CN104388898A - 一种MgZnOS四元ZnO合金半导体材料及其制备方法 - Google Patents

一种MgZnOS四元ZnO合金半导体材料及其制备方法 Download PDF

Info

Publication number
CN104388898A
CN104388898A CN201410570903.3A CN201410570903A CN104388898A CN 104388898 A CN104388898 A CN 104388898A CN 201410570903 A CN201410570903 A CN 201410570903A CN 104388898 A CN104388898 A CN 104388898A
Authority
CN
China
Prior art keywords
mgznos
quaternary
powder
zno
semiconductor material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410570903.3A
Other languages
English (en)
Other versions
CN104388898B (zh
Inventor
何云斌
黎明锴
邰佳丽
程海玲
张蕾
周桃生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201410570903.3A priority Critical patent/CN104388898B/zh
Publication of CN104388898A publication Critical patent/CN104388898A/zh
Application granted granted Critical
Publication of CN104388898B publication Critical patent/CN104388898B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • H01L33/285Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table characterised by the doping materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开一种MgZnOS四元ZnO合金半导体材料及其制备方法,通过Mg与S同时掺杂ZnO,调节MgZnOS中Mg与Zn、O与S的比例形成全新的MgZnOS四元ZnO合金半导体材料,使得该类宽禁带半导体的带隙在更宽范围内(2.94eV~3.95eV)可调,可用于紫外发光器件或光探测器件。本发明MgZnOS单晶材料为世界上首次成功合成,制备MgZnOS四元ZnO合金半导体材料对于开发波长可调的紫外光电器件具有非常重要的意义。此MgZnOS四元ZnO合金半导体材料可采用常规脉冲激光烧蚀沉积、磁控溅射、电子束蒸发等多种方法进行生长,设备和操作工艺简单,易于控制。

Description

一种MgZnOS四元ZnO合金半导体材料及其制备方法
技术领域
本发明属于光电半导体材料制备领域,特别涉及一种MgZnOS四元ZnO合金半导体材料及其制备方法。
背景技术
第三代宽禁带半导体ZnO具有约3.3eV的禁带宽度、60meV的激子束缚能,在紫外光发光及光电探测等方面都有非常广泛的用途。为实现器件应用,还需要对ZnO进行掺杂,以调节其能带。如用Mg部分取代Zn得到MgZnO可获得更宽的禁带。MgZnO是由ZnO与MgO按一定组分固溶而成,当Mg含量较低时为六方结构,当Mg含量较高时为立方结构。通过改变Mg的含量可实现MgZnO带隙单调连续可调,带隙范围在3.26eV~3.87eV;MgZnO可作为ZnO基量子阱器件的势垒层材料或紫外光探测器的有源层。除了可以用阳离子替换Zn2+,还能用阴离子替换O2-。如以S部分取代ZnO中的O,得到ZnOS,也可实现对ZnO能带的调节。与Mg掺杂不同,少量S掺杂取代O会抬高ZnO的价带,形成类ZnS的价带顶,减小带隙。在S含量50%左右时,ZnOS的带隙最低约2.6eV。当S的含量进一步增加,ZnOS的带隙也会随之增加,带隙范围在2.6eV~3.71eV。通过将Mg、S共同掺杂ZnO得到MgZnOS四元半导体合金,不仅能够通过调节Mg、S的含量来实现对ZnO带隙在2.94eV~3.95eV范围自由可调,从而调控光电器件的工作波长,还能调节ZnO的价带和导带结构,改善其电子和空穴特性。相比MgZnO和ZnOS等三元半导体,MgZnOS四元合金半导体能带结构具有更高的可调自由度,从而使得其带隙可调范围变宽。制备MgZnOS四元合金半导体对于开发波长可调的紫外光波段光电器件具有非常重要的意义。目前关于MgZnO和ZnOS半导体材料有些报道,但是尚未见到制备MgZnOS四元合金半导体材料的报道。
发明内容
为实现对ZnO能带的多自由度调节,我们发明了一种MgZnOS四元ZnO合金半导体材料的制备方法,所述MgZnOS四元ZnO合金半导体材料的制备方法包括以下步骤:
步骤1,制备生长MgZnOS四元ZnO合金半导体薄膜所需的陶瓷靶材。
按比例称取ZnS和MgO粉末,所述ZnS粉末和MgO粉末的摩尔比例为99:1~75:25;
在称取的上述粉末中加入粉末总质量60%的去离子水进行球磨;
将球磨后的混合粉末进行真空干燥处理,真空度为0.1Pa,温度为110℃,干燥6~8小时;
在干燥后的ZnS与MgO混合粉末中加入粉末总质量2~6%的去离子水,研磨搅拌使两种粉末均匀混合粘结在一起;
将混匀物置于模具中,压制成陶瓷坯片,陶瓷坯片的厚度为2~3mm,直径可调;
将陶瓷坯片放入真空管式炉,并在陶瓷坯片周围放置硫粉,在氮气保护下,在700℃~1250℃高温烧结4~6小时后得到所需陶瓷材料。
步骤2,利用陶瓷靶材、蓝宝石和有机溶剂,采用脉冲激光烧蚀沉积方法制备MgZnOS薄膜。
采用步骤1制备的陶瓷材料作为激光烧蚀靶材,采用蓝宝石作为薄膜生长的衬底;
将衬底经过丙酮、无水乙醇和去离子水中的一种或几种试剂分别超声波清洗15分钟;
将步骤1制备的靶材和上述清洗得到的衬底分别放在靶台和样品台上装入真空室,并开启真空泵抽真空,真空度为10-4Pa以下,调节衬底的生长温度为25~750℃,开启样品台和靶台自转;
通入氧气,调整氧压为0~10Pa,开启激光器,将陶瓷靶材表面原子烧蚀出来沉积在衬底表面形成MgZnOS薄膜,激光能量为250-600mJ/pulse。
同时本发明提供了一种根据所述MgZnOS四元ZnO合金半导体材料的制备方法制得的MgZnOS四元ZnO合金半导体材料,通过将Mg和S共同掺杂到ZnO中得到MgZnOS四元ZnO合金半导体材料。
所述MgZnOS四元ZnO合金半导体材料为薄膜。
通过调节Mg、S的含量来实现对ZnO带隙的调节,从而调控光电器件的工作波长,还能通过调节ZnO的价带和导带结构,改变其电子和空穴特性。
本发明的有益效果为:
1、通过将Mg、S共同掺杂ZnO得到MgZnOS四元ZnO合金半导体材料,不仅能够通过调节Mg、S的含量来实现对ZnO带隙在更宽范围的自由可调,从而调控光电器件的工作波长,同时还能调节ZnO的价带和导带结构,改善其电子和空穴特性。制备的MgZnOS四元ZnO合金半导体材料对于开发波长可调的光电器件具有非常重要的意义。
2、本发明的MgZnOS四元ZnO合金半导体材料可采用常规脉冲激光烧蚀沉积、磁控溅射、电子束蒸发等多种方法进行生长,设备和操作工艺简单,易于控制。
附图说明
图1为本发明方法(实施例1)所制备的MgZnOS薄膜的X射线光电子能谱(XPS)测试图谱;
图2为本发明方法(实施例2)所制备的MgZnOS薄膜的吸收系数平方(α2)与入射光子能量(hν)关系图谱;
图3为本发明方法(实施例3)所制备的MgZnOS薄膜的X射线衍射(XRD)测试图谱。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例对本发明作进一步详细说明,但所举实例不作为对本发明的限定。
实施例1
按摩尔比ZnS:MgO=99:1称取ZnS粉末39.8336克和MgO粉末0.1664克混合后加入去离子水24克球磨4小时,之后在110℃真空干燥8小时。干燥后的粉料加入2克去离子水充分研磨搅拌后压片成直径27.5mm、厚度2.5mm的圆形坯片。坯片放入坩埚并放置在真空管式炉中,并在其周围放上成分相同的粉料5.0000克、高纯硫粉0.5000克。将真空管式炉抽真空至0.1Pa后通入高纯氮气。在保护气氛下将管式炉升温至1100℃并保温5小时,随后自然冷却至室温,得到所需陶瓷靶材。以此陶瓷材料作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声波清洗15分钟的衬底一起装入真空室,并抽真空至10-4Pa。开启衬底加热并调节衬底温度为750℃。不通氧气,使得制备室在整个薄膜沉积过程中维持在高真空状态。开启衬底和靶台自转。设定激光器输出能量为350mJ/pulse,脉冲重复频率为10Hz。开启激光沉积40分钟后关闭氧气与衬底加热。样品在真空中自然冷却至室温后取出真空室。
对该实例制备出的MgZnOS四元ZnO合金半导体材料进行光电子能谱测试,测试结果如图1所示。证实了在以c面蓝宝石为衬底生长的薄膜中确实有Zn、Mg、O、S四种元素存在。
实施例2
按摩尔比ZnS:MgO=94:6称取ZnS粉末38.9714克和MgO粉末1.0286克混合后,加入去离子水24克球磨4小时,之后在110℃真空干燥7小时。干燥后的粉料加入2克去离子水充分研磨搅拌后压片成直径27.5mm、厚度2mm的圆形坯片。坯片放入坩埚并放置在真空管式炉中,并在其周围放上成分相同的粉料5.000克、高纯硫粉1.1000克。将真空管式炉抽真空至0.1Pa后通入高纯氮气。在保护气氛下将管式炉升温至1250℃并保温4小时,随后自然冷却至室温,得到所需陶瓷靶材。以此陶瓷材料作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声清洗15分钟的衬底一起装入真空室,并抽真空至10-4Pa。开启衬底加热并调节衬底温度到设定值(25℃,300℃,700℃,750℃)。通入氧气,使得气压在整个薄膜沉积过程中维持在2Pa。开启衬底和靶台自转。设定激光器输出能量为250mJ/pulse,脉冲重复频率为5Hz。开启激光沉积40分钟后关闭与衬底加热。样品在真空中自然冷却至室温后取出真空室。
对于该实例制备的MgZnOS薄膜进行吸收系数平方(α2)与入射光子能量(hν)关系进行测试和图谱分析。从图2中可知,以c面蓝宝石为衬底生长的MgZnOS四元合金半导体材料的带隙值通过调节Mg、S的含量可以在2.94eV~3.95eV范围之间可调。
实施例3
按摩尔比ZnS:MgO=75:25称取ZnS粉末35.1545克和MgO粉末4.8455克,混合后加入去离子水24克球磨4小时,之后在110℃真空干燥8小时。干燥后的粉料加入2克去离子水充分研磨搅拌后压片成直径27.5mm、厚度3mm的圆形坯片。坯片放入坩埚并放置在真空管式炉中,并在其周围放上成分相同的粉料5.0000克、高纯硫粉2.0000克。将真空管式炉抽真空至0.1Pa后通入高纯氮气。在保护气氛下将管式炉升温至750℃并保温6小时,随后自然冷却至室温,得到所需陶瓷靶材。以此陶瓷材料作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声波清洗15分钟的衬底一起装入真空室,并抽真空至10-4Pa。开启衬底加热并调节衬底温度为700℃。通入氧气,使得气压在整个薄膜沉积过程中维持在10Pa。开启衬底和靶台自转。设定激光器输出能量为600mJ/pulse,脉冲重复频率为3Hz。开启激光沉积40分钟后关闭氧气与沉底加热。样品在真空中自然冷却至室温后取出真空室。
对该实例制备出的MgZnOS四元ZnO合金半导体材料进行X射线衍射测试,测试结果如图3所示。衍射峰分布证实在以c面蓝宝石为衬底生长的薄膜是单相物质MgZnOS。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种MgZnOS四元ZnO合金半导体材料的制备方法,其特征在于,所述MgZnOS四元ZnO合金半导体材料的制备方法包括如下步骤:
步骤1,制备生长MgZnOS四元ZnO合金半导体薄膜材料所需的陶瓷靶材,
1.1、按比例称取ZnS和MgO粉末,所述ZnS粉末和MgO粉末的摩尔比例为99:1~75:25;
1.2、在称取的上述粉末中加入粉末总质量60%的去离子水进行球磨;
1.3、将球磨后的混合粉末进行真空干燥处理,真空度为0.1Pa,温度为110℃,干燥6~8小时;
1.4、在干燥后的ZnS与MgO混合粉末中加入粉末总质量2~6%的去离子水,研磨搅拌使两种粉末均匀混合粘结在一起;
1.5、将混匀物置于模具中,压制成陶瓷坯片,陶瓷坯片的厚度为2~3mm;
1.6、将陶瓷坯片放入真空管式炉,并在陶瓷坯片周围放置硫粉,在氮气保护下,在700℃~1250℃高温烧结4~6小时后得到所需陶瓷材料;
步骤2,利用陶瓷靶材、蓝宝石和有机溶剂,采用脉冲激光烧蚀沉积方法制备MgZnOS薄膜,
2.1、采用步骤1制备的陶瓷材料作为激光烧蚀靶材,采用蓝宝石作为薄膜生长的衬底;
2.2、将衬底经过丙酮、无水乙醇和去离子水中的一种或几种试剂超声波清洗15min;
2.3、将步骤1制备的靶材和步骤2.2清洗得到的衬底分别放在靶台和样品台上装入真空室,并开启真空泵抽真空,真空度为10-4Pa以下,调节衬底的生长温度为0~750℃,开启样品台和靶台自转;
2.4、通入氧气,调整氧压为0~10Pa,开启激光器,将陶瓷靶材表面原子激光烧蚀出来沉积在衬底表面形成MgZnOS薄膜,激光能量为250-600mJ/pulse。
2.根据权利要求1所述制备方法制得的MgZnOS四元ZnO合金半导体材料,其特征在于,通过将Mg和S共同掺杂到ZnO中得到MgZnOS四元ZnO合金半导体材料。
3.根据权利要求2所述的MgZnOS四元ZnO合金半导体材料,其特征在于,所述MgZnOS四元ZnO合金半导体材料为薄膜。
4.根据权利要求2所述的MgZnOS四元ZnO合金半导体材料,其特征在于,通过调节Mg、S的含量来实现对ZnO带隙的调节,从而调控光电器件的工作波长,还能通过调节ZnO的价带和导带结构,改变其电子和空穴特性。
CN201410570903.3A 2014-10-23 2014-10-23 一种MgZnOS四元ZnO合金半导体材料及其制备方法 Active CN104388898B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410570903.3A CN104388898B (zh) 2014-10-23 2014-10-23 一种MgZnOS四元ZnO合金半导体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410570903.3A CN104388898B (zh) 2014-10-23 2014-10-23 一种MgZnOS四元ZnO合金半导体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104388898A true CN104388898A (zh) 2015-03-04
CN104388898B CN104388898B (zh) 2017-02-01

Family

ID=52606853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410570903.3A Active CN104388898B (zh) 2014-10-23 2014-10-23 一种MgZnOS四元ZnO合金半导体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104388898B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734491A (zh) * 2016-03-08 2016-07-06 湖北大学 一种BeZnOS化合物半导体材料、其制备方法及应用
CN106756901A (zh) * 2016-11-25 2017-05-31 长春理工大学 亚稳态高镁MgZnO固溶合金薄膜激光烧蚀制作方法
CN109585593A (zh) * 2018-12-06 2019-04-05 湖北大学 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
CN109880617A (zh) * 2019-03-18 2019-06-14 深圳大学 光色和光强可调的双相应力发光材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443765A (zh) * 2010-10-15 2012-05-09 海洋王照明科技股份有限公司 MgZnO半导体薄膜的制备方法
CN103022216A (zh) * 2012-11-22 2013-04-03 中山大学 BeMgZnO基同质p-n结构紫外探测器及制法
CN103205706A (zh) * 2013-03-08 2013-07-17 深圳大学 一种立方结构MgZnO薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443765A (zh) * 2010-10-15 2012-05-09 海洋王照明科技股份有限公司 MgZnO半导体薄膜的制备方法
CN103022216A (zh) * 2012-11-22 2013-04-03 中山大学 BeMgZnO基同质p-n结构紫外探测器及制法
CN103205706A (zh) * 2013-03-08 2013-07-17 深圳大学 一种立方结构MgZnO薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIANGHENG WANG等: "Epitaxial growth of ZnO1-xSx thin films and fabrication of ZnOS ZnO based heterostructures by PLD", 《ABSTRACT BOOK OF THE 6TH INTERNATIONAL WORKSHOP ON ZNO AND RELATED MATERIALS》 *
张俊: "采用PLD方法在多种基底上生长ZnMgO三元薄膜及紫外探测器的制备", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734491A (zh) * 2016-03-08 2016-07-06 湖北大学 一种BeZnOS化合物半导体材料、其制备方法及应用
CN106756901A (zh) * 2016-11-25 2017-05-31 长春理工大学 亚稳态高镁MgZnO固溶合金薄膜激光烧蚀制作方法
CN106756901B (zh) * 2016-11-25 2019-03-08 长春理工大学 亚稳态高镁MgZnO固溶合金薄膜激光烧蚀制作方法
CN109585593A (zh) * 2018-12-06 2019-04-05 湖北大学 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
CN109585593B (zh) * 2018-12-06 2020-02-18 湖北大学 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
CN109880617A (zh) * 2019-03-18 2019-06-14 深圳大学 光色和光强可调的双相应力发光材料
WO2020186767A1 (en) * 2019-03-18 2020-09-24 Shenzhen University Composite-phase mechanoluminescent materials with adjustable color and intensity, and preparation method thereof

Also Published As

Publication number Publication date
CN104388898B (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
Zhang et al. High-quality perovskite MAPbI3 single crystals for broad-spectrum and rapid response integrate photodetector
Tao et al. Effect of the oxygen partial pressure on the microstructure and optical properties of ZnO: Cu films
CN105734491A (zh) 一种BeZnOS化合物半导体材料、其制备方法及应用
CN104388898A (zh) 一种MgZnOS四元ZnO合金半导体材料及其制备方法
Ma et al. Effect of post-annealing treatment on the microstructure and optical properties of ZnO/PS nanocomposite films
Ouyang et al. Annealing treatment of Cu (In, Ga) Se2 absorbers prepared by sputtering a quaternary target for 13.5% conversion efficiency device
Chen et al. Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target
Khalkar et al. Deposition of Cu 2 ZnSnS 4 thin films by magnetron sputtering and subsequent sulphurization
Al-Sofiany et al. Study of y-rays Enhanced Changes of the ZnO: Al Thin Film Structure and Optical Properties
Hu et al. Structural, defect and optical properties of ZnO films grown under various O2/Ar gas ratios
CN105779939B (zh) 一种低电阻率、高载流子浓度的p型氧化铜薄膜的制备方法
Zeng et al. Two-step growth of VSe2 films and their photoelectric properties
Meng et al. Radio frequency magnetron sputtering deposition of low-resistivity and broad-spectral transmission F and Al co-doped ZnO film with mobility exceeding 50 cm2 V− 1 s− 1
He et al. XPS analysis of ZnO thin films obtained by pulsed laser deposition
CN104357798B (zh) 一种CdZnOS四元ZnO合金半导体材料及其制备方法
Chackrabarti et al. Investigation on the physical properties of Zn0. 94Cu0. 06O coated film
Prasad et al. A study on structural and optical properties of MgxZn1-xO thin films using pulsed laser deposition (PLD)
Menossi et al. High efficiency CdTe solar cells by low temperature deposition with MgZnO HRT layer
CN103382550B (zh) 一种制备铜掺杂氧化锌纳米梳的方法
CN105800671A (zh) 一种带隙可调BeCdZnO化合物半导体材料及其制备方法
Ollotu et al. Effects of rapid thermal annealing on the properties of room-temperature oxygenated DC sputtered zinc thin films for CZTS solar cells application
Wang et al. Nanosheet-constructed transparent conducting ZnO: In thin films
Kaur et al. Influence of beam energy on the properties of pulsed laser deposited Al-doped ZnO thin films
CN104810249B (zh) CdTe薄膜上生长CdS薄膜或CdS纳米结构的方法
CN102731081A (zh) 一种p型CuAlO2陶瓷靶材的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant