CN104403639B - 一种增强传热型纳米制冷剂的制备方法 - Google Patents

一种增强传热型纳米制冷剂的制备方法 Download PDF

Info

Publication number
CN104403639B
CN104403639B CN201410649126.1A CN201410649126A CN104403639B CN 104403639 B CN104403639 B CN 104403639B CN 201410649126 A CN201410649126 A CN 201410649126A CN 104403639 B CN104403639 B CN 104403639B
Authority
CN
China
Prior art keywords
nano
heat transfer
refrigerant
parts
transfer type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410649126.1A
Other languages
English (en)
Other versions
CN104403639A (zh
Inventor
王金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juhua Group Technology Centre
Original Assignee
Juhua Group Technology Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juhua Group Technology Centre filed Critical Juhua Group Technology Centre
Priority to CN201410649126.1A priority Critical patent/CN104403639B/zh
Publication of CN104403639A publication Critical patent/CN104403639A/zh
Application granted granted Critical
Publication of CN104403639B publication Critical patent/CN104403639B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种增强传热型纳米制冷剂的制备方法,包括以下步骤:(a)按重量份数将5‑15份纳米氧化钆分散到1000份乙醇中,再加入1‑10丙烯酸三氟乙酯单体、0.1‑1份过氧化苯甲酰、0.1‑2份聚乙烯醇、0.1‑2份十二烷基苯磺酸钠,在60‑80℃反应6‑15小时,得到经表面聚合的纳米氧化钆微悬浮液;(b)将步骤(a)得到的纳米氧化钆微悬浮液与2,3,3,3‑四氟丙烯、1,2,3,3,3‑五氟丙烯、1‑烯丙基‑3‑甲基咪唑六氟磷酸盐以质量比为1:8000‑60000:10‑40000:0.1‑0.5液相共混得到增强传热型纳米制冷剂。本发明具有工艺简单、成本低、绿色环保、产品传热性能优良的优点。

Description

一种增强传热型纳米制冷剂的制备方法
技术领域
本发明涉及一种制冷剂的制备方法,特别是一种增强传热型纳米制冷剂的制备方法。
背景技术
在一个制冷、空调、或热传递系统中,期望润滑油和制冷剂在该系统的至少一些部分中可以彼此相接触,如在ASHRAE手册:HVAC系统和设备中所说明的。因此,不论该润滑剂和制冷剂是被单独还是作为一个预混合包装中的一部分而加入到一个制冷、空调、或热传递系统中,仍期望它们在该系统中相接触并且因此必须是相容的。由于晶粒极细,处于晶界和晶粒内缺陷中心的原子及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等使纳米材料在润滑与摩擦学方面具有特殊的降摩减摩和高复合能力。纳米物质在摩擦表面以纳米颗粒或纳米膜的形式存在,具有良好的润滑性能和减摩性能,添加纳米材料制成的润滑剂可以显著地提高润滑性能和承载性能,提高产品的质量,特别适合用于苛刻条件的润滑场合。20世纪90年代以来,研究人员开始探索将纳米材料技术应用于强化传热领域,研究新一代高效传热冷却技术。1995年,美国Argonne国家实验室的Choi等人首次提出了一个崭新的概念-纳米流体。纳米流体是指把金属或非金属纳米粉体分散到水、醇、油等传统换热介质中,制备成均匀、稳定、高导热的新型换热介质,这是纳米技术应用于热能工程这一传统领域的创新性的研究。纳米流体在能源、化工、汽车、建筑、微电子、信息等领域具有巨大的潜在应用前景,从而成为材料、物理、化学、传热学等众领域的研究热点。
如雍翰林等(雍翰林,毕胜山,史琳.HFC134a/TiO2纳米粒子工质体系应用于冰箱的实验研究[J].化工学报,2006(5):141-145.)将纳米颗粒添加到冷冻油中的HFC134a/矿物冷冻油/纳米TiO2工质体系应用于家用冰箱中,发现其性能参数略优于HFC134a/酯类油系统。
又如中国专利公开号CN102295917A公开了一种纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法,利用复配表面活性剂的增溶作用,将制冷剂溶于水中,制得热力学稳定的制冷剂微乳液,然后将纳米粒子分散于制冷剂微乳液中,制得纳米粒子强化的制冷剂水合物相变蓄冷工质。通过将纳米粒子稳定分散于制冷剂微乳液体系来强化传热传质,增大反应界面,诱导非均相成核,从而显著减小了水合物生成的诱导时间和过冷度,有效地达到了促晶效果。该工艺使用超声波分散,大规模生产不宜实现。
又如中国专利公开号CN101434833 A公布了一种纳米制冷剂水合物相变蓄冷工质及其制备方法,将表面活性剂溶于水中,制得表面活性剂的水溶液,然后将制冷剂滴加到表面活性剂的水溶液中,搅拌直至溶液由浑浊变为透亮即可。根据表面活性剂的在水中和制冷剂中的溶解度,可将表面活性剂溶于水中,也可以溶解于制冷剂中。该体系不需要施加搅拌、扰动和外场即可使水相和制冷剂相充分混合均匀,制冷剂相以胶团或(和)微乳的形式分散于水相中,或者水相以胶团或(和)微乳的形式分散于制冷剂相中,分散相的液滴大小为100纳米及以下。但该种方法以加入表面活性剂为主,影响到制冷剂的传质性能。
再如中国专利公告号CN1240805C公开了一种制冷剂气体水合物静态快速生成方法,该发明方法如下:采用金属丝穿过阴离子表面活性剂水溶液和制冷剂两相界面并与容器壁面相接触,金属丝贴着壁面的瞬间移动,使制冷剂气体水合物在金属丝同壁面的接触处迅速结晶成核,此后制冷剂气体水合物在表面活性剂的作用下快速生成,整个水合反应一直在静止的水中进行。
现有方法都要利用机械搅拌和扰动作用使致冷剂混合,或者加入表面活性剂形成微乳液,纳米粒子等难以均均分布于两相体系中,即使在加入添加剂的情况下也必须连续不断施加外界搅拌或循环来促使两相混合,这种外力的有无和连续性都使两相的混合程度受到较大影响,从而影响了制冷剂的传热性能。另外,外界机械剪切力、电磁场以及超声波等还大大增加了设备投资和能耗。
发明内容
本发明要解决的技术问题是克服现有技术的缺陷,提供一种工艺简单、成本低、绿色环保、产品传热性能优良的增强传热型纳米制冷剂的制备方法。
为了解决上述技术问题,本发明是通过以下技术方案实现的:一种增强传热型纳米制冷剂的制备方法,包括以下步骤:
(a)按重量份数将5-15份纳米氧化钆分散到1000份乙醇中,再加入1-10份丙烯酸三氟乙酯单体、0.1-1份过氧化苯甲酰、0.1-2份聚乙烯醇、0.1-2份十二烷基苯磺酸钠等,在60-80℃反应6-15小时,得到经表面聚合的纳米氧化钆微悬浮液;
(b)将步骤(a)得到的纳米氧化钆微悬浮液与2,3,3,3-四氟丙烯、1,2,3,3,3-五氟丙烯、1-烯丙基-3-甲基咪唑六氟磷酸盐以质量比为1:8000-60000:10-40000:0.1-0.5液相共混得到增强传热型纳米制冷剂。
进一步的:
步骤(a)所述的纳米氧化钆粒径优选为10-100nm。
步骤(b)所述的共混是指先在温度-45~-60℃下以液体状态预混合10-35h,然后加入到高通量微通道玻璃反应器中,以10-100Kg/h流速混合得到增强传热型纳米制冷剂。
本发明的增强传热型纳米制冷剂的制备方法,将稀土纳米磁致冷材料氧化钆(GdO)经过与丙烯酸三氟乙酯表面聚合处理,由亲水性变为亲油性,然后与2,3,3,3-四氟丙烯(HFO1234yf),1,2,3,3,3-五氟丙烯(HFC-1225ye),1-乙基-3-甲基咪唑磷酸二乙酯盐以一定配比预混,再加入到高通量微通道玻璃反应器中,经过充分混合得到产品。本发明制备的增强传热型纳米制冷剂中含有均匀分散的微量纳米氧化钆,纳米氧化钆为稀土纳米磁致冷材料,具有高的绝热温变,使液体的导热系数大大提高。
本发明中所述的原料均可市售取得,如纳米氧化钆可选用上海谱振生物科技有限公司生产的纳米氧化钆产品;丙烯酸三氟乙酯(C6H7O2F3)可选用南京康满林化工实业有限公司生产的丙烯酸三氟乙酯产品;1-烯丙基-3-甲基咪唑六氟磷酸盐(C9H11PF6N2)可选用上海笛柏化学品技术有限公司生产的产品;2,3,3,3-四氟丙烯(HFO1234yf,C3H2F4)和1,2,3,3,3-五氟丙烯(HFO-1225ye,C3HF5)可选用巨化集团公司生产的产品。
微通道反应器是一种单元反应界面尺度为微米量级的微型化的化学反应系统。由于它具有小尺寸、大比表面积和规整的微通道等特点,其在传质、传热等方面表现出超常的能力,明显优于传统的反应器,微观混合是分子尺度上的混合,它对燃烧、聚合、有机合成、沉淀、结晶等快速反应过程有着重要的影响。其原因在于快速反应体系需要短的停留时间和高强度的局部混合以避免分子尺度上的离集。本发明中的高通量微通道玻璃反应器可采用美国康宁公司生产的GEN-1、GEN-2、GEN-3型玻璃反应器。
与现有技术相比,本发明具有以下有益效果:
1、工艺简单、成本低,本发明采用将制冷剂混合物按配比预混后,再加入到高通量微通道玻璃反应器中,经过充分的混合得到产品,高通量微通道玻璃反应器具有小尺寸、大比表面积和规整的微通道等特点,具有短的停留时间和高强度的局部混合以避免分子尺度上的离集,可以使多种组分得到高强度混合,增强了产品的传热性能;
2、产品传热性能优良,本发明制备的制冷剂中含有均匀分散的经表面处理的微量纳米氧化钆颗粒,纳米氧化钆为稀土纳米磁致冷材料,具有高的绝热温变,纳米氧化钆颗粒经表面处理后由亲水性变成亲油性,在制冷剂中分散更为均匀,使制冷剂的导热系数大大提高;同时纳米氧化钆颗粒与颗粒、颗粒与制冷剂中的其他组分以及颗粒与壁面间的相互作用及碰撞,使传热得到了增强;由于组分中引入了1-烯丙基-3-甲基咪唑六氟磷酸盐,进一步增加了制冷效率,所得产品较HFO-1234yf单工质导热系数增加幅度在0.7%以上;
3、绿色环保,本发明制备的纳米粒子强化型制冷剂全球变暖潜能(GWP)在11以下,臭氧损耗潜势(ODP)为0。
具体实施方式
以下结合具体实施例对本发明进行进一步的说明,但本发明并不局限于所述的实施例。
实施例1:
步骤1:纳米氧化钆表面聚合
按每份1g计,聚合配比如下:
按配比将纳米氧化钆分散到乙醇中,再加入丙烯酸三氟乙酯单体、过氧化苯甲酰、聚乙烯醇、十二烷基苯磺酸钠,升温,在70℃反应9小时,即得到经表面聚合的纳米氧化钆微悬浮液。
步骤2:共混
将0.008Kg步骤(1)制备得到的经表面聚合的纳米氧化钆微悬浮液与98.3Kg2,3,3,3-四氟丙烯(HFO1234yf)、1.6912Kg1,2,3,3,3-五氟丙烯(HFO-1225ye)、0.0008Kg 1-烯丙基-3-甲基咪唑六氟磷酸盐在500L搅拌式反应釜中预混合20h,然后加入到高通量微通道玻璃反应器(美国康宁公司生产,GEN-1型)中,以10Kg/h流速经过充分的混合得到产品。编号为WN-1。
实施例2
步骤1:纳米氧化钆表面聚合
按每份1g计,聚合配比如下:
按配比将纳米氧化钆分散到乙醇中,再加入丙烯酸三氟乙酯单体、过氧化苯甲酰、聚乙烯醇、十二烷基苯磺酸钠,升温,在60℃反应15小时,即得到经表面聚合的纳米氧化钆微悬浮液。
步骤2:共混
将0.01Kg经表面聚合的纳米氧化钆微悬浮液与600Kg HFO1234yf、399.985KgHFO-1225ye、0.005Kg 1-烯丙基-3-甲基咪唑六氟磷酸盐在2m3搅拌式反应釜中预混合10h,然后加入到高通量微通道玻璃反应器中(美国康宁公司生产,GEN-2型),以40Kg/h流速经过充分的混合得到产品,编号为WN-2。
实施例3
步骤1:纳米氧化钆表面聚合
按每份1g计,聚合配比如下:
按配比将纳米氧化钆分散到乙醇中,再加入丙烯酸三氟乙酯单体,过氧化苯甲酰和聚乙烯醇、十二烷基苯磺酸钠等,升温,在80℃反应6小时,即得到经表面聚合的纳米氧化钆微悬浮液。
步骤2:共混
将0.1Kg经表面聚合的纳米氧化钆微悬浮液与800Kg HFO1234yf、199.87Kg HFO-1225ye、0.03Kg 1-烯丙基-3-甲基咪唑六氟磷酸盐在2m3搅拌式反应釜中预混合35h,然后加入到高通量微通道玻璃反应器(美国康宁公司生产,GEN-3型)中,以100Kg/h流速经过充分的混合得到产品编号为WN-3。
实施例4
步骤2中加入87Kg HFO1234yf,12.9492Kg HFO-1225ye,其它同实施例1。所得产品编号为WN-4。
实施例5
步骤2中加入97Kg HFO1234yf,2.9492Kg HFO-1225ye,其它同实施例1。所得产品编号为WN-5。
实施例6
步骤2中加入99.8Kg HFO1234yf,0.1492Kg HFO-1225ye,其它同实施例1。所得产品编号为WN-6。
实施例7
步骤2中加入99.9Kg HFO1234yf,0.0912Kg HFO-1225ye,其它同实施例1。所得产品编号为WN-7。
实施例8
步骤2中加入80Kg HFO1234yf,19.9912Kg HFO-1225ye,其它同实施例1。所得产品编号为WN-8。
对比例1
将98.3Kg2,3,3,3-四氟丙烯(HFO1234yf)、1.6912Kg1,2,3,3,3-五氟丙烯(HFO-1225ye)、0.0008Kg 1-烯丙基-3-甲基咪唑六氟磷酸盐在500L搅拌式反应釜中预混合20h,然后加入到高通量微通道玻璃反应器(美国康宁公司生产,GEN-1型)中,以10Kg/h流速经过充分的混合得到产品。所得产品编号为WN-9。
对比例2
步骤2中不加入1-烯丙基-3-甲基咪唑六氟磷酸盐,其它同实施例1。所得产品编号为WN-10。
产品性能测试:
实施例1-8和对比例1-2所得产品较HFO1234yf单工质导热系数增加幅度见表1,其中:
导热系数增加幅度=(纳米制冷剂导热系数-HFO1234yf导热系数)/HFO1234yf导热系数×100%。
导热系数计算公式采用张志巍“低GWP混合工质的热力学性质及循环性能研究”,天津大学硕士论文,2012年,P38方法检测。
关系式:
式中导热系数的单位为W/(m·K),Tb为标准沸点,Tc为临界温度,单位都为K,M为摩尔质量,单位为g/mol,Tr=T/Tc,A*=0.494,α=0.0,β=0.5,γ=-0.167。
表1:实施例1-8和对比例1-2所得产品性能比较

Claims (2)

1.一种增强传热型纳米制冷剂的制备方法,其特征在于包括以下步骤:
(a)按重量份数将5-15份纳米氧化钆分散到1000份乙醇中,再加入1-10份丙烯酸三氟乙酯单体、0.1-1份过氧化苯甲酰、0.1-2份聚乙烯醇、0.1-2份十二烷基苯磺酸钠,在60-80℃反应6-15小时,得到经表面聚合的纳米氧化钆微悬浮液;
(b)将步骤(a)得到的纳米氧化钆微悬浮液与2,3,3,3-四氟丙烯、1,2,3,3,3-五氟丙烯、1-烯丙基-3-甲基咪唑六氟磷酸盐以质量比为1:8000-60000:10-40000:0.1-0.5液相先在温度-45~-60℃下以液体状态预混合10-35h,然后加入到高通量微通道玻璃反应器中,以10-100Kg/h流速共混得到增强传热型纳米制冷剂。
2.根据权利要求1所述的增强传热型纳米制冷剂的制备方法,其特征在于步骤(a)所述的纳米氧化钆粒径为10-100nm。
CN201410649126.1A 2014-11-14 2014-11-14 一种增强传热型纳米制冷剂的制备方法 Active CN104403639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410649126.1A CN104403639B (zh) 2014-11-14 2014-11-14 一种增强传热型纳米制冷剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410649126.1A CN104403639B (zh) 2014-11-14 2014-11-14 一种增强传热型纳米制冷剂的制备方法

Publications (2)

Publication Number Publication Date
CN104403639A CN104403639A (zh) 2015-03-11
CN104403639B true CN104403639B (zh) 2017-05-10

Family

ID=52641311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410649126.1A Active CN104403639B (zh) 2014-11-14 2014-11-14 一种增强传热型纳米制冷剂的制备方法

Country Status (1)

Country Link
CN (1) CN104403639B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106010462B (zh) * 2016-05-31 2019-11-29 山东源根石油化工有限公司 一种环保耐用型全合成热传导液的制备方法
US10723927B1 (en) 2019-09-20 2020-07-28 Ht Materials Science (Ip) Limited Heat transfer mixture
US10723928B1 (en) 2019-09-20 2020-07-28 Ht Materials Science (Ip) Limited Heat transfer mixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753866A1 (en) * 1995-07-10 1997-01-15 Xerox Corporation Magnetic refrigerant compositions and processes for making and using
US6432320B1 (en) * 1998-11-02 2002-08-13 Patrick Bonsignore Refrigerant and heat transfer fluid additive
CN1473916A (zh) * 2003-05-21 2004-02-11 北京建筑工程学院 改善冷冻机油与制冷剂相溶性的方法及利用该方法制备的冷冻机油
CN1696238A (zh) * 2005-05-19 2005-11-16 上海交通大学 纳米制冷剂及其气液两相传热压降性能实验装置
CN101143975A (zh) * 2007-04-29 2008-03-19 北京建筑工程学院 可分散于烷基苯冷冻机油的纳米铁酸镍微粒的改性制备方法及其烷基苯冷冻机油及制备方法
CN101434833A (zh) * 2008-12-05 2009-05-20 西安交通大学 一种纳米制冷剂水合物相变蓄冷工质及其制备方法
CN102295917A (zh) * 2011-05-24 2011-12-28 西安交通大学 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753866A1 (en) * 1995-07-10 1997-01-15 Xerox Corporation Magnetic refrigerant compositions and processes for making and using
US6432320B1 (en) * 1998-11-02 2002-08-13 Patrick Bonsignore Refrigerant and heat transfer fluid additive
CN1473916A (zh) * 2003-05-21 2004-02-11 北京建筑工程学院 改善冷冻机油与制冷剂相溶性的方法及利用该方法制备的冷冻机油
CN1696238A (zh) * 2005-05-19 2005-11-16 上海交通大学 纳米制冷剂及其气液两相传热压降性能实验装置
CN101143975A (zh) * 2007-04-29 2008-03-19 北京建筑工程学院 可分散于烷基苯冷冻机油的纳米铁酸镍微粒的改性制备方法及其烷基苯冷冻机油及制备方法
CN101434833A (zh) * 2008-12-05 2009-05-20 西安交通大学 一种纳米制冷剂水合物相变蓄冷工质及其制备方法
CN102295917A (zh) * 2011-05-24 2011-12-28 西安交通大学 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
磁性纳米制冷剂冷却回路热磁对流特性研究;吴治将;《制冷学报》;20140831;第35卷(第4期);第42-46页 *
纳米制冷剂冰箱性能的实验研究;毕胜山;《清华大学学报》;20071231;第47卷(第11期);第2002-2005页 *
纳米颗粒在制冷剂中的分散特性研究;毕胜山;《工程热物理学报》;20070331;第28卷(第2期);第185-188页 *

Also Published As

Publication number Publication date
CN104403639A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
Ma et al. Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids
Jurkowska et al. Review on properties of microencapsulated phase change materials slurries (mPCMS)
Menlik et al. Heat transfer enhancement using MgO/water nanofluid in heat pipe
Wu et al. Thermal energy storage behavior of Al2O3–H2O nanofluids
Li et al. Rheological behavior of ethylene glycol-based SiC nanofluids
Gurav et al. Stable colloidal copper nanoparticles for a nanofluid: Production and application
Mohammadpoor et al. Investigating heat transfer properties of copper nanofluid in ethylene glycol synthesized through single and two-step routes
CN102618243B (zh) 一种高凝稠油降凝降黏剂
CN101434833B (zh) 一种纳米制冷剂水合物相变蓄冷工质及其制备方法
CN104403639B (zh) 一种增强传热型纳米制冷剂的制备方法
Javidani et al. Experimental study and kinetic modeling of R410a hydrate formation in presence of SDS, tween 20, and graphene oxide nanosheets with application in cold storage
Lei et al. Effect of surfactants on the stability, rheological properties, and thermal conductivity of Fe3O4 nanofluids
JP2014534273A (ja) 熱伝達用途のためのナノ流体
Plachy et al. The enhanced MR performance of dimorphic MR suspensions containing either magnetic rods or their non-magnetic analogs
CN102295917A (zh) 纳米粒子强化型制冷剂水合物相变蓄冷工质的制备方法
CN104403637B (zh) 一种具有良好润滑剂相容性的四氟丙烯组合物的制备方法
Jang et al. Rheological characteristics of non-Newtonian GPTMS-SiO2 nanofluids
Arif et al. Numerical study of simultaneous transport of heat and mass transfer in Maxwell hybrid nanofluid in the presence of Soret and Dufour effects
Nesterov et al. Synergistic effect of combination of surfactant and oxide powder on enhancement of gas hydrates nucleation
Erfani et al. Kinetic promotion of non-ionic surfactants on cyclopentane hydrate formation
CN109207127A (zh) 一种基于低共融溶剂体系的纳米流体的制备方法及其制备的纳米流体
CN104403638B (zh) 一种纳米粒子强化型制冷剂的制备方法
Zhang et al. Preparation of REPO4 (RE= La–Gd) nanorods from an ionic liquid extraction system and luminescent properties of CePO4: Tb3+
Ho et al. Thermophysical properties of water-based nano-emulsion of tricosane-An Experimental investigation
Zhang et al. Preparation and control mechanism of nano-phase change emulsion with high thermal conductivity and low supercooling for thermal energy storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant