CN115554985A - 气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用 - Google Patents
气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用 Download PDFInfo
- Publication number
- CN115554985A CN115554985A CN202211123100.4A CN202211123100A CN115554985A CN 115554985 A CN115554985 A CN 115554985A CN 202211123100 A CN202211123100 A CN 202211123100A CN 115554985 A CN115554985 A CN 115554985A
- Authority
- CN
- China
- Prior art keywords
- gas
- phase
- phase explosive
- sensitive
- explosive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002360 explosive Substances 0.000 title claims abstract description 84
- 239000000463 material Substances 0.000 title claims abstract description 49
- 238000001179 sorption measurement Methods 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- SPSSULHKWOKEEL-UHFFFAOYSA-N 2,4,6-trinitrotoluene Chemical compound CC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O SPSSULHKWOKEEL-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 29
- 238000010897 surface acoustic wave method Methods 0.000 claims abstract description 17
- 230000008878 coupling Effects 0.000 claims abstract description 16
- 238000010168 coupling process Methods 0.000 claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 claims abstract description 16
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims abstract description 15
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 14
- -1 3-dimethylaminopropyl Chemical group 0.000 claims abstract description 13
- WYYXDSQOPIGZPU-UHFFFAOYSA-N 6-aminohexane-1-thiol Chemical compound NCCCCCCS WYYXDSQOPIGZPU-UHFFFAOYSA-N 0.000 claims abstract description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 11
- SEKLFMRSNLFPRB-UHFFFAOYSA-N 2-(pyridin-2-yldisulfanyl)ethanamine;hydrochloride Chemical compound Cl.NCCSSC1=CC=CC=N1 SEKLFMRSNLFPRB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 125000002228 disulfide group Chemical group 0.000 claims abstract description 8
- 230000003213 activating effect Effects 0.000 claims abstract description 6
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910000071 diazene Inorganic materials 0.000 claims abstract description 5
- 102100039177 Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha Human genes 0.000 claims description 23
- 229920001977 poly(N,N-diethylacrylamides) Polymers 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 17
- 150000002632 lipids Chemical class 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 239000002135 nanosheet Substances 0.000 claims description 5
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 4
- 230000004913 activation Effects 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 239000003463 adsorbent Substances 0.000 claims description 2
- 239000004519 grease Substances 0.000 claims description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N formamide Substances NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 16
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000011084 recovery Methods 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 150000002148 esters Chemical class 0.000 abstract description 5
- 239000002103 nanocoating Substances 0.000 abstract description 2
- 239000000015 trinitrotoluene Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- 239000002086 nanomaterial Substances 0.000 description 7
- 101000609947 Homo sapiens Rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit alpha Proteins 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 231100000739 chronic poisoning Toxicity 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000012621 metal-organic framework Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- HXVNBWAKAOHACI-UHFFFAOYSA-N 2,4-dimethyl-3-pentanone Chemical compound CC(C)C(=O)C(C)C HXVNBWAKAOHACI-UHFFFAOYSA-N 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 208000007882 Gastritis Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001871 ion mobility spectroscopy Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000000449 nitro group Chemical class [O-][N+](*)=O 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
- B01J20/205—Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/222—Constructional or flow details for analysing fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/021—Gases
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用。气相爆炸物敏感吸附材料是通过N‑(3‑二甲基氨基丙基)‑N'‑乙基羧基二亚胺盐酸盐活化氧化石墨烯表面的羧基生成活性脂,然后通过N‑羟基琥珀酰亚胺稳定生成的活性脂,再使用2‑(2‑吡啶基二硫代)乙胺盐酸盐与活化的羧基形成酰胺键生成GO‑S‑S‑Py偶联中间体,再通过与6‑氨基己硫醇进行二硫交换反应得到。该敏感吸附材料可作为纳米涂层沉积在声表面波器件的传感区域形成气相爆炸物传感芯片。该敏感吸附材料特异性好、灵敏度高、成本低、响应时间和恢复时间快,且传感芯片能够实现2,4,6‑三硝基甲苯等气相爆炸物的超高灵敏度检测。
Description
技术领域
本发明属于爆炸物气体检测领域,涉及一种超灵敏的TNT等爆炸物气体敏感吸附材料和传感芯片,具体涉及气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用。
背景技术
硝基爆炸物如2,4,6-三硝基甲苯(TNT)作为一种人工硝基芳香炸药被广泛用于工程爆破。这些爆炸物如果残留在空气、地下水等环境中会导致人和动物慢性中毒。TNT可以通过皮肤、呼吸道和消化道侵入人体,从而影响血液、肝脏和免疫系统,可导致人和动物慢性中毒,出现中毒性胃炎、肝炎、复发、贫血和白内障等症状。因此,对爆炸物尤其是TNT的高灵敏检测,对于国土安全和环境保护等问题极为重要。快速、可靠、特异性和高灵敏地检测空气中的TNT等爆炸物分子引起了广泛的研究关注。目前已有许多技术被用于TNT的定量和定性分析,包括色谱、质谱、离子迁移谱、微悬臂梁、表面增强拉曼光谱、电化学分析、表面等离子共振、荧光方法、免疫测定等。然而这些传统的检测方法需要复杂的仪器,复杂且耗时的操作过程,缺乏便携性,并且难以在现场使用。因此,一些新兴的爆炸物传感技术亟待突破,其中基于表面声波器件结合纳米敏感吸附材料的便携高效和低成本的传感器成为极具发展前景的研究方向。
金属有机框架(MOF)、聚合物薄膜和碳基纳米材料是常见的传感界面吸附薄膜。其中,碳基纳米材料由于其独特的电子特性,被广泛用于传感器敏感材料的制备。二维石墨烯基纳米材料具有突出的物理化学性质,例如大的比表面积和丰富的含氧官能团。它们可以通过π-π堆积相互作用、静电相互作用和氢键与TNT气体分子结从而实现对爆炸物分子的捕获与敏感。但二维石墨烯基纳米材料的非特异性、稳定性不佳、响应/恢复时间慢、灵敏度较低一直是有待解决的问题。因此,对石墨烯纳米材料进行表面修饰以增强其对爆炸物分子敏感的特异性、灵敏度、响应时间等是一条有效的技术途径。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种特异性好、灵敏度高、成本低、响应时间和恢复时间快的气相爆炸物敏感吸附材料及其制备方法,并相应地提供一种气相爆炸物传感芯片及其应用。
为解决上述技术问题,本发明采用以下技术方案。
一种气相爆炸物敏感吸附材料,所述气相爆炸物敏感吸附材料是通过N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐活化氧化石墨烯表面的羧基生成活性脂,然后通过N-羟基琥珀酰亚胺稳定生成的活性脂,再使用2-(2-吡啶基二硫代)乙胺盐酸盐与活化的羧基形成酰胺键并生成GO-S-S-Py偶联中间体,再通过与6-氨基己硫醇进行二硫交换反应得到气相爆炸物敏感吸附材料GO/PDEA@6MNA。
作为一个总的技术构思,本发明还提供一种气相爆炸物敏感吸附材料的制备方法,包括以下步骤:
(1)将氧化石墨烯纳米片加入水中,经超声分散,得到氧化石墨烯分散液;
(2)向步骤(1)所得氧化石墨烯分散液中加入N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐溶液,用于活化氧化石墨烯表面的羧基生成活性脂;
(3)向步骤(2)所得活化样品中加入N-羟基琥珀酰亚胺溶液,以保护生成的活性脂;
(4)向步骤(3)所得溶液中加入2-(2-吡啶基二硫代)乙胺盐酸盐溶液,进行耦合,通过与活化的羧基形成酰胺键生成GO-S-S-Py偶联中间体;
(5)向步骤(4)所得溶液中加入6-氨基己硫醇溶液,进行耦合,通过二硫交换反应生成气相爆炸物敏感吸附材料GO/PDEA@6MNA。
上述的气相爆炸物敏感吸附材料的制备方法,优选的,所述氧化石墨烯、N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐、N-羟基琥珀酰亚胺、2-(2-吡啶基二硫代)乙胺盐酸盐、6-氨基己硫醇的用量比为1mg~5mg∶1μmol~10μmol∶1~10μmol∶0.1μmol~1μmol∶0.1μmol~1μmol。
上述的气相爆炸物敏感吸附材料的制备方法,优选的,步骤(1)中,所述氧化石墨烯与水的质量体积比为1mg~5mg∶1mL~10mL;步骤(2)中,所述N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐溶液的浓度为10-3M~0.1M;步骤(3)中,所述N-羟基琥珀酰亚胺溶液的浓度为10-3M~10-1M;步骤(4)中,所述2-(2-吡啶基二硫代)乙胺盐酸盐溶液的浓度为10- 5M~10-3M;步骤(5)中,所述6-氨基己硫醇溶液的浓度为10-5M~10-3M。
上述的气相爆炸物敏感吸附材料的制备方法,优选的,步骤(1)中,所述超声分散的时间为20min~40min;步骤(2)中,所述活化的时间为10min~20min。
上述的气相爆炸物敏感吸附材料的制备方法,优选的,步骤(4)中,所述耦合的时间为1h~2h;步骤(5)中,所述耦合的时间为1h~2h。
作为一个总的技术构思,本发明还提供一种气相爆炸物传感芯片,包括声表面波器件和设于声表面波器件传感区域的如上述的气相爆炸物敏感吸附材料或上述的制备方法制得的气相爆炸物敏感吸附材料。
上述的气相爆炸物传感芯片,优选的,所述气相爆炸物敏感吸附材料GO/PDEA@6MNA在声表面波器件传感区域的沉积厚度为100nm~300nm。
作为一个总的技术构思,本发明还提供一种上述的气相爆炸物传感芯片在检测气相爆炸物中的应用。
上述的应用,优选的,所述气相爆炸物为2,4,6-三硝基甲苯。
本发明中,浓度单位M即为mol/L。
与现有技术相比,本发明的优点在于:
(1)本发明通过EDC/NHS活化氧化石墨烯,并通过二硫交换反应将对2,4,6-三硝基甲苯(TNT)具有特异性和超强吸附能力的6-氨基己硫醇分子偶联到氧化石墨烯纳米材料的表面,增强了敏感吸附材料的稳定性、特异性和灵敏度。
(2)本发明将化学修饰后的气相爆炸物敏感吸附材料(GO/PDEA@6MNA)结合声表面波(SAW)器件制备了一种高性能的气相爆炸物传感芯片,该传感芯片能够实现爆炸物气体响应时间和恢复时间分别低至13s和46s。该气相爆炸物传感芯片具有单一信号显示的优点,明显降低了数据处理的复杂程度。该气相爆炸物传感芯片制作方法简单、成本低。
(3)本发明的气相爆炸物敏感吸附材料GO/PDEA@6MNA能够实现低至0.5ppm 2,4,6-三硝基甲苯(TNT)气体的实时检测。通过将传感芯片暴露在气相爆炸物中,传感芯片的频率就会发生显著的偏移,当将传感芯片放置在空气中便回到基线频率。
附图说明
图1为本发明实施例1的气相爆炸物敏感吸附材料GO/PDEA@6MNA的修饰方法步骤示意图。
图2为本发明实施例1的气相爆炸物敏感吸附材料GO/PDEA@6MNA在声表面波器件上的集成方法示意图。
图3为本发明实施例1中氧化石墨烯GO被EDC及NHS修饰的反应方法示意图。
图4为本发明实施例1中氧化石墨烯GO被EDC及NHS修饰后继续被PDEA修饰的反应方法示意图。
图5为本发明实施例1中氧化石墨烯GO被EDC、NHS、PDEA修饰后继续被6MNA修饰的反应方法示意图。
图6为本发明实施例1中气相爆炸物敏感吸附材料GO/PDEA@6MNA捕获TNT爆炸物分子的反应示意图。
图7为本发明实施例1的气相爆炸物传感芯片在20ppm TNT气体中六个周期频率响应变化图。
图8为本发明实施例1的气相爆炸物传感芯片对1-50ppm TNT气体的动态频率响应图。
图9为本发明实施例1在不同湿度下对气相爆炸物传感芯片检测50ppm TNT气体的信号响应图。
图10为本发明实施例1在50RH%下对1ppm TNT气体的信号响应图。
图11为本发明实施例1在不同温度下对气相爆炸物传感芯片检测50ppm TNT气体的信号响应图。
具体实施方式
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。以下实施例中所采用的材料和仪器均为市售。
实施例1:
一种本发明的气相爆炸物敏感吸附材料GO/PDEA@6MNA,如图1所示,该敏感吸附材料GO/PDEA@6MNA是通过N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐(EDC)活化氧化石墨烯表面的羧基生成活性脂,然后通过N-羟基琥珀酰亚胺(NHS)稳定生成的活性脂,再使用2-(2-吡啶基二硫代)乙胺盐酸盐(PDEA)与活化羧基形成酰胺键并生成GO-S-S-Py偶联中间体,最后通过二硫交换反应和6-氨基己硫醇(6MNA)生成气相爆炸物敏感材料GO/PDEA@6MNA。如图2所示,是本实施例的敏感吸附材料沉在声表面波(SAW)器件的传感区域制备一种超灵敏的气相爆炸物传感芯片。
一种本实施例的气相爆炸物敏感吸附材料GO/PDEA@6MNA的制备方法,即特异性、超灵敏的碳基敏感吸附纳米涂层的制备,包括以下步骤:
(1)将1mg的氧化石墨烯纳米片分散在1mL去离子水中,超声20min使其分散均匀,得到分散液。
(2)如图3所示,向分散液中加入200μL 0.01M N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐(EDC)溶液,用于活化氧化石墨烯纳米片表面的羧基生成活性脂,活化时间为15min,期间使用数字摇床振荡。
(3)由于生成的活性脂并不稳定,注入30μL 0.1M N-羟基琥珀酰亚胺(NHS)溶液保护生成的活性脂。
(4)如图4所示,向步骤(2)所得溶液中注入150μL 10-3M 2-(2-吡啶基二硫代)乙胺盐酸盐(PDEA)溶液用于伯胺反应,PDEA是一种含杂双功能胺试剂,它可以和氧化石墨烯表面的活化羧基基团之间形成酰胺键,并生成GO-S-S-Py偶联中间体,孵育时间为1h。
(5)如图5所示,向步骤(3)所得反应液中注入150μL 10-3M 6-氨基己硫醇(6MNA)溶液,GO-S-S-Py偶联中间体的2-吡啶硫代和6MNA的巯基之间进行了巯基二硫交换,反应过程中释放出2-吡啶乙酮,设置孵育时间为1h,得到气相爆炸物敏感吸附材料GO/PDEA@6MNA。
一种本发明的超灵敏特异性的气相爆炸物(TNT)传感芯片,包括声表面波器件和设于声表面波器件传感区域的气相爆炸物敏感吸附材料GO/PDEA@6MNA。
一种上述气相爆炸物传感芯片的制备方法,气相爆炸物传感芯片即高稳定性、大面积传感区域的声表面波器件检测平台,包括以下步骤:
(1)掩模版的制备:利用AuToCAD软件画出传感芯片的设计图形,并通过机械加工的方法制备掩模版;
(2)叉指电极的制备:选择4寸的蓝宝石片作为衬底,经过丙酮、乙醇、去离子水依次清洗,选择AZ5214光刻胶,旋涂4000r/min-30s,光刻胶厚度为1.5μm;
(3)选择传统的紫外光刻机曝光,宽带光源曝光6.5s,目的是将掩模版的图形转移到AlN/蓝宝石衬底表面。放在加热板上烘烤,95℃软烘/100℃硬烘,时间为90s/2min;
(4)显影液选择2.38%TMAH,显影时间为45s。显影完成后,需要使用氧等离子体进一步去除残留的光刻胶;
(5)采用热蒸发镀膜机在衬底表面蒸镀Cr膜(5nm)和Au膜(60nm)用于制备电极(IDTs),蒸镀速率为0.52nm/s,真空度小于10-5Pa。Cr膜用于提高Au膜的粘附性。剥离工艺是在丙酮和异丙酮的混合液中完成的,时间是30min;
(6)将本实施例制备好的气相爆炸物敏感吸附材料GO/PDEA@6MNA沉积在声表面波器件的传感区域,如图2所示,敏感材料的沉积厚度为100nm~600nm,温箱中80℃下烘烤1h,得到气相爆炸物传感芯片。
一种本发明的气相爆炸物传感芯片在对2,4,6-三硝基甲苯(TNT)的检测中的应用,包括以下步骤:
(1)将600mg 2,4,6-三硝基甲苯(TNT)固体放置于500mL的广口瓶中,并将广口瓶放置在温箱中加热(40℃~90℃),静置时间超过一夜,保证爆炸物达到该温度下的饱和蒸汽压;
(2)将气相爆炸物传感芯片固定在传感室,两端连接矢量网络分析仪,分析仪连接电脑,使用现有程序实时监测传感芯片频率的变化;
(3)使用空气作为载气,将2,4,6-三硝基甲苯(TNT)气体携带至传感室。如图6所示,气相爆炸物敏感吸附材料GO/PDEA@6MNA将捕获TNT并将其转换为声表器件的谐振频率变化。图7所示为本发明在一定温度(本实施例为298.15K)、一定湿度(本实施例为20RH%)条件下20ppm TNT气体中六个周期中的频率响应变化一致,表明传感芯片具有良好的重复性。图8所示为本发明的传感芯片在298.15K、20RH%条件下对1-50ppm TNT气体的动态频率响应,传感芯片具有较宽的TNT检测范围和信号响应。
(4)2,4,6-三硝基甲苯(TNT)浓度范围为0.5-50ppm,同时测试传感芯片的响应/恢复时间、稳定性和重复性,以及其对极端环境(高温度、高湿度)的抗干扰能力以及其检测性能。图9和图10为不同湿度20RH%、50RH%、80RH%对传感芯片检测TNT气体的影响,传感芯片在20RH%具有最好的信号响应,响应时间和恢复时间分别为13s和46s;图11为不同温度对传感芯片检测TNT气体的影响,传感芯片在室温下具有最好的气敏性能。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围内。
Claims (10)
1.一种气相爆炸物敏感吸附材料,其特征在于,所述气相爆炸物敏感吸附材料是通过N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐活化氧化石墨烯表面的羧基生成活性脂,然后通过N-羟基琥珀酰亚胺稳定生成的活性脂,再使用2-(2-吡啶基二硫代)乙胺盐酸盐与活化的羧基形成酰胺键并生成GO-S-S-Py偶联中间体,再通过与6-氨基己硫醇进行二硫交换反应得到气相爆炸物敏感吸附材料GO/PDEA@6MNA。
2.一种气相爆炸物敏感吸附材料的制备方法,其特征在于,包括以下步骤:
(1)将氧化石墨烯纳米片加入水中,经超声分散,得到氧化石墨烯分散液;
(2)向步骤(1)所得氧化石墨烯分散液中加入N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐溶液,用于活化氧化石墨烯表面的羧基生成活性脂;
(3)向步骤(2)所得活化样品中加入N-羟基琥珀酰亚胺溶液,以保护生成的活性脂;
(4)向步骤(3)所得溶液中加入2-(2-吡啶基二硫代)乙胺盐酸盐溶液,进行耦合,通过与活化的羧基形成酰胺键生成GO-S-S-Py偶联中间体;
(5)向步骤(4)所得溶液中加入6-氨基己硫醇溶液,进行耦合,通过二硫交换反应生成气相爆炸物敏感吸附材料GO/PDEA@6MNA。
3.根据权利要求2所述的气相爆炸物敏感吸附材料的制备方法,其特征在于,所述氧化石墨烯、N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐、N-羟基琥珀酰亚胺、2-(2-吡啶基二硫代)乙胺盐酸盐、6-氨基己硫醇的用量比为1mg~5mg∶1μmol~10μmol∶1~10μmol∶0.1μmol~1μmol∶0.1μmol~1μmol。
4.根据权利要求3所述的气相爆炸物敏感吸附材料的制备方法,其特征在于,步骤(1)中,所述氧化石墨烯与水的质量体积比为1mg~5mg∶1mL~10mL;步骤(2)中,所述N-(3-二甲基氨基丙基)-N'-乙基羧基二亚胺盐酸盐溶液的浓度为10-3M~0.1M;步骤(3)中,所述N-羟基琥珀酰亚胺溶液的浓度为10-3M~10-1M;步骤(4)中,所述2-(2-吡啶基二硫代)乙胺盐酸盐溶液的浓度为10-5M~10-3M;步骤(5)中,所述6-氨基己硫醇溶液的浓度为10-5M~10-3M。
5.根据权利要求2~4中任一项所述的气相爆炸物敏感吸附材料的制备方法,其特征在于,步骤(1)中,所述超声分散的时间为20min~40min;步骤(2)中,所述活化的时间为10min~20min。
6.根据权利要求2~4中任一项所述的气相爆炸物敏感吸附材料的制备方法,其特征在于,步骤(4)中,所述耦合的时间为1h~2h;步骤(5)中,所述耦合的时间为1h~2h。
7.一种气相爆炸物传感芯片,其特征在于,包括声表面波器件和设于声表面波器件传感区域的如权利要求1所述的气相爆炸物敏感吸附材料或权利要求2~6中任一项所述的制备方法制得的气相爆炸物敏感吸附材料。
8.根据权利要求7所述的气相爆炸物传感芯片,其特征在于,所述气相爆炸物敏感吸附材料GO/PDEA@6MNA在声表面波器件传感区域的沉积厚度为100nm~300nm。
9.一种如权利要求7或8所述的气相爆炸物传感芯片在检测气相爆炸物中的应用。
10.根据权利要求9所述的应用,其特征在于,所述气相爆炸物为2,4,6-三硝基甲苯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211123100.4A CN115554985A (zh) | 2022-09-15 | 2022-09-15 | 气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211123100.4A CN115554985A (zh) | 2022-09-15 | 2022-09-15 | 气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115554985A true CN115554985A (zh) | 2023-01-03 |
Family
ID=84741320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211123100.4A Pending CN115554985A (zh) | 2022-09-15 | 2022-09-15 | 气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115554985A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104407150A (zh) * | 2014-11-12 | 2015-03-11 | 浙江大学 | 用于2,4,6-tnt检测的生物纳米传感器制备方法 |
CN104677518A (zh) * | 2015-02-05 | 2015-06-03 | 中国科学院微电子研究所 | 声表面波温度传感器 |
CN108489953A (zh) * | 2018-05-10 | 2018-09-04 | 长春理工大学 | 一种原位修饰纸基硝基爆炸物荧光传感材料的制备方法 |
CN113242030A (zh) * | 2021-05-31 | 2021-08-10 | 天津大学 | 基于声表面波器件的动态阵列纳米材料应变平台 |
CN114061786A (zh) * | 2021-10-25 | 2022-02-18 | 中北大学 | 声表面波温度传感器及其制备方法 |
-
2022
- 2022-09-15 CN CN202211123100.4A patent/CN115554985A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104407150A (zh) * | 2014-11-12 | 2015-03-11 | 浙江大学 | 用于2,4,6-tnt检测的生物纳米传感器制备方法 |
CN104677518A (zh) * | 2015-02-05 | 2015-06-03 | 中国科学院微电子研究所 | 声表面波温度传感器 |
CN108489953A (zh) * | 2018-05-10 | 2018-09-04 | 长春理工大学 | 一种原位修饰纸基硝基爆炸物荧光传感材料的制备方法 |
CN113242030A (zh) * | 2021-05-31 | 2021-08-10 | 天津大学 | 基于声表面波器件的动态阵列纳米材料应变平台 |
CN114061786A (zh) * | 2021-10-25 | 2022-02-18 | 中北大学 | 声表面波温度传感器及其制备方法 |
Non-Patent Citations (4)
Title |
---|
JIE YANG ET AL.: "A novel coupling-activated GO nanocomposites based on surface acoustic wave for assessing capture molecules and detection of explosive gases", 《SENSORS AND ACTUATORS: B. CHEMICAL》, vol. 372, 13 September 2022 (2022-09-13), pages 2, XP087187777, DOI: 10.1016/j.snb.2022.132665 * |
JIE YANG ET AL.: "A novel coupling-activated GO nanocomposites based on surface acoustic wave for assessing capture molecules and detection of explosive gases", 《SENSORS AND ACTUATORS: B. CHEMICAL》, vol. 372, pages 2 * |
JIE YANG ET AL.: "Surface Acoustic Wave Devices Based on Graphene Oxide/Au Nanorod Composites for Gas-Phase Detection of 2, 4, 6-Trinitrotoluene", 《ACS APPL. NANO MATER》, vol. 5, 26 August 2022 (2022-08-26), pages 2 * |
张君衡 等: "低频声表面波器件的设计与制作", 《华中科技大学学报(自然科学版)》, vol. 33, no. 5, 30 May 2005 (2005-05-30), pages 85 - 87 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jandas et al. | Highly selective and label-free Love-mode surface acoustic wave biosensor for carcinoembryonic antigen detection using a self-assembled monolayer bioreceptor | |
Sekhar et al. | Chemical sensors for environmental monitoring and homeland security | |
Benetti et al. | Highly selective surface acoustic wave e-nose implemented by laser direct writing | |
Chen et al. | Hydrogen sensor based on Pd-functionalized film bulk acoustic resonator | |
Chou et al. | Sensing hiv protease and its inhibitor using “helical epitope”—imprinted polymers | |
Zhao et al. | An Electrochemical Immunosensor with Graphene‐Oxide‐Ferrocene‐based Nanocomposites for Hepatitis B Surface Antigen Detection | |
Zhang et al. | Fabrication of an interferon-gamma-based ITO detector for latent tuberculosis diagnosis with high stability and lower cost | |
Lim et al. | Surface acoustic device for high response NO2 gas sensor using p-phenylenediamine-reduced graphene oxide nanocomposite coated on langasite | |
Zhang et al. | Detection of avian influenza virus H9N2 based on self-driving and self-sensing microcantilever piezoelectric sensor | |
Wang et al. | Ultrasensitive flexible olfactory receptor-derived peptide sensor for trimethylamine detection by the bending connection method | |
Kim et al. | Four-channel monitoring system with surface acoustic wave sensors for detection of chemical warfare agents | |
Zhang et al. | Langasite-based surface acoustic wave resonator for acetone vapor sensing | |
CN113252775B (zh) | 一种高灵敏度声表面波二氧化氮传感器 | |
CN115554985A (zh) | 气相爆炸物敏感吸附材料及其制备方法、气相爆炸物传感芯片及其应用 | |
Ali et al. | Ultrarapid and ultrasensitive detection of SARS‐CoV‐2 antibodies in COVID‐19 patients via a 3D‐printed nanomaterial‐based biosensing platform | |
Perera et al. | Rapid Conductometric Detection of SARS‐CoV‐2 Proteins and Its Variants Using Molecularly Imprinted Polymer Nanoparticles | |
Zhang et al. | Rapid detection of SARS-CoV-2 spike RBD protein in body fluid: based on special calcium ion-mediated gold nanoparticles modified by bromide ions | |
Zhu et al. | Fabrication of high sensitivity 2-PEA sensor based on Aldehyde-functionalized mesoporous carbon | |
CN116773651B (zh) | 声表面波气体传感器及其制备方法、气体报警器 | |
CN109254076A (zh) | 挥发性有机酸性气体传感器的制备方法 | |
CN114689664A (zh) | 一种氨基功能化金属有机框架材料用于制备化学电阻型传感器的方法及用途 | |
Wang et al. | Film bulk acoustic formaldehyde sensor with layer-by-layer assembled carbon nanotubes/polyethyleneimine multilayers | |
Lin et al. | Surface acoustic wave gas sensor for monitoring low concentration ammonia | |
Zhou et al. | Real-time detection of acetone gas molecules at ppt levels in an air atmosphere using a partially suspended graphene surface acoustic wave skin gas sensor | |
JP3357914B2 (ja) | 溶液中の低分子化合物の検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |