修饰具有灵敏度高、生物结构稳定性好和成本低廉的优点。本发明所述的生物纳米传感器检测下限为3.16×10-9M。
附图说明
图1为本发明巯基化多肽质谱表征图;
图2为本发明生物纳米传感器的制备图;
图3为本发明生物纳米传感器结构示意图;
图4为本发明纳米杯阵列传感器固定巯基化多肽前后电化学表征结果图;
图5为本发明生物纳米传感器件光学检测方法示意图;
图6为本发明生物纳米传感器对空白对照无水甲醇和2,4,6-三硝基甲苯标准样品溶液的光谱扫描结果图;
图7为本发明生物纳米传感器分别检测不同浓度的2,4,6-三硝基甲苯标准样品溶液后,离子共振峰偏移波长与2,4,6-三硝基甲苯浓度的对数之间的线性关系图。
具体实施方式
以下结合附图及具体实施例对本发明作详细描述,但并不是限制本发明。
本发明用于2,4,6-三硝基甲苯检测的生物纳米传感器制备方法,包括以下步骤:
1、合成2,4,6-三硝基甲苯特异性敏感的多肽序列:采用标准Fmoc固相合成法从羧基端(C端)向氨基端(N端)依据多肽序列WHWQRPLMPVSID重复脱保护、活化、偶联3步循环添加氨基酸,纯化提取为100μg/ml多肽溶液保存(溶剂为0.1MPBS缓冲液,pH=7.2,0.1M指的是PBS缓冲液中磷酸盐的摩尔浓度,本发明中使用的PBS缓冲液均是指0.1M,pH=7.2的PBS缓冲液)。
2、通过缩合作用的特异性敏感多肽序列的巯基化修饰:将5ml浓度为8mg/ml的EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)溶液和5ml浓度为12mg/ml的NHS(N-羟基琥珀酰亚胺)溶液加入10ml浓度为100μg/ml多肽溶液中,活化多肽序列C端羧基。EDC溶液和NHS溶液的溶剂均为0.1MMES缓冲液(含0.1MKCl,pH=6,0.1MMES指的是MES缓冲液中2-吗啉乙磺酸的摩尔浓度,0.1MKCl是指MES缓冲溶液氯化钾的摩尔浓度,本发明中使用的MES缓冲液均是指0.1M,pH=6的MES缓冲液)。20min后,加入NaHCO3溶液调节pH至7.2-7.4,再加入10ml浓度为1mg/ml2-硫基乙胺,室温下静止2h,使得多肽序列C端羧基与2-硫基乙胺的氨基作用形成稳定的酰胺键,进而完成多肽序列巯基化,得到巯基化多肽1(WHWQRPLMPVSID-SH),分离提纯以冻干粉形式保存,其质谱表征如图1所示。
3、固定巯基化多肽1于传感器表面:如图2所示,首先,依次使用无水乙醇和超纯水超声清洗纳米杯阵列传感器2各5min。所述纳米杯阵列传感器2具有在聚对苯二甲酸乙二醇酯(PET)基底材料上构建的尺寸为纳米级的杯状结构,所述杯状结构成阵列排布,并在其表面沉积直径为10nm的纳米金颗粒。将清洗后的纳米杯阵列传感器2浸泡在100μg/ml的巯基化多肽1溶液中,巯基化多肽1溶液的溶剂为PBS缓冲液。纳米杯阵列传感器2在4℃温度下浸泡12h,巯基化多肽1一端巯基与传感器金表面形成金-硫键。然后,取出后用PBS缓冲液反复清洗,洗去纳米结构表面的多余的巯基化多肽1,用氮气吹干,获得所述的用于2,4,6-三硝基甲苯检测检测的生物纳米传感器,如图3所示,放在4℃条件下保存备用,其固定前后特性的表征采用交流阻抗方法扫描,得到表征其传感器表面阻抗的能奎斯特图,如图4所示,传感器表面阻抗明显增大,说明纳米杯阵列传感器2表面已成功地固定了巯基化多肽1。
本发明的方法制备的生物纳米传感器可用于检测爆炸物2,4,6-三硝基甲苯,该应用具体如下:
(1)配制待测2,4,6-三硝基甲苯标准样品溶液:采用浓度为0.1M待测的2,4,6-三硝基甲苯的标准贮备溶液稀释配制5种浓度梯度为10-8M、10-7M、10-6M、10-5M和10-4M的标准样品溶液;稀释液为无水甲醇。
(2)检测2,4,6-三硝基甲苯标准样品溶液,得到2,4,6-三硝基甲苯标准样品溶液作用下生物纳米传感器的透射光谱图和等离子共振峰偏移波长:采用光学透射的模式对生物纳米传感器进行检测,如图5所示,电荷耦合元件(CCD)镜头3、纳米杯阵列传感器件2与氙灯光源6被依次从上到下置于一条直线上。光束由氙灯光源6透过纳米杯阵列传感器2发生改变,最终由CCD镜头3采集接收,检测时,首先在生物纳米传感器表面添加50μl无水甲醇溶液,而后在传感器表面上覆盖2cm×2cm大小的盖玻片4在生物纳米传感器表面形成薄层液体5以减少液体本身对光学透射的影响,所述CCD镜头3采用美国海洋光学USB2000+采集模块,所述氙灯光源6采用美国海洋光学PX-02光源;CCD镜头3和氙灯光源6通过光纤连接,从而实现对生物纳米传感器的光谱扫描,得到透射光谱图和等离子共振峰偏移波长。具体测试参数为:光谱扫描范围为320nm-1000nm,扫描步进为1nm。测量结束后吸出传感器表面上测量残留的溶液,然后加满0.1MPBS缓冲液,静置5min后缓慢吸出PBS缓冲液,用于清洗生物纳米传感器,再进行2,4,6-三硝基甲苯标准样品溶液的光学透射谱测量,在传感器表面加入2,4,6-三硝基甲苯标准样品溶液,进行透射光谱的测量,得到浓度为10-8M的2,4,6-三硝基甲苯标准样品溶液对应的透射光谱图和等离子共振峰偏移波长,如图6所示,插图中显示透射光谱在550nm左右的透射峰会向左发生明显偏移,测量结束后吸除传感器表面上次测量残留的全部溶液,然后加满0.1MPBS缓冲液,静置15min后缓慢吸出PBS缓冲液,用于清洗生物纳米传感器表面。
(3)建立2,4,6-三硝基甲苯标准样品溶液浓度-偏移波长的标准曲线:重复上述步骤2中空白对照无水甲醇溶液和2,4,6-三硝基甲苯标准样品溶液的透射光谱的测量过程,直至完成5种浓度梯度分别为10-8M、10-7M、10-6M、10-5M和10-4M的2,4,6-三硝基甲苯标准样品溶液的测量,得到不同浓度下的透射光谱图,每个浓度重复测量10次,计算等离子共振峰偏移波长(标准样品溶液与空白对照无水甲醇溶液透射峰波长位置差值),得到2,4,6-三硝基甲苯标准样品溶液浓度与共振峰偏移波长的关系曲线y=1.018log(x)+9.459,如图7所示,其中,x为2,4,6-三硝基甲苯标准样品溶液浓度,y为共振峰偏移波长,实现对2,4,6-三硝基甲苯的检测,其具有超灵敏的特点,经计算检测下限为3.16×10-9M。

Claims (1)

1.一种用于2,4,6-TNT检测的生物纳米传感器制备方法,其特征在于,包括以下步骤:
(1)合成2,4,6-三硝基甲苯(2,4,6-TNT)特异性敏感的多肽序列:采用标准Fmoc固相合成法从羧基端(C端)向氨基端(N端)依据多肽序列WHWQRPLMPVSID合成,以100μg/ml多肽溶液形式保存,溶剂为0.1MPBS缓冲液;
(2)特异性敏感多肽序列的巯基化:将5ml浓度为8mg/ml的EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)溶液和5ml浓度为12mg/ml的NHS(N-羟基琥珀酰亚胺)溶液加入10ml浓度为100μg/ml的多肽溶液中,活化多肽序列C端羧基;EDC溶液和NHS溶液的溶剂均为0.1MMES(2-(N-吗啡啉)乙磺酸)缓冲液;20min后,加入NaHCO3溶液调节pH至7.2-7.4,再加入10ml浓度为1mg/ml的2-硫基乙胺水溶液,室温下静止2h,使得多肽序列C端羧基与2-硫基乙胺的氨基作用形成稳定的酰胺键,进而完成多肽序列巯基化,得到巯基化多肽(WHWQRPLMPVSID-SH);
(3)固定巯基化多肽于传感器表面:首先依次使用无水乙醇和超纯水超声清洗纳米杯阵列传感器各5min;所述纳米杯阵列传感器具有在PET基底材料上构建的尺寸为纳米级的杯状结构,所述杯状结构成阵列排布,并在其表面沉积纳米金颗粒;将清洗后的纳米杯阵列传感器浸泡在100μg/ml的巯基化多肽溶液中,巯基化多肽溶液的溶剂为PBS缓冲液;纳米杯阵列传感器在4℃温度下浸泡12h,巯基化多肽一端巯基与传感器金表面形成金-硫键,然后,取出后用PBS缓冲液反复清洗,洗去纳米结构表面的多余的巯基化多肽,用氮气吹干,最终获得用于2,4,6-三硝基甲苯检测的生物纳米传感器,放在4℃条件下保存备用。
CN201410635214.6A 2014-11-12 2014-11-12 用于2,4,6-tnt检测的生物纳米传感器制备方法 Active CN104407150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410635214.6A CN104407150B (zh) 2014-11-12 2014-11-12 用于2,4,6-tnt检测的生物纳米传感器制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410635214.6A CN104407150B (zh) 2014-11-12 2014-11-12 用于2,4,6-tnt检测的生物纳米传感器制备方法

Publications (2)

Publication Number Publication Date
CN104407150A CN104407150A (zh) 2015-03-11
CN104407150B true CN104407150B (zh) 2016-03-30

Family

ID=52644796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410635214.6A Active CN104407150B (zh) 2014-11-12 2014-11-12 用于2,4,6-tnt检测的生物纳米传感器制备方法

Country Status (1)

Country Link
CN (1) CN104407150B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548179A (zh) * 2015-12-04 2016-05-04 深圳市赛尔生物技术有限公司 一种基于透射光或自发光测定生物芯片的方法及系统
CN107290422B (zh) * 2017-07-20 2019-04-19 浙江大学 一种基于电化学增强反射光谱信号的生化检测系统及方法
CN108802394A (zh) * 2018-05-29 2018-11-13 郑州左安检测科技有限公司 一种检测三硝基甲苯的fitc试纸条及其制备方法和应用方法
CN113125393A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 一种检测2,4,6-三硝基甲苯的方法
CN115554985A (zh) * 2022-09-15 2023-01-03 中国人民解放军国防科技大学 气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512994C2 (sv) * 1998-09-24 2000-06-12 Biosensor Applic Sweden Ab Biosensorcellanordning och dess användning
IL128212A (en) * 1999-01-25 2004-06-20 Biosensor Applic Sweden Ab Detection of small molecules by use of a piezoelectric sensor
CN100593713C (zh) * 2008-07-14 2010-03-10 中国科学院化学研究所 对爆炸物荧光检测的高灵敏的含光子晶体的荧光检测膜的制备方法
CN102095711B (zh) * 2010-12-17 2012-05-23 中国科学院合肥物质科学研究院 一种可视化检测爆炸物的双发射荧光化学传感器及其制备方法
US8940235B2 (en) * 2011-10-04 2015-01-27 Samsung Electronics Co., Ltd. Thin-film transistors for chemical sensor applications
KR101711600B1 (ko) * 2012-09-17 2017-03-02 국민대학교산학협력단 폭발물의 선택적 검출을 위한 펩타이드 센서

Also Published As

Publication number Publication date
CN104407150A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
CN104407150B (zh) 用于2,4,6-tnt检测的生物纳米传感器制备方法
Panasyuk et al. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors
Canfarotta et al. A novel capacitive sensor based on molecularly imprinted nanoparticles as recognition elements
Moreira et al. Electrochemical biosensor based on biomimetic material for myoglobin detection
Labib et al. A novel competitive capacitive glucose biosensor based on concanavalin A-labeled nanogold colloids assembled on a polytyramine-modified gold electrode
Rebelo et al. Novel Prostate Specific Antigen plastic antibody designed with charged binding sites for an improved protein binding and its application in a biosensor of potentiometric transduction
Yaqub et al. Plastic antibodies as chemical sensor material for atrazine detection
Pal et al. Interactions of amino acids and peptides with the drug pentoxifylline in aqueous solution at various temperatures: a volumetric approach
Lu et al. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection
Patil et al. Immittance electroanalysis in diagnostics
Dibekkaya et al. Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies
Wu et al. A biomimetic bitter receptor-based biosensor with high efficiency immobilization and purification using self-assembled aptamers
Ma et al. Oriented surface epitope imprinted polymer-based quartz crystal microbalance sensor for cytochrome c
Herber et al. A swelling hydrogel-based PCO2 sensor
Wajs et al. Supramolecular biosensors based on electropolymerised pyrrole–cyclodextrin modified surfaces for antibody detection
Tavares et al. Novel electro-polymerized protein-imprinted materials using Eriochrome black T: Application to BSA sensing
Carlson et al. Sensor for fluorene based on the incorporation of an environmentally sensitive fluorophore proximal to a molecularly imprinted binding site
Liu et al. Highly sensitive detection of sulfadimidine in water and dairy products by means of an evanescent wave optical biosensor
CN107085022A (zh) 3‑硝基酪氨酸的分子印迹电化学传感器的制备及应用
Safran et al. Development of molecularly imprinted polymer‐based optical sensor for the sensitive penicillin G detection in milk
CN101556248A (zh) 一种表面等离子共振光谱的时间分辨率检测方法
Çakır et al. Sensitive and selective detection of amitrole based on molecularly imprinted nanosensor
Dong et al. A novel polymerization of ultrathin sensitive imprinted film on surface plasmon resonance sensor
RU2012128655A (ru) Способ и устройство для создания автоматического пробоотборника для обнаружения salmonella enterica с использованием электрохимического биосенсора с аптамерами
Sun et al. Characterization of Small Molecule–Protein Interactions Using SPR Method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant