CN104402432A - 一种织构化压电陶瓷材料及其制备方法 - Google Patents

一种织构化压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN104402432A
CN104402432A CN201410592673.0A CN201410592673A CN104402432A CN 104402432 A CN104402432 A CN 104402432A CN 201410592673 A CN201410592673 A CN 201410592673A CN 104402432 A CN104402432 A CN 104402432A
Authority
CN
China
Prior art keywords
preparation
piezoelectric ceramic
tio
mould
mould material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410592673.0A
Other languages
English (en)
Inventor
张斗
姜超
周学凡
周科朝
李志友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201410592673.0A priority Critical patent/CN104402432A/zh
Publication of CN104402432A publication Critical patent/CN104402432A/zh
Priority to CN201510290264.XA priority patent/CN104947193A/zh
Priority to CN201510376980.XA priority patent/CN104961455B/zh
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种织构化压电陶瓷材料及其制备方法,该压电陶瓷材料由模板材料晶体和基体材料构成,具有001取向的Bi4Ti3O12、Na0.5Bi4.5 Ti4O15或Na0.5Bi0.5TiO3模板材料晶体在基体材料中形成定向排列;所述的基体材料具有以下化学表达式:(1-x)Bi0.5Na0.5TiO3—xBaTiO3,x为0.03~0.09;该压电陶瓷材料的制备方法是先制备基体材料薄片,将模板材料晶体涂刷在基体材料表面形成定向排列,再将多块薄片叠加,热压成型,烧结,即得织构化压电陶瓷材料;该制备方法操作简单、成本低、适用于大规模工业化生产,制得的压电陶瓷材料织构化程度高,具有300℃以上居里温度,且压电性能良好,可以广泛应用于可广泛应用于压电传感器、压电电动机以及高精度位移控制等方面。

Description

一种织构化压电陶瓷材料及其制备方法
技术领域
本发明涉及一种织构化压电陶瓷材料及其制备方法,属于无铅压电材料领域。
背景技术
压电陶瓷作为传感器、制动器和变频器被广泛的应用于工业控制、环境监控、通讯、信息系统及医疗器械等领域。目前广泛应用的压电材料主要是具有钙钛矿结构的PZT(PbZrO3-PbTiO3)和PT(PbTiO3)材料。
随着人们对环境保护意识的日益提高,很多国家和地区对电子器件的含铅量控制愈发严格,并且已经提出了无铅化的日程表,这就需要开发能替代PZT(PbZrO3-PbTiO3)和PT(PbTiO3)的无铅压电陶瓷材料。目前,无铅压电材料体系主要包括KNN(Ka0.5Na0.5NbO3),BNT(Na0.5Bi0.5TiO3),BT(BaTiO3)以及高温铋层状陶瓷材料体系。Jaffe等人发现Pb(Zr,Ti)O3(PZT)陶瓷在一个狭窄的成分区表现出优异的电学性能,这个区域是四方相区与菱方相区的分界线,而被命名为准同型相界(MPB)。将这个概念引入无铅压电领域,由此发现了一系列的具有高压电性能的复合陶瓷材料。但是,该材料体系的压电性能没有得到根本性的提高。
近年来研究表明,压电陶瓷中的晶粒沿某一方向取向生长后(晶粒中晶轴沿一定方向排列的陶瓷称为“晶粒取向”或“织构化”),其性能可以比晶粒自由生长陶瓷的性能大幅度提高,可以达到晶粒自由生长陶瓷的2倍左右,是同组分单晶性能的60%~80%,并且具有制备时间短、成本低的优点,被誉为“穷人的单晶”。近年来被广泛应用的压电陶瓷晶粒取向生长技术主要包括定向凝固技术、多层晶粒生长技术、模板晶粒生长技术和反应模板晶粒生长技术。其中模板晶粒生长技术(TGG)和反应模板晶粒生长技术(RTGG)制备的样品取向度高,被广泛应用于制备取向生长的压电陶瓷。传统的模板晶粒生长技术主要是通过流延成型的工艺实现,其主要缺点是流延浆料的混料时间长,不利于大规模的工业化生产。
发明内容
本发明的一个目的是在于提供一种具有300℃以上居里温度,且压电性能良好的无铅型高织构化的压电陶瓷材料。
本发明的另一个目的是在于提供一种操作简单、成本低、适用于大规模工业化生产制备所述的织构化织构化压电陶瓷材料的方法。
本发明提供了一种织构化压电陶瓷材料,该织构化压电陶瓷材料是由模板材料晶体和基体材料复合构成,具有001取向的Bi4Ti3O12、Na0.5Bi4.5Ti4O15或Na0.5Bi0.5TiO3模板材料晶体在基体材料中形成定向排列;所述的基体材料具有以下化学表达式:(1-x)Bi0.5Na0.5TiO3—xBaTiO3,x为0.03~0.09;所述的模板材料为基料质量的1%~30%。
优选的织构化压电陶瓷材料中模板材料为基体材料质量的5%~15%。
优选的织构化压电陶瓷材料中化学表达式中x为0.05~0.07。
本发明还提供了一种所述的织构化压电陶瓷材料的制备方法,该制备方法包括以下步骤:
步骤一:制备模板材料晶体和基体材料薄片
1)、通过熔盐法合成具有001晶体结构的Bi4Ti3O12、Na0.5Bi4.5Ti4O15或Na0.5Bi0.5TiO3模板材料;
2)、通过固相反应法、水热法、熔盐法或溶胶凝胶法制备(1-x)Bi0.5Na0.5TiO3—xBaTiO3基体材料粉体,再将所得基体材料粉体依次经过粘塑性加工工艺和压延工艺处理,得到厚度不大于100μm基体材料薄片;
步骤二:制备织构化压电陶瓷材料坯体
将步骤一制得的模板材料晶体分散到有机溶剂中配制成浆料,所得浆料通过涂刷方式涂覆到步骤一所得的基体材料薄片表面在基体材料薄片表面形成一层具有定向排列的模板材料晶体层;再将多块涂刷有模板材料晶体层的基体材料薄片叠加、热压成型,得到织构化压电陶瓷材料坯体;
步骤三:制备织构化压电陶瓷材料
将步骤二所得织构化压电陶瓷材料坯体通过升温排胶,等静压烧结,制得织构化压电陶瓷材料。
本发明的织构化压电陶瓷材料的制备方法还包括以下优选方案:
优选的制备方法中通过熔盐法制备具有001晶体结构的Bi4Ti3O12模板材料过程为:将Bi2O3和TiO2粉体与熔盐通过湿式球磨混合、烘干后,置于850~1150℃高温下,保温0.5~6小时,所得产物经水洗,烘干,即得。
优选的制备方法中通过熔盐法制备具有001晶体结构的Na0.5Bi4.5Ti4O15模板材料过程为:将Na2CO3、TiO2粉体、具有001晶体结构的Bi4Ti3O12模板材料与熔盐通过湿式球磨混合、烘干后,置于800~1100℃高温下,保温1~8小时,所得产物经水洗,烘干,即得。
优选的制备方法中通过熔盐法制备具有001晶体结构的Na0.5Bi0.5TiO3模板材料过程为:将Na2CO3、TiO2粉体、具有001晶体结构的Na0.5Bi4.5Ti4O15模板材料与熔盐通过湿式球磨混合、烘干后,置于800~1100℃高温下,保温1~10小时,所得产物经水洗,烘干,即得。
优选的制备方法中熔盐为NaCl和/或KCl;最优选为NaCl。
优选的制备方法中湿式球磨采用的溶剂为无水乙醇。
优选的制备方法中步骤二中采用刮刀或毛刷在涂刷过程中对浆料中的模板材料晶体施加一个剪切力,使模板材料晶体在基体材料薄片表面呈定向排列。
优选的制备方法中热压成型是在基体材料薄片叠加垂直方向施加一个1~30MPa的压力,在40~100℃温度下进行压制。最优选为在基体材料薄片叠加垂直方向施加一个5~10MPa的压力,在60~80℃温度下进行压制。
优选的制备方法中的烧结温度为1050~1250℃,时间为1~50h。最优选为在1150~1175℃,烧结20~50h。
优选的制备方法中采用的Bi2O3、TiO2、Na2CO3、BaCO3、NaCl和KCl等原料都为市售的分析纯原料。
优选的制备方法中步骤一中采用的有机溶剂为乙醇。
优选的制备方法中将多块基体材料薄片叠加前,将基体材料薄片切成适当大小。
优选的制备方法中排胶温度为500~700℃;最优选为580~620℃。
本发明的涂刷有模板材料晶体层的基体材料薄片进行叠加时,根据所需厚度选择合适的薄片块数。将一定数量的涂刷有模板材料晶体层的基体材料薄片叠加到一定的高度,然后放入模具中,并且在模具外套上一个可以调控温度的加热装置,然后将这个加有加热装置的模具至于单轴压片机下,加热、再保温加压,使薄片与薄片之间粘结在一起形成结构致密的织构化压电陶瓷材料坯体。
所述的(1-x)Bi0.5Na0.5TiO3—xBaTiO3基体材料的制备方法优选为固相反应法。所述的固相法为:将Na2CO3、Bi2O3和TiO2粉体原料通过球磨分散在有机溶剂中得到浆料,所得浆料烘干,预烧,进行二次球磨,进一步烘干、研磨,即得。所述预烧温度为750~950℃,预烧时间为2~4h;优选的预烧温度为840~860℃、预烧时间为1~3h。所述的球磨和二次球磨的时间均为24h。
优选的制备方法中制得的织构化压电陶瓷材料在不大于50mm的厚度范围可控。
本发明的有益效果:a)本发明的织构化压电陶瓷材料的制备方法操作简单、生产成本低,适合大批量的工业化生产;b)制得的织构化压电陶瓷材料中(1-x)Bi0.5Na0.5TiO3—xBaTiO3陶瓷晶粒都沿一定方向生长,改变了普通烧结陶瓷晶粒物的取向性的不足,使陶瓷在性能上接近单晶所具有的性能;c)制得的织构化压电陶瓷材料,织构度高达94%,居里温度为300℃以上,电致应变性能可达0.5%(60kV/cm),约合动态压电系数为537pm/V。d)本发明制得的织构化压电陶瓷材料在压电传感器、压电电动机以及高精度位移控制等方面有很好的应用前景,推进了高电致应变材料的应用进展。
附图说明
【图1】为实施例1制得的Bi4Ti3O12模板材料的扫描电镜图。
【图2】为实施例1制得的Bi4Ti3O12模板材料的XRD图。
【图3】为实施例2制得的Na0.5Bi4.5Ti4O15模板材料的扫描电镜图。
【图4】为实施例2制得的Na0.5Bi4.5Ti4O15模板材料的XRD图。
【图5】为实施例3制得的Na0.5Bi0.5TiO3模板材料的扫描电镜图。
【图6】为实施例3制得的Na0.5Bi0.5TiO3模板材料的XRD图。
【图7】为实施例3制得的0.93BNT-0.07BT陶瓷材料的扫描电镜图。
具体实施方式
下面通过具体实施例进一步描述本发明的技术方案。应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
制备以Bi4Ti3O12为模板的织构化0.93BNT-0.07BT陶瓷。
称取11.356g Bi2O3粉体、2.607g TiO2粉体,再称取15.358g NaCl粉体,将所有粉体与无水乙醇球磨混合球磨24小时,将混合后的料烘干,装入氧化铝坩锅放入炉子中1100℃保温2小时,冷却后放入布氏漏斗中用去离子水洗净NaCl,烘干得到片状Bi4Ti3O12模板。使用粘塑性加工工艺(VPP)以及压延工艺得到厚度不大于100μm的0.93BNT-0.07BT薄片生坯;将Bi4Ti3O12模板材料中的一种分散到酒精或者其他有机溶剂中,配成高浓度的浆料;用毛刷或者其他工具在0.93BNT-0.07BT生坯薄片的表面刷一层模板籽晶层;将膜片切割后叠片热压成型;将成型后的坯体排粘、等静压之后烧结得到织构化的0.93BNT-0.07BT陶瓷材料,其织构度为78%。
图1说明了所制备的钛酸铋为明显的片状结构,并且大部分片状尺寸达到10微米以上说明1000℃温度使模板得到较充分的长大。
图2说明了合成的片状模板材料物相为单一的钛酸铋物相,所得的模板为纯的钛酸铋模板。
实施例2
制备以Na0.5Bi4.5Ti4O15为模板的织构化0.93BNT-0.07BT陶瓷。
以Na2CO3粉体、TiO2粉体、片状Bi4Ti3O12前驱体以及熔盐为原料,按照一定的化学计量比称取原料,熔盐的质量与Na2CO3粉体、TiO2粉体、片状Bi4Ti3O12前驱体的总质量相等;将所有原料进行湿式球磨混合后烘干,然后于1050℃保温4小时,最后用去离子水洗净残留的熔盐,烘干得到片状Na0.5Bi4.5Ti4O15模板。使用粘塑性加工工艺(VPP)以及压延工艺得到厚度不大于100μm的0.93BNT-0.07BT薄片生坯;将Na0.5Bi4.5Ti4O15或者Na0.5Bi0.5TiO3模板材料中的一种分散到酒精或者其他有机溶剂中,配成高浓度的浆料;用毛刷或者其他工具在0.93BNT-0.07BT生坯薄片的表面刷一层模板籽晶层;将膜片切割后叠片热压成型;将成型后的坯体排粘、等静压之后烧结得到织构化的0.93BNT-0.07BT陶瓷材料,其织构度为80%。
将所得陶瓷材料样品磨成厚度为0.45mm薄片,在薄片的上下表面被上Ag电极,在室温下硅油中,测试所述织构化的0.93BNT-0.07BT陶瓷的性能,其电致应变高达0.5%(60kV/cm),动态压电系数为475pm/V。
图3说明了所制备的Na0.5Bi4.5Ti4O15籽晶为明显的片状结构,并且大部分片状尺寸达到10微米以上说明1000℃温度使模板得到较充分的长大。
图4说明了合成的片状模板材料物相为单一的Na0.5Bi4.5Ti4O15物相,所得的模板为纯的Na0.5Bi4.5Ti4O15模板。
实施例3
制备以Na0.5Bi0.5TiO3为模板的织构化0.93BNT-0.07BT陶瓷。
使用粘塑性加工工艺(VPP)以及压延工艺得到厚度不大于100μm的(1-x)BNT-xBT薄片生坯;将Na0.5Bi0.5TiO3模板材料中的一种分散到酒精或者其他有机溶剂中,配成高浓度的浆料;用毛刷或者其他工具在(1-x)BNT-xBT生坯薄片的表面刷一层模板籽晶层;将膜片切割后叠片热压成型;将成型后的坯体排粘、等静压之后烧结得到织构化的(1-x)BNT-xBT陶瓷材料,其织构度为94%。
将所得陶瓷材料样品磨成厚度为0.45mm薄片,在薄片的上下表面被上Ag电极,在室温下硅油中,测试所述织构化的0.93BNT-0.07BT陶瓷的性能,其电致应变为0.32%(60kV/cm),动态压电系数为537pm/V。
图5说明了所制备的Na0.5Bi0.5TiO3籽晶为明显的片状结构,并且大部分片状尺寸达到10微米以上说明1000℃温度使模板得到较充分的长大。图6可以看出(100)及(200)方向的峰有很高的衍射强度,而非(100)及(200)方向的峰衍射强度很低,说明了0.93BNT-0.07BT陶瓷产生了很明显的取向性,产生了高的织构度。
图7可以看出所制备的0.93BNT-0.07BT陶瓷都为片状结构,并且沿一定方向整齐排列,说明片状结构明显并且片状一致躺倒,产生了高的织构度。
从实施例1~3中可以看出:将实施例1~3制得的陶瓷材料样品磨成厚度为0.45mm薄片,在薄片的上下表面被上Ag电极,在室温硅油中,60kV/cm的电压下测试其电致应变,当模板含量为20%时织构度高达94%,但此时由于化学组分偏移导致电致应变性能较低。当模板含量为5%时织构度达70%电致应变性能为0.5%(60kV/cm),动态压电系数为537pm/V。这表明晶粒的取向和化学组分决定了陶瓷的电致应变性能,虽然模板含量为5%时陶瓷的织构度未达到最大值,但是此时取得了最佳性能。

Claims (10)

1.一种织构化压电陶瓷材料,由模板材料晶体和基体材料复合构成,其特征在于,具有001取向的Bi4Ti3O12、Na0.5Bi4.5Ti4O15或Na0.5Bi0.5TiO3模板材料晶体在基体材料中形成定向排列;
所述的基体材料具有以下化学表达式:(1-x)Bi0.5Na0.5TiO3—xBaTiO3,x为0.03~0.09;
所述的模板材料为基料质量的1%~30%。
2.如权利要求1所述的织构化压电陶瓷材料,其特征在于,所述的模板材料为基体材料质量的5%~15%。
3.如权利要求1所述的织构化压电陶瓷材料,其特征在于,化学表达式中x为0.05~0.07。
4.权利要求1~3任一项所述的织构化压电陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤一:制备模板材料晶体和基体材料薄片
1)、通过熔盐法合成具有001晶体结构的Bi4Ti3O12、Na0.5Bi4.5Ti4O15或Na0.5Bi0.5TiO3模板材料;
2)、通过固相反应法、水热法、熔盐法或溶胶凝胶法制备(1-x)Bi0.5Na0.5TiO3—xBaTiO3基体材料粉体,再将所得基体材料粉体依次经过粘塑性加工工艺和压延工艺处理,得到厚度不大于100μm基体材料薄片;
步骤二:制备织构化压电陶瓷材料坯体
将步骤一制得的模板材料晶体分散到有机溶剂中配制成浆料,所得浆料通过涂刷方式涂覆到步骤一所得的基体材料薄片表面在基体材料薄片表面形成一层具有定向排列的模板材料晶体层;再将多块涂刷有模板材料晶体层的基体材料薄片叠加、热压成型,得到织构化压电陶瓷材料坯体;
步骤三:制备织构化压电陶瓷材料
将步骤二所得织构化压电陶瓷材料坯体通过升温排胶,等静压烧结,制得织构化压电陶瓷材料。
5.如权利要求4所述的制备方法,其特征在于,通过熔盐法制备具有001晶体结构的Bi4Ti3O12模板材料过程为:将Bi2O3和TiO2粉体与熔盐通过湿式球磨混合、烘干后,置于850~1150℃高温下,保温0.5~6小时,所得产物经水洗,烘干,即得;
通过熔盐法制备具有001晶体结构的Na0.5Bi4.5Ti4O15模板材料过程为:将Na2CO3、TiO2粉体、具有001晶体结构的Bi4Ti3O12模板材料与熔盐通过湿式球磨混合、烘干后,置于800~1100℃高温下,保温1~8小时,所得产物经水洗,烘干,即得;
通过熔盐法制备具有001晶体结构的Na0.5Bi0.5TiO3模板材料过程为:将Na2CO3、TiO2粉体、具有001晶体结构的Na0.5Bi4.5Ti4O15模板材料与熔盐通过湿式球磨混合、烘干后,置于800~1100℃高温下,保温1~10小时,所得产物经水洗,烘干,即得。
6.如权利要求5所述的制备方法,其特征在于,所述的熔盐为NaCl和/或KCl。
7.如权利要求4所述的制备方法,其特征在于,步骤二中采用刮刀或毛刷在涂刷过程中对浆料中的模板材料晶体施加一个剪切力,使模板材料晶体在基体材料薄片表面呈定向排列。
8.如权利要求4所述的制备方法,其特征在于,所述的热压成型是在基体材料薄片叠加垂直方向施加一个1~30MPa的压力,在40~100℃温度下进行压制。
9.如权利要求4所述的制备方法,其特征在于,所述的烧结温度为1050~1250℃,时间为1~50h。
10.如权利要求4所述的制备方法,其特征在于,(1-x)Bi0.5Na0.5TiO3—xBaTiO3基体材料通过固相反应法制得。
CN201410592673.0A 2014-10-29 2014-10-29 一种织构化压电陶瓷材料及其制备方法 Pending CN104402432A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410592673.0A CN104402432A (zh) 2014-10-29 2014-10-29 一种织构化压电陶瓷材料及其制备方法
CN201510290264.XA CN104947193A (zh) 2014-10-29 2015-05-29 一种用于织构无铅压电陶瓷的片状模板籽晶及其制备方法
CN201510376980.XA CN104961455B (zh) 2014-10-29 2015-07-01 一种织构化压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410592673.0A CN104402432A (zh) 2014-10-29 2014-10-29 一种织构化压电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN104402432A true CN104402432A (zh) 2015-03-11

Family

ID=52640116

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201410592673.0A Pending CN104402432A (zh) 2014-10-29 2014-10-29 一种织构化压电陶瓷材料及其制备方法
CN201510290264.XA Pending CN104947193A (zh) 2014-10-29 2015-05-29 一种用于织构无铅压电陶瓷的片状模板籽晶及其制备方法
CN201510376980.XA Active CN104961455B (zh) 2014-10-29 2015-07-01 一种织构化压电陶瓷材料及其制备方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201510290264.XA Pending CN104947193A (zh) 2014-10-29 2015-05-29 一种用于织构无铅压电陶瓷的片状模板籽晶及其制备方法
CN201510376980.XA Active CN104961455B (zh) 2014-10-29 2015-07-01 一种织构化压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (3) CN104402432A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947193A (zh) * 2014-10-29 2015-09-30 中南大学 一种用于织构无铅压电陶瓷的片状模板籽晶及其制备方法
CN109208066A (zh) * 2018-03-05 2019-01-15 苏州科技大学 铁电陶瓷类化合物的单晶制备方法
CN109320235A (zh) * 2018-10-22 2019-02-12 陕西科技大学 一种nbt基压电织构陶瓷及其制备方法
CN113501710A (zh) * 2021-06-25 2021-10-15 淮阴工学院 一种钛酸铋钠织构陶瓷的制备方法
CN116768618A (zh) * 2023-06-25 2023-09-19 大富科技(安徽)股份有限公司 织构化微波介质陶瓷材料及其制备方法、通信器件
CN117602927A (zh) * 2023-12-01 2024-02-27 山东利恩斯智能科技有限公司 陶瓷材料及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326432B (zh) * 2017-06-30 2019-07-02 哈尔滨工业大学 一种织构氧化铝陶瓷用的模板籽晶的制备方法和应用
CN109942292B (zh) * 2019-04-12 2021-09-07 中南大学 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN110615467B (zh) * 2019-11-06 2020-08-11 哈尔滨工业大学 一种沿<111>择优取向且a位复合的钛酸钡基片状模板籽晶
CN110668493B (zh) * 2019-11-20 2020-09-01 哈尔滨工业大学 一种纳微米级钛酸铋钠基低维晶体
CN114133239B (zh) * 2021-10-29 2022-09-06 湖北大学 一种无铅热释电陶瓷材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100513B (zh) * 1985-04-01 1987-08-19 中国科学院上海硅酸盐研究所 钛酸铋钠钡系超声用压电陶瓷材料
JP4529219B2 (ja) * 2000-03-17 2010-08-25 株式会社豊田中央研究所 圧電セラミックス及びその製造方法
JP4727458B2 (ja) * 2006-03-08 2011-07-20 太平洋セメント株式会社 圧電セラミックス用焼結助剤、bnt−bt系圧電セラミックス、積層型圧電デバイスおよびbnt−bt系圧電セラミックスの製造方法
CN100455538C (zh) * 2006-12-11 2009-01-28 中国科学院上海硅酸盐研究所 一种钛酸铋钠-钛酸钡无铅压电陶瓷及其制备方法
CN101220511B (zh) * 2007-09-30 2011-06-01 中国科学院上海硅酸盐研究所 钛酸铋钠-钛酸钡铁电单晶的制备方法
CN101260565B (zh) * 2007-12-19 2010-06-09 清华大学 微米级片状钛酸铋钠晶体的制备方法
CN101224979A (zh) * 2008-01-18 2008-07-23 陕西科技大学 高居里点无铅ptc陶瓷电阻材料的制备方法
CN101244933B (zh) * 2008-03-18 2013-01-16 中国科学院上海硅酸盐研究所 一种片状钛酸铋钠模板晶粒制备方法
CN101486570B (zh) * 2009-02-25 2012-08-22 同济大学 一种无铅压电织构厚膜及其制备方法
CN102874866A (zh) * 2011-07-11 2013-01-16 天津城市建设学院 一种微米级片状钛酸钙晶体的制备方法
CN103342556B (zh) * 2013-06-24 2014-12-03 湖北大学 一种两相低温共烧温度稳定型电介质陶瓷材料的制备方法
CN104402432A (zh) * 2014-10-29 2015-03-11 中南大学 一种织构化压电陶瓷材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104947193A (zh) * 2014-10-29 2015-09-30 中南大学 一种用于织构无铅压电陶瓷的片状模板籽晶及其制备方法
CN109208066A (zh) * 2018-03-05 2019-01-15 苏州科技大学 铁电陶瓷类化合物的单晶制备方法
CN109208066B (zh) * 2018-03-05 2021-03-12 苏州科技大学 铁电陶瓷类化合物的单晶制备方法
CN109320235A (zh) * 2018-10-22 2019-02-12 陕西科技大学 一种nbt基压电织构陶瓷及其制备方法
CN113501710A (zh) * 2021-06-25 2021-10-15 淮阴工学院 一种钛酸铋钠织构陶瓷的制备方法
CN116768618A (zh) * 2023-06-25 2023-09-19 大富科技(安徽)股份有限公司 织构化微波介质陶瓷材料及其制备方法、通信器件
CN117602927A (zh) * 2023-12-01 2024-02-27 山东利恩斯智能科技有限公司 陶瓷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN104961455A (zh) 2015-10-07
CN104961455B (zh) 2017-03-29
CN104947193A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
CN104402432A (zh) 一种织构化压电陶瓷材料及其制备方法
CN107459346B (zh) 高电学性能的无铅压电钛酸钡基织构陶瓷的制备方法和应用
CN102503413B (zh) 一种织构化的(1-x-y)BNT-xBKT-yKNN陶瓷材料及其制备方法
CN105418067A (zh) 一种锆钛酸钡钙无铅压电织构陶瓷的制备方法
CN111533556B (zh) 一种晶粒取向铌酸锶钠无铅铁电陶瓷的制备方法
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN108238795B (zh) 一种具有高居里温度的新型三元铁电陶瓷系统及其制备方法和应用
CN106220169B (zh) 改性铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN107721411B (zh) 一种大电致应变的无铅bnt-bt基体系陶瓷
Hu et al. Fabrication and electrical properties of textured Ba (Zr 0.2 Ti 0.8) O 3–(Ba 0.7 Ca 0.3) TiO 3 ceramics using plate-like BaTiO 3 particles as templates
CN102815939A (zh) 一种无铅压电织构陶瓷材料及其制备方法
CN104628379A (zh) 高度取向的无铅压电织构陶瓷材料及其制备方法和应用
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN112745117A (zh) 一种织构化压电陶瓷叠层驱动器及其制备方法
CN103172373A (zh) 三元铁电固溶体铌镱酸铅-铌锌酸铅-钛酸铅
CN106518071B (zh) 一种高居里温度,高温度稳定性的压电陶瓷材料及其制备方法和应用
CN102731107A (zh) 一种掺Mn的钛酸铋钠-钛酸钡薄膜的制备方法
CN114315346A (zh) 一种双模板织构的大应变无铅压电织构化陶瓷的制备方法
CN111533555B (zh) 一种层状致密铌酸锶钾无铅压电陶瓷的制备方法
Cho et al. Microstructure, ferroelectric and piezoelectric properties of Bi4Ti3O12 platelet incorporated 0.36 BiScO3-0.64 PbTiO3 thick films for high temperature piezoelectric device applications
CN104402426A (zh) 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
CN110981480A (zh) 一种高Tr-t和Tc的铅基<001>C织构压电陶瓷材料及其制备方法
CN106518058A (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
Kahoul et al. The influence of Zr/Ti content on the morphotropic phase boundary and on the properties of PZT–SFN piezoelectric ceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150311