CN104388568B - 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 - Google Patents
鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 Download PDFInfo
- Publication number
- CN104388568B CN104388568B CN201410717972.2A CN201410717972A CN104388568B CN 104388568 B CN104388568 B CN 104388568B CN 201410717972 A CN201410717972 A CN 201410717972A CN 104388568 B CN104388568 B CN 104388568B
- Authority
- CN
- China
- Prior art keywords
- asr
- seq
- resistance
- plant
- mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/54—Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
- A01H6/542—Glycine max [soybean]
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/12—Processes for modifying agronomic input traits, e.g. crop yield
- A01H1/122—Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- A01H1/1245—Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance
- A01H1/1255—Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance for fungal resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H4/00—Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H1/00—Processes for modifying genotypes ; Plants characterised by associated natural traits
- A01H1/04—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection
- A01H1/045—Processes of selection involving genotypic or phenotypic markers; Methods of using phenotypic markers for selection using molecular markers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Environmental Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Physiology (AREA)
- Physics & Mathematics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Cell Biology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明属于植物育种和疾病抗性的领域。更具体地,本发明包括培育含有数量性状基因座的大豆植物的方法,所述数量性状基因座与对亚洲大豆锈病(ASR)的抗性相关,亚洲大豆锈病是与层锈菌属物种相关的真菌病。本发明进一步包括种质、以及含有赋予对疾病抗性的数量性状基因座(QTL)的种质的用途,用于在ASR抗性的育种计划中种质渗入到优良种质中。
Description
本申请是申请日为2009年4月22日,申请号为200980124059.9 (PCT/US2009/041390),发明名称为“鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物”的发明专利申请的分案申请。
相关申请的交叉引用
本申请要求2008年4月24日提交的美国临时申请NO. 61/047,479的根据35U.S.C.§119(e)的权益。该申请的全部内容通过引用合并在本文中。
序列表的加入
序列表含有2009年4月6日创建的25,543字节(在Microsoft Windows®中测量的)大小的名为“pa_54987b.txt”的文件,包含80个核苷酸序列,通过完全引用合并在本文中。
发明领域
本发明属于植物育种和疾病抗性的领域。更具体地,本发明包括培育含有数量性状基因座的大豆植物的方法,所述大豆植物与对豆薯层锈菌(Phakopsora pachyrhizi)和山马蝗层锈菌(Phakopsora meibomiae)引起的亚洲大豆锈病(ASR)的抗性相关。本发明进一步包括种质、赋予对ASR的抗性的新的数量性状基因座(QTL),以及在为了对ASR的抗性的育种计划中将新的QTL种质渗入到优良种质中的方法。
发明背景
大豆,Glycine max(L.)Merril是在世界范围内生长的作为植物油和蛋白质的原始来源的主要经济作物之一(Sinclair and Backman, Compendium of Soybean Diseases, 3rd Ed. APS Press, St. Paul, MN, p. 106(1989))。低胆固醇和高纤维膳食的不断增长的需求也提高了大豆作为健康食品的重要性。
在美国大豆产量每年受到疾病的负面影响。每公顷的高产量对于农户的利润率是关键的,特别是在大豆的低价格时期期间。由大豆疾病引起的财务损失对于农村经济以及对市区的联合产业的经济是重要的。这些损失的效应最终传遍世界范围内的大豆市场。
亚洲大豆锈病(在此称为ASR)已经在东半球和西半球被报道。在东半球,ASR在澳大利亚、中国、印度、日本、台湾地区和泰国被报道。在西半球,ASR已经在巴西、哥伦比亚、哥斯达黎加和波多黎各被观察到。ASR可能是毁灭性的疾病,如在台湾的某些地区报道的,引起高达70到80%的损失。严重感染的植物仅有更少的豆荚和质量不良的更小的种子(Frederick et al., Mycology 92: 217-227(2002))。ASR在1994年在美国夏威夷被首次观察到。后来在2004年秋季ASR传播到美国陆地,推测是热带风暴活动的结果。模型预测表明,ASR在整个美国东南部广泛分布,随后的田间和实验室观察确认了这种分布。
两个真菌物种,豆薯层锈菌Sydow和山马蝗层锈菌(Arthur)Arthur引起ASR。不象其他的锈病,豆薯层锈菌和山马蝗层锈菌感染异乎寻常地广泛的植物物种。已知豆薯层锈菌天然地感染豆类的17个属中的31个物种,以及在有控制的条件下感染26个其他属的60个物种。已知豆薯层锈菌天然地感染豆类的19个属中的42个物种,以及12个其他属的18个其他物种被人工地感染。19个属中的二十四个植物物种是两种菌的宿主(Frederick et al., Mycology 92: 217-227(2002))。
评估可能潜在地含有赋予对ASR的抗性的QTL的植物是费时的,需要大量的生物学防范空间。培养豆薯层锈菌需要使用批准的生物防范通风橱。此外,用于生长ASR抗性测试的植物的温室和生长箱必需以防止生物体的事故性释放的方式建造,特别是在还没有观察到这些生物体的地区。豆薯层锈菌的不同的培养物可能保持有不同的毒力因子。随着时间的过去,新的豆薯层锈菌菌株可能被引入美国。两种主要宿主是豆薯(Pachyrhizuserosus(L.)Urban)和豇豆(Vignaunguiculata(L.)Walp.),都在佛罗里达发现。豆薯层锈菌和山马蝗层锈菌一个广泛自然化的宿主是野葛(Pueraria montana(Lour.)Merr. var. lobata(Willd.)Maesen & S. M. Almeida ex Sanjappa & Predeep)。由于野葛是在美国东南方部常见的杂草,它可能充当接种体的持续不断的来源。豆薯层锈菌和山马蝗层锈菌是同种寄生的(没有交替寄主)和短生活史的(具有夏孢子和冬孢子芽孢期),仅在活的宿主上专性病原体存活和繁殖。其他宿主可能充当病原体的越冬储主,以及接种体的构建体。病原体非常适合于长距离散布,因为孢子可以被风容易地携带,使得它成为进入新的无锈病区域的理想的手段。传播的最初的手段是孢子,其可以被风或落下的雨水携带。
由于豆薯层锈菌的不同培养物可能保持针对已知的和怀疑的抗性基因的不同的毒力因子,于是在大豆基因组中不同的ASR抗性基因座预期对于它们所赋予抗性的豆薯层锈菌和/或山马蝗层锈菌的菌株是不同的。因而,被设计以将针对ASR的抗性培育入大豆中的任何育种计划将可能需要涉及来自大豆基因组中不同的抗性基因座的多因子抗性,以赋予针对ASR的强的抗性,无论豆薯层锈菌群体如何变化。并且,培育在其他地理位置使用的大豆作物需要选择对影响这些区域的具体菌株的抗性,除了提供这些区域中农民喜欢的那些农学性状之外。因此存在着强大的动机来鉴定大豆中新的ASR抗性基因座,以及将期望的等位基因种质渗入到优良的大豆种质中。已经开发了方法来评估可能潜在地含有赋予对ASR的抗性的QTL的植物(美国专利申请NO. 20080166699)。
发明概述
本发明提供了将等位基因种质渗入到大豆植物中的方法,包括:使至少一种ASR抗性大豆植物与至少一种其他大豆植物杂交以形成群体;用来自由ASR抗性基因座14、15和16构成的组的至少一种核酸标志物筛选所述群体,来确定来自所述群体的一种或更多种大豆植物是否含有来自由ASR抗性等位基因1到8构成的组的至少一种ASR抗性等位基因。在各种实施方式中,所述至少一种标志物位于所述抗性等位基因的30 cM、15 cM、5 cM或1 cM之内,或所述抗性等位基因的1Mb、100 Kb或1 Kb之内。
在另一个方面,本发明提供了通过以下产生的优良大豆植物,包括:使至少一种ASR抗性大豆植物与至少一种其他大豆植物杂交以形成群体;用来自由ASR抗性基因座14、15和16构成的组的至少一种核酸标志物筛选所述群体,来确定来自所述群体的一种或更多种大豆植物是否含有来自由ASR抗性等位基因1到8构成的组的至少一种ASR抗性等位基因。在一个实施方式中,所述优良大豆植物展现了至少一种转基因性状。在更具体的实施方式中,所述至少一种转基因性状可以是除草剂耐受性、提高的产量、昆虫控制、真菌病抗性、病毒抗性、线虫抗性、细菌病抗性、支原体病抗性、修饰的油生产、高油生产、高蛋白质生产、萌芽和幼苗生长控制、增强的动物和人类营养、低棉籽糖、环境压力抗性、提高的可消化性、改进的加工性状、改进的风味、氮固定、杂交种子生产、降低的变应原性或其任何组合。在又更具体的实施方式中,除草剂耐受性可以为草甘膦、麦草畏、草铵膦、磺酰脲、溴苯腈、2,4-二氯苯氧乙酸、达草灭除草剂或其任何组合来赋予。在又一个实施方式中,所述优良大豆植物展现了对ASR诱导真菌的至少一个种类的至少部分抗性,更具体地,所述ASR诱导真菌可以是豆薯层锈菌或山马蝗层锈菌或两者。
本发明还提供了将至少一种ASR抗性等位基因种质渗入到大豆植物中的方法,包括步骤:使ASR抗性大豆植物与第二大豆植物杂交以形成群体;用选自由SEQ ID NO:1到8和SEQ ID NO:73到80构成的组的至少一种核酸标志物筛选所述群体;从所述群体中选择出包含与ASR抗性大豆植物相应的至少一种基因型的至少一种大豆植物。在特定的实施方式中,所述选择的大豆植物展现了如此处描述的、不差于约3、或不差于约2的对ASR的抗性反应分级。在更特别的实施方式中,所述方法进一步包括分析所述选择的大豆植物对ASR诱导病原体的抗性的步骤。在另一个特定的实施方式中,所述基因型通过单碱基延伸(SBE)、等位基因特异性引物延伸测序(ASPE)、DNA测序、RNA测序、基于微阵列的分析、普通PCR、等位基因特异性延伸、杂交、质谱法、连接、延伸-连接或Flap核酸内切酶介导的分析来测定。在再更特定的实施方式中,所述方法进一步包括使所述选择的大豆植物与另一种大豆植物杂交的步骤;以及更进一步包括从所述选择的大豆植物获得种子的步骤。在又一个特定的实施方式中,所述群体中至少一种大豆植物针对选自由SEQ ID NO:1和2构成的组的大豆基因组DNA标志物,以及针对SEQ ID NO:3来基因分型。
在另一个方面,本发明提供了优良大豆植物,其通过以下产生:
使ASR抗性大豆植物与第二大豆植物杂交以形成群体;用选自由SEQ ID NO:1到8和SEQ ID NO:73到80构成的组的至少一种核酸标志物筛选所述群体;从所述群体中选择包含与ASR抗性大豆植物相应的至少一种基因型的一种或更多种大豆植物。在一个实施方式中,所述优良大豆植物展现了至少一种转基因性状。在更具体的实施方式中,所述转基因性状可以是除草剂耐受性、提高的产量、昆虫控制、真菌病抗性、病毒抗性、线虫抗性、细菌病抗性、支原体病抗性、修饰的油生产、高油生产、高蛋白质生产、萌芽和幼苗生长控制、增强的动物和人类营养、低棉籽糖、环境压力抗性、提高的可消化性、改进的加工性状、改进的风味、氮固定、杂交种子生产、降低的变应原性或其任何组合。在又更具体的实施方式中,除草剂耐受性可以为草甘膦、麦草畏、草铵膦、磺酰脲、溴苯腈、2,4-二氯苯氧乙酸、达草灭除草剂或其任何组合来赋予。在又其他的实施方式中,所述优良大豆植物展现了对ASR诱导真菌的至少一个种类的至少部分抗性,更具体地,所述ASR诱导真菌可以是豆薯层锈菌或山马蝗层锈菌或两者。
本发明还提供了用于检测与ASR抗性相关的基因座的基本上纯化的核酸分子,包括选自由SEQ ID NO:1到SEQ ID NO:80和其互补物构成的组的核酸序列。
进一步的,本发明提供了至少15、16、17、18或20个核苷酸的分离的核酸分子,其与包括或邻近于多态性的大豆DNA的任一链中相同长度的序列具有至少90%的同一性,用于检测代表所述多态性的分子标志物,其中所述分子标志物选自由SEQ ID NO:1到8构成的组。在另一个实施方式中,本发明提供了至少15、16、17、18或20个核苷酸的分离的核酸分子,其与包括或邻近于多态性的大豆DNA的任一链中相同长度的序列具有至少95%、或优选98%、或更优选99%或甚至100%的同一性,用于检测代表所述多态性的分子标志物,其中所述分子标志物选自由SEQ ID NO:1到8构成的组。在特定的实施方式中,所述分离的核酸进一步包含可检测标记物,或提供了可检测标记物的掺入。更特别地,所述可检测标记物可以是同位素、荧光团、氧化剂、还原剂、核苷酸或半抗原。在又更特定的实施方式中,所述可检测标记物可以通过化学反应添加到核酸上,或通过酶反应来掺入。在本发明的另一个实施方式中,所述分离的核酸在严格杂交条件下与所述分子标志物的至少一个等位基因杂交。在更具体的实施方式中,所述分子标志物是SEQ ID NO:1、2、3、4、5、6、7或8;所述分离的核酸是至少90%相同于提供的探针的寡核苷酸,所述提供的探针相应于所述特定的分子标志物,其分别是:SEQ ID NO:25和26、27和28、29和30、31和32、33和34、35和36、37和38、或39和40。
本发明还提供了一组寡核苷酸,其包含:一对寡核苷酸引物,各自长度至少12个连续核苷酸,允许包含分子标志物或处于分子标志物之内的DNA片段的PCR扩增,所述分子标志物选自由SEQ ID NO:1到8构成的组;以及至少一种检测寡核苷酸,其允许所述扩增的片段中多态性的检测,其中所述检测寡核苷酸的序列至少百分之95相同于包括或邻近于所述多态性的大豆DNA片段的任一链中相同数量的连续核苷酸的序列。在一个实施方式中,所述检测寡核苷酸包含至少12个核苷酸,提供了可检测标记物的掺入或进一步包含可检测标记物。在更具体的实施方式中,所述可检测标记物选自由同位素、荧光团、氧化剂、还原剂、核苷酸和半抗原构成的组。在另一个实施方式中,所述检测寡核苷酸和所述寡核苷酸引物在严格杂交条件下与所述分子标志物的至少一个等位基因杂交。再其他的实施方式包括第二检测寡核苷酸,其能够检测所述分子标志物的不同的第二多态性、或同一多态性的不同的等位基因。在又更具体的实施方式中,所述分子标志物是SEQ ID NO:1、2、3、4、5、6、7或8;所述寡核苷酸引物至少90%相同于提供的引物,所述提供的引物相应于所述特定的分子标志物,其分别是:SEQ ID NO:9和10、11和12、13和14、15和16、17和18、19和20、21和22、或23和24;以及所述检测寡核苷酸包含核酸,所述核酸至少90%相同于提供的探针,所述提供的探针相应于所述特定的分子标志物,其分别是:SEQ ID NO:25和26、27和28、29和30、31和32、33和34、35和36、37和38、或39和40。
本发明还提供了将等位基因种质渗入到大豆植物中的方法,包括:提供大豆植物的群体;针对选自SEQ ID NO:1到8和SEQ ID NO:73到80的组的大豆基因组核酸标志物,将所述群体中的至少一种大豆植物基因分型;以及从所述群体中选择包含与ASR抗性相关的等位基因的一种或更多种大豆植物,其中所述ASR抗性等位基因选自由SEQ ID NO:73到SEQID NO:80构成的组。在一个实施方式中,提供群体包括使ASR抗性大豆植物与第二大豆植物杂交来形成群体。在另一个实施方式中,所述选择的一种或更多种大豆植物在存在ASR的情况下展现了与缺乏ASR抗性等位基因的大豆植物相比提高的谷粒产量。更特别地,提高的谷粒产量可以是在存在ASR的情况下与缺乏ASR抗性等位基因的大豆植物相比至少0.5 Bu/A、至少1.0 Bu/A或至少1.5 Bu/A。
核酸序列的简要说明
SEQ ID NO:1是来自大豆(Glycine max)的与ASR抗性基因座14相关的基因组序列。
SEQ ID NO:2是来自大豆(Glycine max)的与ASR抗性基因座14相关的基因组序列。
SEQ ID NO:3是来自大豆(Glycine max)的与ASR抗性基因座14相关的基因组序列。
SEQ ID NO:4是来自大豆(Glycine max)的与ASR抗性基因座15相关的基因组序列。
SEQ ID NO:5是来自大豆(Glycine max)的与ASR抗性基因座15相关的基因组序列。
SEQ ID NO:6是来自大豆(Glycine max)的与ASR抗性基因座15相关的基因组序列。
SEQ ID NO:7是来自大豆(Glycine max)的与ASR抗性基因座16相关的基因组序列。
SEQ ID NO:8是来自大豆(Glycine max)的与ASR抗性基因座16相关的基因组序列。
SEQ ID NO:9是用于SEQ ID NO:1的扩增的正向PCR引物。
SEQ ID NO:10是用于SEQ ID NO:1的扩增的反向PCR引物。
SEQ ID NO:11是用于SEQ ID NO:2的扩增的正向PCR引物。
SEQ ID NO:12是用于SEQ ID NO:2的扩增的反向PCR引物。
SEQ ID NO:13是用于SEQ ID NO:3的扩增的正向PCR引物。
SEQ ID NO:14是用于SEQ ID NO:3的扩增的反向PCR引物。
SEQ ID NO:15是用于SEQ ID NO:4的扩增的正向PCR引物。
SEQ ID NO:16是用于SEQ ID NO:4的扩增的反向PCR引物。
SEQ ID NO:17是用于SEQ ID NO:5的扩增的正向PCR引物。
SEQ ID NO:18是用于SEQ ID NO:5的扩增的反向PCR引物。
SEQ ID NO:19是用于SEQ ID NO:6的扩增的正向PCR引物。
SEQ ID NO:20是用于SEQ ID NO:6的扩增的反向PCR引物。
SEQ ID NO:21是用于SEQ ID NO:7的扩增的正向PCR引物。
SEQ ID NO:22是用于SEQ ID NO:7的扩增的反向PCR引物。
SEQ ID NO:23是用于SEQ ID NO:8的扩增的正向PCR引物。
SEQ ID NO:24是用于SEQ ID NO:8的扩增的反向PCR引物。
SEQ ID NO:25是用于SEQ ID NO:1的SNP的检测的探针。
SEQ ID NO:26是用于SEQ ID NO:1的SNP的检测的探针。
SEQ ID NO:27是用于SEQ ID NO:2的SNP的检测的探针。
SEQ ID NO:28是用于SEQ ID NO:2的SNP的检测的探针。
SEQ ID NO:29是用于SEQ ID NO:3的SNP的检测的探针。
SEQ ID NO:30是用于SEQ ID NO:3的SNP的检测的探针。
SEQ ID NO:31是用于SEQ ID NO:4的SNP的检测的探针。
SEQ ID NO:32是用于SEQ ID NO:4的SNP的检测的探针。
SEQ ID NO:33是用于SEQ ID NO:5的SNP的检测的探针。
SEQ ID NO:34是用于SEQ ID NO:5的SNP的检测的探针。
SEQ ID NO:35是用于SEQ ID NO:6的SNP的检测的探针。
SEQ ID NO:36是用于SEQ ID NO:6的SNP的检测的探针。
SEQ ID NO:37是用于SEQ ID NO:7的SNP的检测的探针。
SEQ ID NO:38是用于SEQ ID NO:7的SNP的检测的探针。
SEQ ID NO:39是用于SEQ ID NO:8的SNP的检测的探针。
SEQ ID NO:40是用于SEQ ID NO:8的SNP的检测的探针。
SEQ ID NO:41是相应于SEQ ID NO:1的ASR抗性等位基因的杂交探针。
SEQ ID NO:42是相应于SEQ ID NO:1的ASR易感性等位基因的杂交探针。
SEQ ID NO:43是相应于SEQ ID NO:2的ASR抗性等位基因的杂交探针。
SEQ ID NO:44是相应于SEQ ID NO:2的ASR易感性等位基因的杂交探针。
SEQ ID NO:45是相应于SEQ ID NO:3的ASR抗性等位基因的杂交探针。
SEQ ID NO:46是相应于SEQ ID NO:3的ASR易感性等位基因的杂交探针。
SEQ ID NO:47是相应于SEQ ID NO:4的ASR抗性等位基因的杂交探针。
SEQ ID NO:48是相应于SEQ ID NO:4的ASR易感性等位基因的杂交探针。
SEQ ID NO:49是相应于SEQ ID NO:5的ASR抗性等位基因的杂交探针。
SEQ ID NO:50是相应于SEQ ID NO:5的ASR易感性等位基因的杂交探针。
SEQ ID NO:51是相应于SEQ ID NO:6的ASR抗性等位基因的杂交探针。
SEQ ID NO:52是相应于SEQ ID NO:6的ASR易感性等位基因的杂交探针。
SEQ ID NO:53是相应于SEQ ID NO:7的ASR抗性等位基因的杂交探针。
SEQ ID NO:54是相应于SEQ ID NO:7的ASR易感性等位基因的杂交探针。
SEQ ID NO:55是相应于SEQ ID NO:8的ASR抗性等位基因的杂交探针。
SEQ ID NO:56是相应于SEQ ID NO:8的ASR易感性等位基因的杂交探针。
SEQ ID NO:57是相应于SEQ ID NO:1的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:58是相应于SEQ ID NO:1的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:59是相应于SEQ ID NO:2的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:60是相应于SEQ ID NO:2的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:61是相应于SEQ ID NO:3的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:62是相应于SEQ ID NO:3的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:63是相应于SEQ ID NO:4的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:64是相应于SEQ ID NO:4的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:65是相应于SEQ ID NO:5的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:66是相应于SEQ ID NO:5的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:67是相应于SEQ ID NO:6的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:68是相应于SEQ ID NO:6的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:69是相应于SEQ ID NO:7的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:70是相应于SEQ ID NO:7的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:71是相应于SEQ ID NO:8的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:72是相应于SEQ ID NO:8的ASR抗性等位基因的单碱基延伸(SBE)探针。
SEQ ID NO:73是相应于SEQ ID NO:1的ASR抗性等位基因1。
SEQ ID NO:74是相应于SEQ ID NO:2的ASR抗性等位基因2。
SEQ ID NO:75是相应于SEQ ID NO:3的ASR抗性等位基因3。
SEQ ID NO:76是相应于SEQ ID NO:4的ASR抗性等位基因4。
SEQ ID NO:77是相应于SEQ ID NO:5的ASR抗性等位基因5。
SEQ ID NO:78是相应于SEQ ID NO:6的ASR抗性等位基因6。
SEQ ID NO:79是相应于SEQ ID NO:7的ASR抗性等位基因7。
SEQ ID NO:80是相应于SEQ ID NO:8的ASR抗性等位基因8。
附图的简要说明
附图1描绘了连锁群G上的ASR基因座14的位置。右侧是群体的LOD曲线的图例。黑色柱表明NS0102630的位置的置信区间(LOD>10)。灰色柱表明NS0119675的位置的置信区间(LOD>2)。
附图2描绘了连锁群C2上的ASR基因座15的位置。右侧是群体的LOD曲线的图例。黑色柱表明NS0093385的位置的置信区间(LOD>10)。暗色柱表明NS0118716的位置的置信区间(LOD>2)。
附图3描绘了连锁群D2上的ASR基因座16的位置。右侧是群体的LOD曲线的图例。灰色柱表明NS0113966的位置的置信区间(LOD>2)。
发明的详细说明
所提供的定义和方法限定了本发明,并指导本领域普通技术人员实践本发明。除非另有说明,术语将根据相关领域中普通技术人员常规的使用来理解。分子生物学中的常见术语的定义还可以在Alberts et al., Molecular Biology of The Cell, 5thEdition, Garland Science Publishing, Inc.: New York, 2007;Rieger et al.,Glossary of Genetics: Classical and Molecular, 5th edition, Springer-Verlag:New York, 1991;King et al, A Dictionary of Genetics, 6th ed, OxfordUniversity Press: New York, 2002;以及Lewin, Genes IX, Oxford UniversityPress: New York, 2007中找到。使用在37 CFR§1.822中列出的DNA碱基的命名。
“等位基因”是指特定基因座上选择性的序列;等位基因的长度可以小到1个核苷酸碱基,但一般是更大的。等位序列可以作为核酸序列、或作为由所述核酸序列编码的氨基酸序列来表示。
“基因座”是通常通过参考点来找到的基因组序列上的位置;例如,作为基因、基因的部分或基因间区域的短的DNA序列。本发明的基因座包含群体中的一种或更多种多态性,即,在某些个体中存在的选择性的等位基因。
如在此使用的,“多态性”是指在一个或更多个个体的群体中处在一个或更多个基因座上核酸序列的一种或更多种变异的存在。所述变异可以包括、但不限于一个或更多个碱基改变、一个或更多个核苷酸的插入或一个或更多个核苷酸的删除。多态性可能来自核酸复制中的随机过程、通过诱变、作为移动的基因组元件的结果、来自拷贝数变异和在减数分裂的过程期间,例如,不等交换,基因组加倍以及染色体破裂和融合。变异通常可以在群体内发现,或可能在群体内以低频率存在,前者在一般的植物育种中具有更大的实用性,后者可能与罕有的但是重要的表型变异相关。有用的多态性可以包括单核苷酸多态性(SNP)、DNA序列中的插入或删除(Indels)、DNA序列的简单序列重复(SSRs)、限制性片断长度多态性以及标签SNP。遗传标志物、基因、DNA衍生的序列、单体型、RNA衍生的序列、启动子、基因的5'非翻译区、基因的3'非翻译区、microRNA、siRNA、QTL、卫星标志物、转基因、mRNA、dsmRNA、转录分布、甲基化模式可能包含多态性。
如在此使用的,“标志物”是指多态的核酸序列或核酸特征。标志物可以由一个或更多个特定的变体序列、或由共有序列代表。在另一种意义上,“标志物”是分离的变体或这样的序列的共有体。在广义上,“标志物”可以是可检测的特征,其可以用于辨别生物体之间的可遗传的差异。这样的特征的实例可以包括遗传标志物、蛋白质组成、蛋白质水平、油的组成、油水平、碳水化物组成、碳水化物水平、脂肪酸组成、脂肪酸水平、氨基酸组成、氨基酸水平、生物聚合物、药物、淀粉组成、淀粉水平、可发酵的淀粉、发酵产量、发酵效力、能量产量、次级化合物、代谢物、形态学特征和农学特征。
如在此使用的,“标志物分析”是指利用特定的方法检测特定基因座上的多态性的方法,例如,至少一种表型的测量(例如,种子颜色、花颜色或其他视觉上可检测的性状)、限制性片断长度多态性(RFLP)、单碱基延伸、电泳、序列比对、等位特异性寡核苷酸杂交(ASO)、随机扩增的多态性DNA(RAPD)、基于微阵列的技术以及核酸测序技术,等等。
如在此使用的,“分型”是指任何方法,通过所述方法测定给定的大豆基因组多态性的具体等位形式。例如,单核苷酸多态性(SNP)通过测定存在哪个核苷酸(即,A、G、T或C)来分型。插入/删除(Indels)通过确定是否存在Indel来测定。Indels可以通过多种分析,包括但不限于标志物分析来分型。
如在此使用的,用语“邻近于”,当用于描述与含有多态性的DNA杂交的核酸分子时,是指一种核酸,其与直接邻接或近乎邻接所述多态性核苷酸碱基位置的DNA序列杂交。例如,可以用于单碱基延伸分析的核酸分子“邻近于”所述多态性。
如在此使用的,“询问位置”是指固相支持物上的物理位置,其可以被查询来获得一个或更多个预定的基因组多态性的基因分型数据。
如在此使用的,“共有序列”是指构建的DNA序列,其鉴定基因座上等位基因中的SNP和Indel多态性。共有序列可以基于基因座处DNA的任一链,并且表明基因座中每个SNP的任一种的核苷酸碱基,以及基因座中所有Indels的核苷酸碱基。因而,虽然共有序列可能不是实际的DNA序列的拷贝,共有序列对于精确设计用于基因座中实际多态性的引物和探针是有用的。
如在此使用的,术语“单核苷酸多态性”也由缩写“SNP”来表示,是指在单个位点处的多态性,其中所述多态性构成了单个碱基对改变、一个或更多个碱基对的插入、或一个或更多个碱基对的删除。
如在此使用的,术语“单体型”是指由至少一个多态性分子标志物的等位基因所定义的单体型窗口内的染色体区域。在每个单体型窗口中独特的标志物指纹图谱组合定义了该窗口的个体单体型。进一步的,由例如重组导致的单体型中的改变,可能引起单体型的修饰,从而它仅包含与所述性状可操作连接的,例如,通过与基因、QTL或转基因的物理连接连接的、原始(亲本)单体型的一部分。单体型中的任何这样的改变将被包括在什么构成单体型的我们的定义中,只要基因组区域的功能完整性不变或被改善。
如在此使用的,术语“单体型窗口”是指染色体区域,其是通过本领域技术人员已知的统计分析来建立的,并且处于连锁不平衡中。因而,在位于这个区域内的一个或更多个分子标志物基因座处两个近交个体(或两个配子)之间的状态一致(identity by state)被作为完整区域的血统一致(identity-by-descent)的证据。每个单体型窗口包括至少一个多态性分子标志物。单体型窗口可以沿着基因组中每个染色体来作图。单体型窗口本身不是固定的,考虑到分子标志物的不断提高的密度,本发明预期单体型窗口的数量和大小是演变的,窗口的数量提高以及它们相应的大小降低,因而产生在根据标志物基因座的状态一致来确定血统一致方面不断提高的置信程度。
如在此使用的,“基因型”是指表型的遗传组分,它可以利用标志物间接地表征,或由核酸测序直接地表征。适合的标志物包括表型特征、代谢分布、遗传学标志物或其他类型的标志物。基因型可以构成至少一个遗传标志物基因座的等位基因,或至少一个单体型窗口的单体型。在某些实施方式中,基因型可以代表单个基因座,在其他实施方式中,它可以代表基因座的基因组广度上的集合。在另一个实施方式中,基因型可以反映染色体的一部分、全部染色体、基因组的一部分、全部基因组的序列。
如在此使用的,“表型”是指受到基因表达的影响的细胞或生物体的可检测的特征。
如在此使用的,“连锁”是指在杂交中产生配子类型的相对频率。例如,如果基因座A具有基因“A”或“a”、基因座B具有基因“B”或“b”,具有AABB的亲本I与具有aabb的亲本B之间的杂交将产生四种可能的配子,其中基因分离为AB、Ab、aB和ab。无效的期望是存在着进入四种可能的基因型的每一种的独立的相等的分离,即,没有每个基因型的配子1/4的连锁。与1/4不同的配子到基因型的分离被归因于连锁。
如在此使用的,“连锁不平衡”是在单个世代中许多个体的群体中配子类型的相对频率的情境下定义的。如果等位基因A的频率是p、a是p',B是q以及b是q',则基因型AB的期望的频率(没有连锁不平衡)是pq,Ab是pq',aB是p'q,ab是p'q'。与预期频率的任何偏离被称为连锁不平衡。当处于连锁不平衡中时,两个基因座被称为是“遗传地连锁的”。
如在此使用的,“数量性状基因座(QTL)”是指基因座,其控制在某种程度上可数字地表示的、通常连续地分布的性状。
如在此使用的,“ 免疫性”是指ASR疾病表型,其不展现肉眼可见的病变、或不与小疱或存活的孢子相关的红-褐色病变,和具有的长度平均起来不大于在可比较条件下分析的易感表型的平均病变长度的约四分之一,并且覆盖不超过叶子表面积约二十分之一。完全免疫性的数字分值是1;具有小的但可见的病变或变色的免疫性,数字分值是1.5。
如在此使用的,“抗性”是指ASR疾病表型,其展现了免疫性或红褐色病变,所述红褐色病变可能或可能不与小疱或活的孢子相关,或可能在孢子形成方面延迟,具有的长度平均起来为在可比较条件下分析的易感表型的平均病变长度的约四分之一,以及与叶表面积覆盖的百分比成反比而变化的抗性程度。如果叶子的低于约50%被病变覆盖,抗性的数字分值是2,如果叶子的大于约50%被覆盖,分值是3。如果叶子的约50%面积被红褐色病变覆盖,数字分值2.5。
如在此使用的,“易感性”是指ASR疾病表型,其展现了与含有活的孢子的小疱相关的棕黄色病变,具有在使用的标准分析条件下平均约2 mm到5 mm的长度(美国申请11805667),易感性的程度与叶表面积覆盖的百分比成正比地变化。如果叶子的低于约50%被病变覆盖,易感性的数字分值是4,如果叶子的大于约50%被覆盖,分值是5。如果叶子的约50%面积被棕黄色病变覆盖,数字分值4.5。
响应分值也可以反映多个叶片或测试的平均分值,从而这样的分值可能具有整数之间的数字值,一般表示为小数。
如在此使用的,“抗性等位基因”是指分离的核酸序列,其包括与对ASR的抗性相关的多态的等位基因。
如在此使用的,术语“大豆”是指Glycine max,包括可以用大豆育种的所有植物品种,包括野生大豆物种。
如在此使用的,术语“包含”是指“包括但不限于”。
如在此使用的,术语“优良系”是指任何系,其来自对优越的农学性能的培育和选择。优良植物是来自优良系的任何植物。
本发明提供了ASR抗性QTL,其作图在靠近Rpp1的连锁群G上的区域;然而,本发明的称为ASR抗性基因座14与Rpp1不同在于覆盖叶子的约低于25%表面积的病变的红褐色表型,而Rpp1一般赋予对ASR的免疫性。本发明还提供了用于选择和种质渗入来自源于PI291309C的来源的能赋予对ASR的抗性的QTL的方法和组合物。提供了位于ASR抗性基因座14上的QTL。
本发明提供了ASR抗性QTL,其作图在连锁群C2上的区域;本发明的称为ASR抗性基因座15具有覆盖叶子的约低于25%表面积的病变的红褐色表型。本发明进一步提供了ASR抗性QTL,其作图在连锁群D2上的区域;本发明的称为ASR抗性基因座16具有覆盖叶子的约低于25%表面积的病变的红褐色表型。本发明还提供了用于选择和种质渗入来自源于PI507009的来源的能赋予对ASR的抗性的QTL的方法和组合物。提供了位于ASR抗性基因座15和16上的QTLs。
在本发明中,一种ASR抗性基因座,ASR抗性基因座14位于连锁群G上。用于监视ASR抗性基因座14的种质渗入的SNP标志物包括选自由NS0119675、NS0095012和NS0102630构成的组的那些。说明性的ASR抗性基因座14 SNP标志物DNA序列SEQ ID NO:1可以利用SEQ IDNO:9和10标明的引物来扩增,用SEQ ID NO:25和26标明的探针来检测;SEQ ID NO:2可以用SEQ ID NO:11和12标明的引物扩增,用SEQ ID NO:27和28标明的探针来检测;SEQ ID NO:3可以用SEQ ID NO:13和14标明的引物扩增,用SEQ ID NO:29和30标明的探针来检测。
类似地,本发明,一种ASR抗性基因座,ASR抗性基因座15位于连锁群C2上。用于监视ASR抗性基因座15的种质渗入的SNP标志物包括选自由NS0093385、NS0118716和NS0127833构成的组的那些。说明性的ASR抗性基因座15 SNP标志物DNA序列SEQ ID NO:4可以利用SEQ ID NO:15和16标明的引物来扩增,用SEQ ID NO:31和32标明的探针来检测;SEQID NO:5可以用SEQ ID NO:17和18标明的引物扩增,用SEQ ID NO:33和34标明的探针来检测;SEQ ID NO:6可以用SEQ ID NO:19和20标明的引物扩增,用SEQ ID NO:35和36标明的探针来检测。
在本发明中,一种ASR抗性基因座,ASR抗性基因座16位于连锁群D2上。用于监视ASR抗性基因座16的种质渗入的SNP标志物包括选自由NS0113966和NS0118536构成的组的那些。说明性的ASR抗性基因座16 SNP标志物DNA序列SEQ ID NO:7可以用SEQ ID NO:21和22标明的引物扩增,用SEQ ID NO:37和38标明的探针检测;SEQ ID NO:8可以用SEQ ID NO:23和24标明的引物扩增,用SEQ ID NO:39和40标明的探针检测。
本发明还提供了包含选自由SEQ ID NO:73到80和其互补物构成的组的核酸分子的大豆植物。本发明还提供了包含选自由SEQ ID NO:1到8、其片段和两者的互补物构成的组的核酸分子的大豆植物。本发明还提供了包含选自由SEQ ID NO:9到72、其片段和两者的互补物构成的组的核酸分子的大豆植物。
在一个方面,所述大豆植物包含SEQ ID NO:73到75的3种核酸分子和其互补物。在另一个方面,所述大豆植物包含SEQ ID NO:1到3的3种核酸分子、其片段和两者的互补物。在进一步的方面,所述大豆植物包含选自由SEQ ID NO:9到14和25到30、其片段和其互补物构成的组的2、3、4、5、6、7、8、9、10、11或12种核酸分子。
在另一个方面,所述大豆植物包含SEQ ID NO:76到78的3种核酸分子和其互补物。在另一个方面,所述大豆植物包含SEQ ID NO:4到6的3种核酸分子、其片段和两者的互补物。在进一步的方面,所述大豆植物包含选自由SEQ ID NO:15到20和31到36、其片段和其互补物构成的组的2、3、4、5、6、7、8、9、10、11或12种核酸分子。
在另一个方面,所述大豆植物包含SEQ ID NO:79和80的2种核酸分子和其互补物。在另一个方面,所述大豆植物包含2种核酸分子SEQ ID NO:7和8,其片段和两者的互补物。在进一步的方面,所述大豆植物包含选自由SEQ ID NO:21到24和37到40、其片段和其互补物构成的组的2、3、4、5、6、7或8种核酸分子。
在另一个方面,所述大豆植物包含SEQ ID NO:76到80的5种核酸分子和其互补物。在另一个方面,所述大豆植物包含SEQ ID NO:4到8的5种核酸分子、其片段和两者的互补物。在进一步的方面,所述大豆植物包含选自由SEQ ID NO:15到24和31到40,其片段和其互补物构成的组的2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20种核酸分子。
在另一个方面,所述大豆植物包含SEQ ID NO:73到78的6种核酸分子和其互补物。在另一个方面,所述大豆植物包含SEQ ID NO:1到6的6种核酸分子、其片段和两者的互补物。在进一步的方面,所述大豆植物包含选自由SEQ ID NO:9到20和25到36,其片段和其互补物构成的组的2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23或24种核酸分子。
在另一个方面,所述大豆植物包含SEQ ID NO:73、74、75、79和80的5种核酸分子和其互补物。在另一个方面,所述大豆植物包含SEQ ID NO:1、2、3、7和8的5种核酸分子,其片段和两者的互补物。在进一步的方面,所述大豆植物包含选自由SEQ ID NO:9到14和21到30和37到40,其片段和其互补物构成的组的2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20种核酸分子。
本发明还提供了包含ASR抗性基因座14的大豆植物。所述等位基因可以是纯合的或杂合的。本发明还提供了包含ASR抗性基因座15的大豆植物。所述等位基因可以是纯合的或杂合的。本发明还提供了包含ASR抗性基因座16的大豆植物。所述等位基因可以是纯合的或杂合的。本发明还提供了包含来自由ASR抗性基因座14、15和16构成的组的两种或更多种ASR抗性基因座的大豆植物。所述等位基因可以是纯合的或杂合的。
在一个实施方式中,任何单独的ASR抗性基因座14、15或16,或这些ASR抗性基因座的任何组合,可以与育种计划中的一种或更多种其他ASR抗性基因座组合,来产生具有至少两种ASR抗性基因座的大豆植物,如美国专利申请11/805667中描述的。
如在此使用的,ASR是指任何ASR变体或分离物。本发明的大豆植物可以对能够引起或诱导ASR的一种或更多种真菌有抗性。在一个方面,本发明提供了对ASR有抗性或耐受的植物,以及用于筛选对层锈菌属引起的ASR有抗性或易感性的大豆植物的方法和组合物。在优选的方面,本发明提供了用于筛选对豆薯层锈菌有抗性或易感性的大豆植物的方法和组合物。在另一个方面,本发明提供了对原始分离自密苏里州东南部的豆薯层锈菌菌株“MBH1”有抗性的植物,以及用于筛选大豆植物对豆薯层锈菌菌株“MBH1”的抗性或易感性的方法和组合物。
本发明进一步提供了,选择的植物来自大豆属的成员构成的组,更具体地来自Glycine arenaria、Glycine argyrea、Glycine canescens、Glycine clandestine、 Glycine curvata、Glycine cyrtoloba、Glycine falcate、Glycine latifolia、Glycine latrobeana、Glycine max、Glycine microphylla、Glycine pescadrensis、Glycine pindanica、Glycine rubiginosa、Glycine soja、Glycine sp.、Glycine stenophita、 Glycine tabacina 和Glycine tomentella构成的组。
当通过任何方法分析对ASR的抗性或易感性、并根据此处描述数字分值的来分级时,本发明的植物包括具有1到5的抗性水平的大豆植物,1是完全免疫,2是基本上抵抗的抗性,3是部分抵抗的中度抗性,4是中度易感的,5是易感的。
在优选的方面,本发明提供了要分析对ASR的抗性或易感性的大豆植物,通过确定大豆植物是否具有1到5的抗性水平的任何方法,根据在此描述的数字分值,1是完全免疫,2是基本上抵抗的抗性,3是部分抵抗的中度抗性,4是中度易感的,5是易感的。
根据ASR对产量的一般公认的影响,本发明的另一个方面提供了具有一种或更多种ASR抗性基因座的大豆植物或其衍生物,其展现了与缺乏ASR抗性基因座的大豆植物相比在存在ASR的情况下提高的谷粒产量。在某些实施方式中,在存在ASR的情况下本发明的植物的谷粒的提高与缺乏ASR抗性基因座的大豆植物相比是至少0.5、1、1.5、2.0、2.5或3蒲式耳/英亩。
本发明的疾病抗性QTL可以导入优良大豆自交系中。“优良系”是指任何系,其来自对优越的农学性能的培育和选择。对农民或大豆育种者商业上可获得的优良大豆品种的非限制性实例包括AG00802、A0868、AG0902、A1923、AG2403、A2824、A3704、A4324、A5404、AG5903和AG6202(Asgrow Seeds, Des Moines, Iowa, USA);BPR0144RR、BPR 4077NRR和BPR 4390NRR(Bio Plant Research, Camp Point, Illinois, USA);DKB17-51和DKB37-51(DeKalb Genetics, DeKalb, Illinois, USA);和DP 4546 RR和DP 7870 RR(Delta &Pine Land Company, Lubbock, Texas, USA);JG 03R501、JG 32R606C ADD和JG 55R503C(JGL Inc., Greencastle, Indiana, USA);NKS13-K2(NK Division of Syngenta Seeds,Golden Valley, Minnesota, USA);90M01、91M30、92M33、93M11、94M30、95M30和97B52(Pioneer Hi-Bred International, Johnston, Iowa, USA);SG4771NRR和SG5161NRR/STS(Soygenetics, LLC, Lafayette, Indiana, USA);S00-K5、S11-L2、S28-Y2、S43-B1、S53-A1、S76-L9和S78-G6(Syngenta Seeds, Henderson, Kentucky, USA)。优良植物是来自优良品种的代表性的植物。
本发明的ASR抗性基因座还可以导入包含一种或更多种转基因的优良大豆植物中,所述转基因赋予除草剂耐受性、提高的产量、昆虫控制、真菌病抗性、病毒抗性、线虫抗性、细菌病抗性、支原体病抗性、修饰的油生产、高油生产、高蛋白质生产、萌芽和幼苗生长控制、增强的动物和人类营养、低棉籽糖、环境压力抗性、提高的可消化性、工业酶、药物蛋白质、肽和小分子、改进的加工性状、改进的风味、氮固定、杂交种子生产、降低的变应原性、生物聚合物和生物燃料等等。在一个方面,所述除草剂耐受性选自由草甘膦、麦草畏、草铵膦、磺酰脲、溴苯腈和达草灭除草剂构成的组。这些性状可以通过植物生物技术的方法作为大豆中的转基因来提供。
单种或复数种疾病抗性QTL等位基因可以从含有所述等位基因的任何植物(供体)导入任何接受者大豆植物。在一个方面,接受者大豆植物可以含有其他的ASR抗性基因座。在另一个方面,接受者大豆植物可以含有转基因。在另一个方面,当维持导入的QTL时,提供疾病抗性QTL的植物的遗传贡献可以通过回交或其他适合的方法来降低。在一个方面,大豆植物中来自供体材料的核遗传材料可以小于或约50%、小于或约25%、小于或约13%、小于或约5%、3%、2%或1%,但是该遗传材料含有感兴趣的ASR抗性基因座。
含有所描述的一种或更多种ASR抗性基因座的植物可以是供体植物。含有抗性基因座的大豆植物可以,例如,通过利用能够检测与抗性相关的标志物多态性的核酸分子来筛选。在一个方面,供体植物选自由PI291309C和PI507009构成的组。在另一个方面,供体植物来源于PI291309C或PI507009。在另一个方面,供体植物通过将至少一种ASR抗性基因从这些系中的每一个中一起带入供体植物中的有性杂交、转化或其他基因组合方法而来源于PI291309C和PI507009两者。供体植物可以是易感的系。在一个方面,供体植物也可以是接受者大豆植物。
进一步理解的是,本发明的大豆植物可以展现任何相对成熟群体的特征。在一个方面,所述成熟群体选自由000、00、0、1、2、3、4、5、6、7、8、9和10构成的组。
当然,QTL的等位基因可以包含多个基因或其他遗传因子,甚至是处于连续基因组区域或连锁群,例如单体型之内的。如在此使用的,疾病抗性基因座的等位基因因而可以包括超过一种基因或其他遗传因子,其中每个单独的基因或遗传组分也能够展现等位变异,其中每个基因或遗传因子也能够引发对所讨论的数量性状的表型效应。在本发明的一个方面,QTL的等位基因包含也能展现等位变异的一种或更多种基因或其他遗传因子。术语“QTL的等位基因”的使用因而不意图排除包含超过一种基因或其他遗传因子的QTL。特别地,本发明中的“QTL的等位基因”可以指单体型窗口内的单体型,其中表型可以是疾病抗性。单体型窗口是连续的基因组区域,其可以用一组一种或更多种多态性标志物来定义和追踪,其中所述多态性表明血统一致性。窗口内的单体型可以由每个标志物处等位基因的独特的指纹图谱来定义。如在此使用的,等位基因是占据染色体上给定基因座的基因的几种可选择形式之一。当存在于染色体上的给定基因座处的所有等位基因相同时,该植物在该基因座处是纯合的。如果存在于染色体上的给定基因座处的等位基因不同,该植物在该基因座处是杂合的。本发明的植物可以是在任何特定的ASR基因座处、或对于特定的多态性标志物是纯合的或杂合的。
本发明还提供了本发明的植物的部分。植物部分无限制地包括种子、胚乳、胚珠、花粉、茎、插枝、细胞、原生质体和组织培养物。在本发明的特别优选的方面中,所述植物部分是种子。
本发明还提供了大豆种子的容器,其中所述种子的大于50%、60%、70%、80%、90%、95%或99%包含选自由ASR抗性基因座14、15和16构成的组的至少一种基因座。
大豆种子的容器可以含有任何数量、重量或体积的种子。例如,容器可以含有至少、或大于约10、25、50、100、200、300、400、500、600、700、80、90、1000、1500、2000、2500、3000、3500、4000颗或更多颗种子。在另一个方面,容器可以含有约、或大于约1克、5克、10克、15克、20克、25克、50克、100克、250克、500克或1000克的种子。做为选择,所述容器可以含有至少或大于约0盎斯、1盎斯、5盎斯、10盎斯、1磅、2磅、3磅、4磅、5磅、10磅、15磅、20磅、25磅或50磅或更多种子。
大豆种子的容器可以是本领域可获得的任何容器。例如,容器可以是盒子、袋子、罐子、包、小袋、胶卷、桶或管。
在另一个方面,大豆种子的容器中含有的种子可以是处理的或未处理的大豆种子。在一个方面,所述种子可以被处理以改善萌芽,例如,通过引发所述种子,或通过消毒来对抗种子携带的病原体。在另一个方面,种子可以包被任何可获得的包被物来改善,例如,种植性、出苗以及对抗种子携带的病原体的保护。种子包被物可以是任何形式的种子包被物,包括但不限于,丸化、薄膜包被物或外壳。
本发明的植物或其部分可以在培养物中生长和再生。从各种组织类型再生大豆植物的方法,以及大豆的组织培养的方法是本领域已知的(参见,例如 Widholm et al., In Vitro Selection and Culture-induced Variation in Soybean, In Soybean:Genetics, Molecular Biology and Biotechnology, Eds. Verma and Shoemaker, CABInternational, Wallingford, Oxon, England(1996))。植物例如大豆的再生技术可以用作多种组织或细胞类型的起始材料。特别是对于大豆,已经开发了从某些分化的组织类型例如分生组织Cartha et al., Can. J. Bot. 59:1671-1679(1981)、胚轴部分 Cameya et al., Plant Science Letters 21: 289-294(1981)和茎节部分Saka et al., Plant Science Letters, 19: 193-201(1980);Cheng et al., Plant Science Letters, 19:91-99(1980)开始的再生过程。已经报道了来自体细胞胚的完整性成熟的大豆植物的再生,所述体细胞胚从不成熟的大豆胚的外植体产生(Ranch et al., In Vitro Cellular & Developmental Biology 21: 653-658(1985)。还报道了通过器官发生和胚胎发生从组织培养物再生成熟的大豆植物(Barwale et al., Planta 167: 473-481(1986);Wright et al., Plant Cell Reports 5: 150-154(1986)。
本发明还提供了通过筛选疾病抗性或易感性从大豆植物中选择的疾病抗性大豆植物,所述选择包括询问基因组核酸中标志物分子分子的存在,所述标志物分子与大豆植物中疾病抗性相关的QTL的等位基因是遗传连锁的,其中QTL的等位基因也位于与ASR抗性相关的连锁群上。
将等位基因种质渗入到大豆植物中的方法,包括(A)使包含选自由SEQ ID NO:73到80构成的组的核酸分子的至少一种第一大豆植物与至少一种第二大豆植物杂交以形成群体,(B)筛选具有一种或更多种核酸标志物的所述群体,来确定来自所述群体的一种或更多种大豆植物是否含有所述核酸分子,和(C)从所述群体中选择包含选自由SEQ ID NO:73到80构成的组的核酸分子的一种或更多种大豆植物。
本发明还包括将等位基因种质渗入到大豆植物中的方法,包括:(A)使至少一种ASR抗性大豆植物与至少一种ASR敏感性大豆植物杂交以形成群体;(B)筛选具有一种或更多种核酸标志物的所述群体,来确定来自所述群体的一种或更多种大豆植物是否含有至少一种ASR抗性等位基因,其中每种ASR抗性等位基因处在选自由ASR抗性基因座14、15和16构成的组的抗性基因座上。
本发明包括分离的核酸分子。这样的分子包括能够检测与ASR基因座遗传地或物理地连锁的多态性的那些核酸分子。这样的分子可以称为标志物。可以通过可用的技术获得与选自由ASR抗性基因座14、15和16构成的组的基因座连锁的其他标志物。在一个方面,所述核酸分子能够检测位于距离选自由ASR抗性基因座14、15和16构成的组的基因座小于30、20、10、5、2、或1厘摩(centimorgans)的标志物的存在或缺乏。具有相应的作图位置的示范性的核酸分子在美国专利申请NO. 2005/0204780、2005/0216545和系列号NO. 60/932,533中提供了,其可以用于方便本发明的基因座的选择和种质渗入。在另一个方面,标志物展现了2或更大、3或更大、或4或更大的ASR抗性的LOD分值,利用本领域已知的方法,例如Qgene Version 2.23(1996)和默认参数测量。在另一个方面,所述核酸分子能够检测选自由ASR抗性基因座14、15和16构成的组的基因座中的标志物。在进一步的方面,核酸分子选自由SEQ ID NO:1到SEQ ID NO:80、其片段、其互补物和能够与一种或更多种这些核酸分子特异性杂交的核酸分子构成的组。
在优选的方面,本发明的核酸分子包括在中度严格条件,例如,约2.0×SSC和约65℃下与SEQ ID NO:1到SEQ ID NO:80中列出的核酸分子或其互补物或任一者的片段的一种或更多种特异性杂交的那些。在特别优选的方面中,本发明的核酸将在高度严格条件下与SEQ ID NO:1到SEQ ID NO:80中列出的核酸分子、或互补物或任一者的片段的一种或更多种特异性杂交。在本发明的一个方面中,本发明的优选的标志物核酸分子具有SEQ ID NO:1到SEQ ID NO:80中所列的核酸序列,或其互补物或任一者的片段。在本发明的另一个方面,本发明的优选的标志物核酸分子与SEQ ID NO:1到SEQ ID NO:80中所列核酸序列或其互补物或任一者的片段具有80%到100% 或90%到100%之间的序列同一性。在本发明的进一步的方面中,本发明的优选的标志物核酸分子与SEQ ID NO:1到SEQ ID NO:80中所列序列或其互补物或任一者的片段享有95%到100%之间的序列同一性。在本发明的更优选的方面,本发明的优选的标志物核酸分子与SEQ ID NO:1到SEQ ID NO:80中所列核酸序列或其互补物或任一者的片段享有98%到100%之间的序列同一性。在本发明的更优选的方面,本发明的优选的标志物核酸分子与SEQ ID NO:1到SEQ ID NO:80中所列核酸序列或其互补物或任一者的片段享有99%到100%之间的序列同一性。在本发明的更优选的方面中,本发明的优选的标志物核酸分子与SEQ ID NO:1到SEQ ID NO:80中所列核酸序列或其互补物或任一者的片段享有100%的序列同一性。
核酸分子或其片段能够在某些情况下与其他核酸分子特异性杂交。如此处使用的,如果两个分子能形成反平行的双链核酸结构,则称为两个核酸分子能相互特异性的杂交。如果核酸分子显示出完全的互补性,则称核酸分子是另一个核酸分子的“互补物”。如此处使用的,当分子之一的每一个核苷酸与另一个分子的核苷酸互补时,称为分子显示出“完全的互补性”。如果分子以足够的稳定性相互杂交以使它们在至少常规的“低严格”条件下保持相互退火,称为两个分子是“最低度互补的”。类似地,如果分子可以以足够的稳定性相互杂交以允许它们在常规的“高严格”条件下保持相互退火,称为分子是“互补的”。由Sambrook等人在Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Press, Cold Spring Harbor, New York(1989)中,以及Haymes等人在Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC(1985)描述了常规的严格条件。因而从完全互补的偏离是可允许的,只要这种偏离不完全地排除了分子形成双链结构的能力。为了使核酸分子作为引物或探针,仅需在序列中充分的互补,以使得在所采用的特定溶剂和盐浓度下能形成稳定的双链结构。
如此处使用的,基本上同源的序列是在高度严格条件下同与其相比较的核酸序列的互补物特异性的杂交的核酸序列。本发明的核酸探针和引物在严格条件下与目标DNA序列杂交。术语“严格杂交条件”被定义为一些条件,在所述条件下探针或引物与目标序列而不与非目标序列特异性地杂交,其可以经验性地确定。术语“严格条件”是根据Sambrook et al., 1989,9.52-9.55节中讨论的具体杂交操作,对于核酸探针与目标核酸(即,与感兴趣的特定核酸序列)的杂交功能性地定义的。还参见 Sambrook et al., 1989, 9.47-9.52,9.56-9.58;Kanehisa 1984 Nucl. Acids Res. 12:203-213;和Wetmur et al. 1968 J.Mol. Biol. 31:349-370。促进DNA杂交的适合的严格条件,例如,6.0 ×氯化钠/柠檬酸钠(SSC)约45℃,之后是在50℃用2.0×SSC洗涤,对本领域的技术人员是公知的,或可在Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. 1989, 6.3.1-6.3.6中找到。例如,洗涤步骤中的盐浓度可以选自50℃下的约2.0×SSC的低严格度,到50℃下约0.2×SSC的高严格度。此外,洗涤步骤中的温度可以从室温下、约22℃的低严格条件提高到约65℃的高严格条件。温度和盐可以都变化,或者温度或盐浓度保持不变而另一个变量发生改变。
例如,对于高严格度,利用DNA或RNA探针或引物的杂交可以在65℃ 6×SSC、0.5%SDS、5×Denhardt’s、100 μg/mL非特异性的DNA(例如,超声化的鲑鱼精子DNA)下进行,65℃下0.5× SSC、0.5% SDS洗涤。
期待的是,如果保持探针或引物与目标序列的结合的特异性,低严格杂交条件,例如,低杂交和/或洗涤温度,可以用于鉴定具有低序列相似性程度的相关序列。因而,本发明的核苷酸序列可以利用它们的能力来与DNA、RNA或cDNA片段的互补段选择性地形成双螺旋分子。
核酸分子的片段可以是任何大小的片段,说明性的片段包括SEQ ID NO:1到SEQID NO:80中列出的核酸序列和其互补物的片段。在一个方面,片段可以是15到25、15到30、15到40、15到50、15到100、20到25、20到30、20到40、20到50、20到100、25到30、25到40、25到50、25到100、30到40、30到50和30到100个核苷酸。在另一个方面,片段可以大于10、15、20、25、30、35、40、50、100或250个核苷酸。
其他遗传学标志物可以用于选择具有与本发明的大豆的真菌病抗性相关的QTL的等位基因的植物。公众标志物数据库的实例包括,例如,Soybase,美国农业部农业研究所(Agricultural Research Service,United States Department of Agriculture)。
本发明的遗传学标志物包括“显性”或“共显性”标志物。“共显性标志物”揭示了两种或更多种等位基因的存在(每个二倍体个体两个)。“显性标志物”揭示了仅单个等位基因的存在。显性标志物表型的存在(例如,DNA的条带)是等位基因以纯合或杂合的状态存在的指示。显性标志物表型的缺乏(例如,没有DNA条带)仅是存在“某些其他的”不确定的等位基因的证据。对于其中个体主要是纯合的、基因座主要是二态的群体来说,显性和共显性的标志物是同样地重要的。随着群体变得更为杂合和多等位性,共显性标志物常常变得比显性标志物更代表基因型的信息。
在另一个实施方式中,可以利用与本发明的QTL的等位基因遗传连锁或相关的标志物,例如单序列重复标志物(SSR)、AFLP标志物、RFLP标志物、RAPD标志物、表型标志物、同工酶标志物、单核苷酸多态性(SNP)、插入或删除(Indels)、单特征多态性(SFPs,例如,Borevitz et al. 2003 Gen. Res. 13:513-523中描述的)、微阵列转录作用分布、DNA衍生的序列和RNA衍生的序列。
在一个实施方式中,对于遗传多态性的存在或缺乏的基于核酸的分析可以用于培育群体中种子的选择。用于遗传多态性分析的各种各样的遗传学标志物是可获得的,是本领域技术人员已知的。所述分析可以用于选择包含或与遗传学标志物连锁的基因、QTL、等位基因或基因组区域(单体型)。
在此,核酸分析方法是本领域已知的,包括,但不限于,基于PCR的检测方法(例如,TaqMan分析)、微阵列方法和核酸测序方法。在一个实施方式中,DNA、RNA或cDNA的样品中多态性位点的检测可以通过核酸扩增方法的运用来促成。这些方法特异性地提高跨越多态性位点、或包括所述位点的多核苷酸、以及位于多态性位点的远端或近端的序列的浓度。这样的扩增的分子可以通过凝胶电泳、荧光检测方法或其他手段容易地检测。
实现这样的扩增的方法采用聚合酶链式反应(PCR)(Mullis et al. 1986 ColdSpring Harbor Symp. Quant. Biol. 51:263-273;欧洲专利50,424;欧洲专利84,796;欧洲专利258,017;欧洲专利237,362;欧洲专利201,184;美国专利4,683,202;美国专利4,582,788;和美国专利4,683,194),利用能够与近端序列杂交的引物对,所述近端序列在其双链形式中限定了多态性。
DNA序列中的多态性可以通过本领域公知的多种有效方法,包括但不限于,在美国专利5,468,613和5,217,863;5,210,015;5,876,930;6,030,787;6,004,744;6,013,431;5,595,890;5,762,876;5,945,283;5,468,613;6,090,558;5,800,944;和5,616,464中公开的那些来检测或分型,所有这些通过将它们完全引用来合并在本文中。然而,本发明的组合物和方法可以与任何多态性分型方法一起使用,来对大豆基因组DNA样品中的多态性分型。使用的这些大豆基因组DNA样品包括但不限于,直接从大豆植物分离的大豆基因组DNA、克隆的大豆基因组DNA、或扩增的大豆基因组DNA。
例如,DNA序列中的多态性可以通过与等位基因特异性寡核苷酸(ASO)探针杂交来检测,如美国专利5,468,613和5,217,863中公开的。美国专利5,468,613公开了等位基因特异性寡核苷酸杂交,其中核酸序列中的单个或多个核苷酸变异可以通过一种过程在核酸中检测,在所述过程中含有所述核苷酸变异的序列被扩增,点在膜上,并用标记的序列特异性寡核苷酸探针处理。
目标核酸序列也可以通过如美国专利5,800,944中公开的探针连接方法来检测,其中感兴趣的序列被扩增并与探针杂交,随后连接来检测探针的标记的部分。
微阵列也可以用于多态性检测,其中寡核苷酸探针集以重叠方式组装来呈现单个序列,从而在一个点上目标序列中的差异将引起部分探针杂交(Borevitz et al., GenomeRes. 13:513-523(2003);Cui et al., Bioinformatics 21:3852-3858(2005)。在任一种微阵列上,预期的是将存在复数个目标序列,其可以代表基因和/或非编码区域,其中每个目标序列通过一系列重叠寡核苷酸而不是通过单个探针来呈现。这种平台提供了多种多态性的高通量筛选。单特征多态性(SFP)是通过寡核苷酸阵列中单个探针检测的多态性,其中特征是阵列中的探针。通过基于微阵列的方法的目标序列分型在美国专利6,799,122;6,913,879和 6,996,476中公开。
目标核酸序列也可以通过如美国专利 5,616,464中公开的探针连接方法、采用至少一对探针来检测,所述探针具有与目标核酸序列的邻近部分同源的序列,并具有侧链,所述侧链在所述探针与所述目标核酸序列碱基配对时非共价地结合来形成茎。所述侧链的至少一种具有可光活化的基团,其可以与所述茎的另一侧链成员形成共价的交联。
检测SNP和Indels的其他方法包括单碱基延伸(SBE)方法。SBE方法的实施例包括,但不限于,美国专利6,004,744、6,013,431、5,595,890、5,762,876和5,945,283中公开的那些。SBE方法基于邻近于多态性的核苷酸引物的延伸,来在引物的延伸时掺入可检测的核苷酸残基。在某些实施方式中,SBE方法利用三种合成的寡核苷酸。寡核苷酸中的两种充当PCR引物,并与大豆基因组DNA的基因座的序列互补,所述序列侧翼于含有要分析的多态性的区域。在含有多态性的大豆基因组的区域扩增之后,PCR产物与第三寡核苷酸(称为延伸引物)混合,所述第三寡核苷酸被设计为在存在DNA聚合酶和两种差异化标记的二脱氧核苷三磷酸的情况下与扩增的邻近多态性的DNA杂交。如果模板上存在所述多态性,标记的二脱氧核苷三磷酸之一可以在单碱基链延伸中添加给引物。然后通过测定两种差异的标记物的哪一种被添加到延伸引物中来推断存在的等位基因。纯合的样品将仅引起两种标记的碱基之一被掺入,将仅检测到两种标记物之一。杂合的样品存在两种等位基因,因而将指导两种标记物的掺入(到延伸引物的不同分子中),因而将检测到两种标记物。
在检测多态性的优选的方法中,SNPs和Indels可以通过美国专利5,210,015;5,876,930;和6,030,787中公开的方法来检测,其中寡核苷酸探针具有与探针的5'和3'末端共价连接的5'荧光报告物染料和3'猝灭染料。当探针完整时,报告物染料与猝灭染料的接近引起报告物染料荧光的抑制,例如,通过Forster型能量转移。在PCR正向和反向引物与侧翼于多态性的目标DNA的特异性序列杂交期间,杂交探针与扩增的PCR产物内含有多态性的序列杂交。在随后的PCR循环中,具有5'→3'核酸外切酶活性的DNA聚合酶裂解探针,并从猝灭染料上分离报告物染料,产生报告物的提高的荧光。
对于QTL作图,包括的标志物应当是有来源诊断性的,以作出关于后来的群体的推理。SNP标记物对于作图是理想的,因为特定SNP等位基因来自特定物种中现存群体的独立来源的可能性是非常低的。因而,SNP标志物对于跟踪和辅助QTL的种质渗入,特别是对于单体型来说,是有用的。
其他标志物分子的遗传连锁可以通过基因作图模型来建立,例如,无限制地,Lander等人所报道的侧翼标志物模型(Lander et al. 1989 Genetics, 121:185-199),以及基于其中描述的最大可能性方法和在软件包MAPMAKER/QTL中实现的间隔作图(Lincolnand Lander, Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL, Whitehead Institute for Biomedical Research, Massachusetts,(1990)。其他软件包括Qgene, Version 2.23(1996), Department of Plant Breeding and Biometry, 266Emerson Hall, Cornell University, Ithaca, NY)。使用Qgene软件是特别优选的方法。
与假定没有QTL效应的MLE一起,计算标志物的存在的最大可能性估计(MLE),来避免假阳性。然后根据LOD = log10来计算机会比率的log10(LOD)(假定没有连锁的QTL的QTL/MLE存在的MLE)。LOD值基本上代表了相比QTL的缺乏,更可能出现假定QTL的存在的数据的程度。以给定的置信度,比方说95%来避免假阳性的LOD阈值,将取决于标志物的数量和基因组的长度。表明LOD阈值的图形在Lander et al.(1989)中阐述,由Arús and Moreno-González, Plant Breeding, Hayward, Bosemark, Romagosa(eds.)Chapman & Hall, London,pp. 314-331(1993)进一步描述。
可以使用其他的模型。已经报道了间隔作图的的许多修改版和可选择的方法,包括利用非参数方法。(Kruglyak et al. 1995 Genetics, 139:1421-1428)。也可以使用多重回归方法或模型,其中性状在大量的标志物上回归(Jansen, Biometrics in Plant Breed, van Oijen, Jansen(eds.)Proceedings of the Ninth Meeting of theEucarpia Section Biometrics in Plant Breeding, The Netherlands, pp. 116-124(1994);Weber and Wricke, Advances in Plant Breeding, Blackwell, Berlin, 16(1994))。操作组合了间隔作图和回归分析,从而表型以给定的标志物间隔在单个推定的QTL上、同时在充当“辅助因子”的多个标志物上回归,已经由Jansen等(Jansen et al.1994 Genetics, 136:1447-1455)和Zeng(Zeng 1994 Genetics 136:1457-1468)报道。一般地,辅助因子的使用降低了估计的QTL位置的偏见和采样误差(Utz and Melchinger,Biometrics in Plant Breeding, van Oijen, Jansen(eds.)Proceedings of the NinthMeeting of the Eucarpia Section Biometrics in Plant Breeding, TheNetherlands, pp.195-204(1994),从而改善了QTL作图的精确性和效率(Zeng 1994)。这些模型可以延伸到多环境实验来分析基因型-环境相互作用(Jansen et al. 1995 Theor.Appl. Genet. 91:33-3)。
合适的作图群体的选择对于图谱构建是重要的。合适的作图群体的选择取决于采用的标志物系统的类型(Tanksley et al.,Molecular mapping in plant chromosomes. chromosome structure and function: Impact of new concepts J.P. Gustafson andR. Appels(Eds.)Plenum Press, New York, pp. 157-173(1988))。必需考虑作图群体中使用的亲本的来源(适应的对比外来的)。染色体配对和重组率在远缘杂交(适应的×外来的)中可能被严重地扰动(抑制),一般产生大大降低的连锁距离。当与近缘杂交(适应的×适应的)中的子代相比时,远缘杂交通常将提供分离群体,具有相对大的多态性系列。
F2群体是自我授粉(自交)的第一代。通常,单独的F1植物自交来产生孟德尔氏(1:2:1)式分离所有基因的群体。利用共显性标志物系统从完全分类的F2群体获得最大的遗传信息(Mather, Measurement of Linkage in Heredity: Methuen and Co.,(1938))。对于显性标志物来说,需要子代测试(例如,F3,BCF2)来鉴定杂合子,使得它相当于完全分类的F2群体。然而,这个过程常常是禁止性的,因为后代测定中涉及的成本和时间。F2个体的后代测试常常在图谱构建中使用,其中表型不一致地反映基因型(例如,疾病抗性),或其中性状表达受QTL控制。来自后代测试群体(例如,F3或BCF2)的分离数据可以用于图谱构建。标志物辅助的选择然后可以用于根据标志物-性状图谱相关来交配子代(F2,F3),其中连锁群没有通过重组事件完全地分离(即,最大不平衡)。
重组自交系(RIL)(遗传相关的系;通常>F5,从连续自交的F2系发展向纯合)可以用作作图群体。从显性标志物获得的信息可以通过利用RIL来最大化,因为所有的基因座是纯合的或几乎是纯合的。在紧密连锁的情况下(即,约<10%重组),在RIL群体中评估的显性和共显性标志物提供了相比回交群体中的任一标志物类型更多的每个个体的信息(Reiteret al.1992 Proc. Natl. Acad. Sci.(USA)89:1477-1481)。然而,随着标志物之间的距离变得更大(即,基因座变得更为独立),RIL群体中的信息显著地降低。
回交群体(例如,从成功的品种(轮回亲本)和带有前者中不存在的性状的另一个品种(供体亲本)之间的交配产生的)可以用作作图群体。可以进行对轮回亲本的一系列回交来恢复大部分它的期望的性状。因而,产生了由几乎同轮回亲本一样的个体组成的群体,但是每个个体带有来自供体亲本的基因组区域的改变的数量或嵌合性。如果轮回亲本中的所有基因座是纯合的,以及供体和轮回亲本具有相反的多态性标志物等位基因,回交群体对于作图显性标志物可能是有用的(Reiter et al. 1992)。利用共显性或显性标志物从回交群体获得的信息小于从F2群体获得的,因为每个植物采样了一个、而不是两个重组配子。然而,随着RIL群体中连锁的基因座之间的距离提高(即,约.15%重组),当与RIL相比时,回交群体是更为情报性的(在低标志物饱和度下)。提高的重组可能对于紧密连锁的拆分是有益的,但是在具有低标志物饱和度的图谱的构建中可能是不希望的。
通过多次回交来产生一系列个体而产生的近等基因系(NIL)可以用作作图群体,所述个体除了询问中的性状或基因组区域之外在遗传组成方面几乎是相同的。在用NIL作图时,仅一部分多态的基因座预计被作图到选择的区域。
批量分离子分析(BSA)是为快速鉴定标志物和感兴趣的性状之间的连锁而开发的方法(Michelmore et al. 1991 Proc. Natl. Acad. Sci.(U.S.A.)88:9828-9832)。在BSA中,两种批量的DNA样品从来自单次交配的分离群体中抽取。这些批量含有特定性状(对特定疾病的抗性或易感性)或基因组区域相同、但在不连锁的区域中随机的个体(即,杂合的)。与目标区域不连锁的区域在BSA的许多个体的批量样品之间将不会不同。
本发明的植物可以是来自育种计划的一部分或从育种计划产生的。育种方法的选择取决于植物繁殖的方式、要改善的性状的遗传率、以及商业上使用的栽培种的类型(例如,F1杂交栽培种、纯系栽培种,等等)。栽培种是植物物种的种类或品种,其是通过培育有意地产生或选择并维持的。
如在此使用的,术语子代是指遗传学的后代。本发明提供了通过有性或营养生殖产生的、从种子生长的、从上述植物部分再生的、或从栽培种或子代植物的组织培养物再生的子代。
分子培育常常被称为标志物辅助的选择(MAS)和标志物辅助的培育(MAB),其中MAS是指在分子标志物基因型的基础上进行培育判定,MAB是代表植物育种中分子标志物的运用的通称。在这些类型的分子育种计划中,遗传标志物等位基因可以用于鉴定在一个标志物基因座、几个基因座或单体型上含有期望的基因型的植物,预计其将会将期望的基因型以及期望的表型转移给它们的子代。标志物在植物育种中是高度有用的,因为只要建立了,它们不受环境或上位相互作用的影响。此外,某些类型的标志物适合于高通量检测,允许以低成本的方式快速鉴定。
以下列出了培育本发明的植物的选择的、非限制性方法。育种计划可以利用标志物辅助的选择(MAS)对任何交配的子代来增强。MAS是一种选择过程,其中感兴趣的性状不根据性状本身、而是根据与之连锁的标志物来选择。例如,如果MAS被用于选择患有疾病的个体,疾病的水平不被定量,而是与疾病连锁的标志物等位基因被用于测定疾病存在。假定是,连锁的等位基因与感兴趣的基因和/或数量性状基因座(QTL)相关。MAS对于难以测量的性状、表型昂贵的、展现低遗传率的和/或在晚期植物发育中表达的性状是有用的。要理解的是,本发明的核酸标志物可以用于MAS(培育)计划中。进一步理解的是,任何商业的和非商业的栽培种可以在育种计划中使用。一些因素,例如,出苗活力、营养活力、压力耐受性、疾病抗性、分支、开花、结实率(seed set)、种子大小、种子密度、直立性(standability)、可脱粒性等等,一般将支配所述选择。
对于高度可遗传的性状,在单个位置上评估的优越的个体植物的选择将是有效的,而对于具有低遗传率的性状,选择应当基于从相关植物的科的复本评估中获得的平均值。流行的选择方法通常包括谱系选择、修改的谱系选择、混合选择和轮回选择。在优选的方面,进行回交或轮回育种计划。
遗传的复杂性影响了育种方法的选择。回交育种可以用于将高度可遗传的性状的一个或几个有利的基因转移到期望的栽培种中。这种方法已经广泛地用于培育疾病抗性栽培种。各种轮回选择技术被用于改善由许多基因控制的数量性遗传的性状。
培育系可以在代表商业目标区域的环境中测试和与合适的标准物比较两个或更多个世代。最好的系是新的商业栽培种的候选物;在性状方面仍然缺陷的那些可以用作亲本来产生用于进一步选择的新的群体。
系谱育种和轮回选择育种方法可以用于从培育群体开发栽培种。育种计划将来自两个或更多个栽培种或各种广泛来源的期望的性状组合到培育库中,通过自交和期望的表型的选择从所述培育库中开发栽培种。可以评估新的栽培种来确定其具有商业潜力。
回交育种已经被用于将简单地遗传的、高度可遗传的性状转移到期望的纯合栽培种或自交系中,其是轮回亲本。要转移的性状的来源被称为供体亲本。在初始的交配中,保持了供体亲本的表型的个体被选择,并与轮回亲本重复地交配(回交)。产生的植物预计具有轮回亲本(例如,栽培种)的大多数特质,此外,期望的性状从供体亲本转移。
单籽传操作严格地说是指种植分离群体,每个植物收获一个种子的样品,利用一个种子的样品来种植下一代。当群体从F2推进到期望的近交水平时,系所衍生于的植物将各自追查到不同的F2个体。由于某些种子发芽或某些植物产生至少一个种子的失败,每个世代群体中植物的数量降低。结果,当世代推进完成时,不是所有的在群体中原始采样的F2植物都被子代代表。
通常用于不同性状和作物的其他育种方法的描述可以在几本参考书之一中找到(Allard, “Principles of Plant Breeding,” John Wiley & Sons, NY, U. of CA,Davis, CA, 50-98, 1960;Simmonds, “Principles of crop improvement,” Longman,Inc., NY, 369-399, 1979;Sneepand Hendriksen, “Plant breeding perspectives,”Wageningen(ed), Center for Agricultural Publishing and Documentation, 1979;Fehr, In: Soybeans: Improvement, Production and Uses, 2nd Edition,Monograph., 16:249, 1987;Fehr, “Principles of variety development,” Theory and Technique,(Vol. 1)and Crop Species Soybean(Vol. 2), Iowa State Univ.,Macmillan Pub. Co., NY, 360-376, 1987)。
对传统的QTL作图的替代涉及通过对比单独的标志物对单体型作图来实现更高的分辨率(Fan et al. 2006 Genetics 172:663-686)。这种方法追踪称为单体型的DNA块,如多态标志物所定义的,其在作图群体中被假定是血统一致的。这种假定产生了更大的有效样品大小,提供了QTL的更大的分辨率。测定表型和基因型之间的相关性的统计显著性的方法,在单体型的情况下,可以通过本领域已知的任何统计测试,使用需要的任何公认的统计显著性阈值来测定。特定方法和显著性的阈值的应用是本领域普通技术人员的能力之内的。
进一步理解的是,本发明提供了包含本发明的核酸分子的细菌、病毒、微生物、昆虫、哺乳动物和植物细胞。
如在此使用的,“核酸分子”,其是天然发生的分子或另外地可以是“基本上纯化的”,如果希望,是指从在其天然状态下与之通常相关的基本上所有其他分子中分离的分子。更优选的,基本上纯化的分子是制品中存在的优势物质。基本上纯化的分子可以是大于约60%地没有、优选的约75%地没有、更优选的约90%地没有、以及最优选的约95%地没有天然混合物中存在的其他分子(不包括溶剂)。术语“基本上纯化的的”不意图涵盖以它们的天然状态存在的分子。
对于结构性特质,例如,核酸与另一个核酸分子杂交的能力,或蛋白质被抗体结合(或与其他分子竞争这样的结合)的能力,本发明的试剂优选的是“生物学活性的”。做为选择,这样的特质可以是催化的,因而涉及试剂介导化学反应或应答的能力。
本发明的试剂也可以是重组的。如在此使用的,术语重组是指任何试剂(例如,DNA、肽,等等),其间接地来自或产生于核酸分子的人类操作。
本发明的试剂可以用便于试剂的检测的试剂来标记(例如,荧光标记物(Proberet al. 1987 Science 238:336-340;Albarella et al.,欧洲专利144914)、化学标记物(Sheldon et al.,美国专利4,582,789;Albarella et al.,美国专利4,563,417)、修饰的碱基(Miyoshi et al.,欧洲专利119448)。
现在一般性地描述了本发明,通过参考以下的实施例将更容易地理解本发明,实施例通过举例的方式提供,而不意图是本发明的限制,除非指明了。
实施例
实施例1. 利用离脱叶分析对大豆登记物的ASR抗性的测试
四十种推定的ASR抗性登记物被筛选ASR抗性。对ASR的抗性的叶片分析对这40个系进行,适合的易感的登记物作为对照,如美国专利申请11/805667中描述的。植物按照从1到5的数字分值表明的抗性程度来计分,1-是免疫的,2-展现小于叶面积的约50%的红色/褐色病变,3-展现大于叶面积的约50%的红色/褐色病变,4-展现小于叶面积的约50% 的棕色病变,5-展现大于叶面积的约50%的棕色病变,即,完全易感的。当用来自密苏里州东南部的豆薯层锈菌MBH1的北美分离物感染时,对于登记号PI291309C、成熟的-组-2系,以及对于PI507009、成熟的-组-6系,获得在多个测试中平均锈病严重度分值为1.5。
PI291309C和PI507009各自与大豆系MV0079杂交来产生F2作图群体,其个体用104种SNP来基因分型,并测试ASR抗性。SNP根据亲本的指纹图谱分布和基因组覆盖度来选择。在PI291309C中发现的ASR抗性基因座,称为ASR抗性基因座14,被作图到靠近Rpp1基因的公众大豆遗传连锁图谱上的连锁群G(附图1)。PI291309C中表征的ASR抗性基因座在单体型基础上不同于含有称为Rpp1的ASR抗性基因座的大豆系,以及在对密苏里州东南部豆薯层锈菌菌株MBH1的表型应答方面不同。发现三种SNP标志物,NS0095012(P < 0.0050)和NS0102630和NS0119675(每一个的P < 0.0010)处于与ASR抗性基因座14疾病表型应答的高度连锁不平衡中,因而与ASR抗性基因座14相关。所有三种SNP标志物被鉴定为在监视ASR抗性基因座14的阳性种质渗入方面是有用的。SNP标志物NS0095012相应于SEQ ID NO:1;NS0119675相应于SEQ ID NO:2;以及NS0102630相应于SEQ ID NO:3。
ASR抗性基因座15在PI507009中发现,作图到公众大豆遗传连锁图谱的连锁群C2(附图2)。发现三种SNP标志物,NS0127833(R Sq > 0.050)和NS0118716和NS0093385(每一个的R Sq > 0.200)处于与ASR抗性基因座15疾病表型应答的高度连锁不平衡中,因而与ASR抗性基因座15相关。所有三种SNP标志物被鉴定为在监视ASR抗性基因座15的阳性种质渗入方面是有用的。SNP标志物NS0093385相应于SEQ ID NO:4;NS0118716相应于SEQ IDNO:5;以及NS0127833相应于SEQ ID NO:6。
ASR抗性基因座16在PI507009中发现,作图到公众大豆遗传连锁图谱的连锁群D2(附图3)。发现两种SNP标志物,NS0118536(R Sq > 0.050)和NS0113966(R Sq > 0.150)处于与ASR抗性基因座16疾病表型应答的连锁不平衡中,因而与ASR抗性基因座16相关。两种SNP标志物被鉴定为在监视ASR抗性基因座16的种质渗入方面是有用的。SNP标志物NS0113966相应于SEQ ID NO:7;NS0118536相应于SEQ ID NO:8。表1列出了SNP标志物、它们的染色体位置、SNP位置、抗性等位基因和每种SNP的抗性等位基因的SEQ ID NO:编号。
实施例2. 检测ASR抗性的示范性的标志物分析
在一个实施方式中,DNA、RNA或cDNA的样品中多态性位点的检测可以通过核酸扩增方法的运用来促成。这些方法特异性地提高跨越多态性位点、或包括所述位点的多核苷酸、以及位于多态性位点的远端或近端的序列的浓度。这样的扩增的分子可以通过凝胶电泳、荧光检测方法或其他手段容易地检测。用于扩增和检测与ASR抗性相关的基因组区域的示范性的引物和探针在表2中给出。
实施例3. 对检测具有ASR抗性基因座的大豆植物有用的寡核苷酸杂交探针
寡核苷酸也可以用于利用基于杂交的SNP检测方法来检测或分型与在此公开的ASR抗性基因座相关的多态性。提供了能够与包括多态性的分离的核酸序列杂交的示范性的寡核苷酸。设计以实验上确定的严格度来辨别在此提出的多态性的等位状态的分析,处在本领域技术人员的能力之内。示范性的分析包括Southern印迹、Northern印迹、微阵列、原位杂交和基于杂交的多态性检测的其他方法。用于基于杂交的SNP检测的示范性的寡核苷酸在表3中提供。这些寡核苷酸可以用放射性标记物、荧光团或其他化学发光的手段可检测地标记,来帮助利用本发明的方法、与来自一种或更多种大豆植物的基因组的或扩增的核酸的样品的杂交的检测。
实施例4. 对于通过单碱基延伸方法检测具有ASR抗性基因座的大豆植物有用的寡核苷酸探针
寡核苷酸也可以用于通过基于单碱基延伸(SBE)的SNP检测方法来检测或分型与在此公开ASR抗性相关的多态性。用于基于SBE的SNP检测的示范性的寡核苷酸在表3中提供。SBE方法基于与邻近多态性的序列杂交的核苷酸引物的延伸,来在引物的延伸时掺入可检测的核苷酸残基。还预期的是,SBE方法可以使用三种合成的寡核苷酸。寡核苷酸的两种充当PCR引物,并与基因座的序列互补,所述序列侧翼于含有要分析的多态性的区域。可以用于分型本发明中公开的多态性的示范性的PCR引物在表4中标记为“正向引物SEQ ID”和“反向引物SEQ ID”的列中提供。在含有多态性的区域的扩增之后,PCR产物与延伸引物杂交,所述延伸引物与邻近于所述多态性的扩增的DNA退火。然后提供 DNA聚合酶和两种差异化标记的二脱氧核苷三磷酸。如果模板上存在所述多态性,标记的二脱氧核苷三磷酸之一可以在单碱基链延伸中添加给引物。然后通过测定两种差异的标记物的哪一种被添加到延伸引物中来推断存在的等位基因。纯合的样品将仅引起两种标记的碱基之一被掺入,将仅检测到两种标记物之一。杂合的样品存在两种等位基因,因而将指导两种标记物的掺入(到延伸引物的不同分子中),因而将检测到两种标记物。
实施例5. 标志物向候选大豆系的筛选的掺入。
ASR是侵入性病原体,可以快速地发展。 ASR在南美洲和中国战胜了单个的抗性基因。因此,关键的是堆叠抗性基因来提供更广泛的更耐久的抗性。必需鉴定新的抗性来源以促进堆叠抗性基因座。已经从通过离脱叶技术(美国申请11/805667)筛选ASR抗性的、来自日本、中国、越南和印度尼西亚的超过5000个PIs鉴定了许多抗性PIs。抗性种质必须优先考虑进一步表征,例如分子作图。
为了优先考虑研究工作,对早先鉴定的ASR抗性基因座Rpp1、Rpp2、Rpp3和Rpp4筛选了新的抗性PIs。利用与Rpp基因相关的诊断性SNP(美国申请11805667),分析来自新的抗性PIs的叶组织的DNA,来确定这些PIs是否含有与Rpp1、Rpp2、Rpp3和Rpp4相应的单体型。具有不与Rpp1、Rpp2、Rpp3和Rpp4相关的单体型、对于任何层锈菌属分离物或任何地理学的有利表型的PIs被给予群体发育以及抗性基因座的分子作图的优先级。此外,对于具体的地理的或特定的层锈菌属分离物,具有匹配表征了的Rpp来源的单体型的单体型的PIs同样给予群体发展和未表征的抗性决定簇的作图的优先权,所述表征了的Rpp来源与具有有利表型的未表征区域相关。已知单体型的快速筛选因而具有的优点是,最小化在可能包括早先刚表征的基因座的候选物的生物分析上消耗的工作量,容许工作集中于早先未表征的新的候选物。技术人员将立即看出,单体型筛选过程可以包括与表征的抗性表型相关的、以及不与未表征的抗性区域连锁的任何已知的单体型,包括包含了本发明中公开的标志物的那些单体型。
实施例6. 对层锈菌属的美国和美国外的种类的差异化响应的种质杂交测试。
对于与对层锈菌属的不同种类的抗性的差异化联系,本发明的ASR抗性基因座和标志物对杂交测试单体型是有用的。与针对北美分离物相比,早先描述的Rpp抗性基因赋予针对层锈菌属南美分离物的较少的抗性;然而,LG C2看起来具有接近NS0137477的有利的单体型(AA,美国申请11805667中的SEQ ID 90),其确认了对南美层锈菌属分离物的耐受性。因此,在这个SNP处具有有利的等位基因,或在LG C2的远端区域中含有稀有的SNP等位基因的PIs,对于在巴西和全世界具有ASR疾病压力的其他地理位置中的国际性测试给予优先权。另外,发现对层锈菌属的北美分离物有抗性的PIs,对于缺乏对层锈菌属北美分离物的抗性的PIs的国际测试给予优先权,虽然最后测试了所有的,以确保不错过对层锈菌属的任何美国以外的分离物的抗性、耐受性或免疫性的可能的资源。随着这些PIs的国际测试的完成,发展了对全世界的层锈菌属分离物的抗性分布,本发明的分子标志物和单体型提供了在区域基础上描述相应PIs、以及相关的PIs的重要性的基础。在给定位置具有有利的表型的PIs在群体发展和作图工作中使用,以鉴定与抗性表型相关的分子标志物。
实施例7. 多个抗性基因座向大豆种质中的积累。
在其他方面,本发明的方法和组合物对于多种抗性基因座向单独的系中的积累是有用的。在本发明的优选的实施方式中,产生了群体,其包含来自ASR抗性的新来源的一种或更多种抗性基因座,所述基因座为了在北美洲和南美洲的测试被种质渗入到优选的遗传背景中。一旦发展了ASR抗性群体,通过回交固定了ASR抗性基因座和选择了农学上优良的遗传性,国内地和国际地评估近等基因系(NILs)。同时,具有独特的ASR抗性单体型的NIL被互交和/或正向培育来堆叠两种或更多种有利的ASR等位基因。这些单独的和堆叠的组合允许为给定的地理区域开发定制的和耐久的ASR抗性品种。当层锈菌属分离物在给定的区域中改变时,单个NIL也充当差异物,并提供接下来应当部署哪种抗性资源的了解。对于这些结果,本发明的标志物的使用对本领域技术人员将是显而易见的。例如,两种抗性系(例如,PI291309C和PI507009),或具有包含ASR抗性基因座14、ASR抗性基因座15和ASR抗性基因座16的ASR抗性的系,是选自包含ASR抗性基因座14、ASR抗性基因座15和ASR抗性基因座16的组的三种ASR抗性基因座的供体亲本,通过用SEQ ID NO:1-8指示的分子标志物来筛选、以及选择带有一种或更多种所述分子标志物的所述抗性等位基因、呈现一种或更多种所述ASR抗性基因座的系来监视,其中ASR抗性基因座14的SNP标志物选自由NS0095012(SEQ ID1)、NS0119675(SEQ ID 2)和NS0102630(SEQ ID 3)构成的组,每个标志物的抗性等位基因在表3中标明。并且,ASR抗性基因座15的一种或更多种SNP标志物选自由NS0093385(SEQ ID4)、NS0118716(SEQ ID 5)和NS0127833(SEQ ID 6)构成的组,每个标志物的抗性等位基因在表3中标明。并且,ASR抗性基因座16的一种或更多种SNP标志物选自由NS0113966(SEQ ID7)和NS0118536(SEQ ID 8)构成的组,每个标志物的抗性等位基因在表3中标明。对本领域技术人员明显的是,这样的方法此外可以用于将本发明的一种或更多种抗性基因座与本领域已知的一种或更多种抗性基因座组合。
一种或更多种抗性基因座的种质渗入通过对轮回亲本的重复回交、伴随着利用上述标志物选择以保持来自供体亲体的一种或更多种ASR抗性基因座来实现。这种回交操作在品种开发的任何阶段实现,与优越的农学特征或一种或更多种感兴趣的性状的培育一起发生,所述感兴趣的性状包括转基因的和非转基因的性状。
做为选择,采用正向培育方法,其中在与敏感的亲本杂交之后可以监视一种或更多种ASR抗性基因座的成功的种质渗入,随后的世代对于一种或更多种ASR抗性基因座、以及对于一种或更多种感兴趣的其他性状,包括转基因和非转基因的性状来基因分型。
在本说明书中引用的所有专利和非专利文献通过完全引用来合并在本文中,其程度与特定的或单独的指示通过引用来合并每个单独的个体相同。可从万维网的某些互联网地址获得的在此引用的文件也通过完全引用合并在本文中。在此通过它们的“NCBI登记号”引证的某些生物学序列可以通过ncbi.nlm.nih.gov的万维网上的国家生物技术信息学中心来获取。
可以对在此描述和说明的方法进行各种修改而不背离本发明的范围,期望的是,在前述的说明书中含有的、或在附图中显示的所有内容应当被看作是说明性的而不是限制性的。已经说明和描述了本发明的原理,对本领域的技术人员显而易见的是,可以在安排和细节上对本发明进行修改而不背离这种原理。安排和细节中的所有这样的修改被认为属于附随的权利要求的精神和范围之内。因而,本发明的广度和范围不应由任何上述的示范性的实施方式来限制,而应当仅根据以下附加的权利要求和它们的等价物来限定。
Claims (29)
1.一种生产亚洲大豆锈病(ASR)抗性大豆植物的方法,包括:
a. 进行标志物辅助的选择来鉴定具有ASR抗性基因座15的大豆植物,其中ASR抗性基因座15可以从PI507009获得,并且其中所述标志物辅助的选择包括使用与选自以下标志物中的一种或多种连锁的标志物分子:
能够由SEQ ID NO: 76的核酸序列确定的NS0093385、能够由SEQ ID NO: 77的核酸序列确定的NS0118716、以及能够由SEQ ID NO: 78的核酸序列确定的 NS0127833;和
b. 产生所述大豆植物的子代,其中所述子代具有所述ASR抗性基因座15并展现了对ASR的至少部分抗性。
2.权利要求1的方法,其中所述ASR抗性基因座15是可以通过选自NS0093385、NS0118716和NS0127833的一种或更多种标志物鉴定的。
3.权利要求1的方法,其中所述标志物辅助的选择利用选自由单碱基延伸(SBE)、等位基因特异性引物延伸测序(ASPE)、DNA测序、RNA测序、基于微阵列的分析、普通PCR、等位基因特异性延伸、杂交、质谱法、连接、延伸-连接以及Flap核酸内切酶介导的分析构成的组的分析来进行。
4.权利要求1的方法,其中所述方法产生ASR抗性优良大豆植物。
5.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物对豆薯层锈菌或山马蝗层锈菌具有抗性。
6.权利要求1-4中任一项的方法,其中所述标志物分子与所述ASR抗性基因座15遗传连锁并且具有2或更大的机会比率的log10(LOD分值)。
7.权利要求6的方法,其中所述LOD分值大于10。
8.权利要求6的方法,其中所述LOD分值为3或更大。
9.权利要求6的方法,其中所述LOD分值为4或更大。
10.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的30 cM之内。
11.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的15cM之内。
12.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的5cM之内。
13.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的1cM之内。
14.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的1Mb之内。
15.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的100Kb之内。
16.权利要求6的方法,其中所述标志物分子位于ASR抗性基因座15的1Kb之内。
17.权利要求1-4中任一项的方法,其中所述标志物分子位于选自以下的标志物的15cM之内:NS0093385、NS0118716和NS0127833。
18.权利要求1-4中任一项的方法,其中所述标志物分子位于选自以下的标志物的5cM之内:NS0093385、NS0118716和NS0127833。
19.权利要求1-4中任一项的方法,其中所述标志物分子位于选自以下的标志物的1cM之内:NS0093385、NS0118716和NS0127833。
20.权利要求1-4中任一项的方法,其中所述标志物分子选自:NS0093385、NS0118716和NS0127833。
21.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物展现对ASR的至少部分抗性并且包含具有选自以下序列的抗性等位基因:SEQ ID NOs: 76、77和78。
22.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物展现对ASR诱导真菌的至少一个种类的至少部分抗性。
23.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物还包含ASR抗性基因座14和16中的至少一种。
24.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物还包含一种或多种选自以下的性状:除草剂耐受性、提高的产量、昆虫控制、真菌病抗性、病毒抗性、线虫抗性、细菌病抗性、支原体病抗性、修饰的油生产、高油生产、高蛋白质生产、萌芽和幼苗生长控制、增强的动物和人类营养、低棉籽糖、环境压力抗性、提高的可消化性、产生工业酶、产生药物蛋白质、产生药物肽、产生药物小分子、改进的加工性状、改进的风味、改进的氮固定、改进的杂交种子生产、降低的变应原性、和改进的生物聚合物和生物燃料产量。
25.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物对选自以下的除草剂具有抗性:草甘膦、麦草畏、草铵膦、磺酰脲、溴苯腈、2,4-二氯苯氧乙酸、和达草灭。
26.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物为转基因的。
27.权利要求1-4中任一项的方法,其中由所述方法产生的所述大豆植物的ASR抗性主要来源于ASR抗性基因座15。
28.一种生产亚洲大豆锈病(ASR)抗性大豆植物的方法,包括:
a. 通过检测连锁群C2中的分子标记使用标志物辅助的选择从多个大豆植物中选择植物,其中多个大豆植物来源于携带ASR抗性的大豆植物,并且其中所述分子标志物来自侧翼是ASR抗性基因座15和SNP标志物的染色体区域,所述SNP标志物选自NS0093385、NS0118716和NS0127833;并且
b. 由选择的植物产生子代植物。
29.一种生产包含亚洲大豆锈病(ASR)抗性基因座15的大豆植物群体的方法,其中所述ASR抗性基因座15还存在于大豆登记号PI507009中,并且可通过选自以下标志物中的一种或多种来鉴定:NS0093385、NS0118716和NS0127833,并且其中所述标志物NS0093385、NS0118716和NS0127833各自的抗性等位基因分别包含SEQ ID NOs: 76、77和78,所述方法包括以下步骤:
a) 在选自NS0093385、NS0118716和NS0127833的标志物的15cM内的标志物基因座处对大豆植物第一群体进行基因分型,所述群体含有所述ASR抗性基因座15;
b) 从所述第一群体中选出一个或多个含有所述ASR抗性基因座15的被鉴定的大豆植物;和
c) 从所述被选出的大豆植物产生第二群体,从而产生包含所述ASR抗性基因座15的大豆植物群体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4747908P | 2008-04-24 | 2008-04-24 | |
US61/047479 | 2008-04-24 | ||
CN200980124059.9A CN102098909B (zh) | 2008-04-24 | 2009-04-22 | 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980124059.9A Division CN102098909B (zh) | 2008-04-24 | 2009-04-22 | 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104388568A CN104388568A (zh) | 2015-03-04 |
CN104388568B true CN104388568B (zh) | 2017-04-12 |
Family
ID=41020979
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980124059.9A Active CN102098909B (zh) | 2008-04-24 | 2009-04-22 | 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 |
CN201410717972.2A Active CN104388568B (zh) | 2008-04-24 | 2009-04-22 | 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980124059.9A Active CN102098909B (zh) | 2008-04-24 | 2009-04-22 | 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 |
Country Status (6)
Country | Link |
---|---|
US (6) | US8669414B2 (zh) |
EP (1) | EP2271201B1 (zh) |
CN (2) | CN102098909B (zh) |
AR (3) | AR071218A1 (zh) |
BR (1) | BRPI0911551B8 (zh) |
WO (1) | WO2009132089A2 (zh) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010009404A2 (en) | 2008-07-18 | 2010-01-21 | Syngenta Participations Ag | Markers associated with soybean rust resistance and methods of use therefor |
CN102811617A (zh) | 2010-01-22 | 2012-12-05 | 拜耳知识产权有限责任公司 | 杀螨和/或杀虫活性物质结合物 |
CN103717076B (zh) | 2011-08-10 | 2016-04-13 | 拜耳知识产权股份有限公司 | 含有特定特特拉姆酸衍生物的活性化合物组合物 |
CN102409089B (zh) * | 2011-10-08 | 2017-04-19 | 深圳华大基因股份有限公司 | 检测dna样品中预定位点的突变的试剂盒、方法及应用 |
EP3041338B1 (en) | 2013-09-04 | 2019-12-11 | Indigo AG, Inc. | Agricultural endophyte-plant compositions, and methods of use |
US20160272997A1 (en) | 2013-10-25 | 2016-09-22 | Pioneer Hi-Bred International, Inc. | Stem canker tolerant soybeans and methods of use |
US10246754B1 (en) | 2014-04-25 | 2019-04-02 | Syngenta Participations Ag | Molecular markers linked to disease resistance in soybean |
CN104164502B (zh) * | 2014-08-04 | 2015-10-28 | 中国农业科学院油料作物研究所 | 一个与大豆抗锈病基因位点紧密连锁的分子标记及应用 |
CN104232775B (zh) * | 2014-09-18 | 2016-08-24 | 中国农业科学院油料作物研究所 | 一个与大豆抗锈病基因位点紧密连锁的分子标记GmSSR18-40及其应用 |
US20160355840A1 (en) * | 2015-06-03 | 2016-12-08 | E I Du Pont De Nemours And Company | Methods of identifying and selecting maize plants with resistance to anthracnose stalk rot |
CN105525000B (zh) * | 2016-01-20 | 2021-03-19 | 江西师范大学 | 一种基于QTL-seq发掘东乡野生稻耐冷基因的方法 |
US11096344B2 (en) | 2016-02-05 | 2021-08-24 | Pioneer Hi-Bred International, Inc. | Genetic loci associated with brown stem rot resistance in soybean and methods of use |
AR108695A1 (es) * | 2016-06-09 | 2018-09-19 | Syngenta Participations Ag | Loci genéticos asociados con resistencia a enfermedades en soja |
CN106755561B (zh) * | 2017-03-30 | 2020-09-04 | 吉林省农业科学院 | 一种与大豆根干重相关的qtl、snp分子标记及应用 |
EP3714058A4 (en) * | 2017-11-21 | 2022-04-20 | Syngenta Participations AG | NEW RESISTANCE GENES ASSOCIATED WITH SOYBEAN DISEASE RESISTANCE |
US11353353B2 (en) | 2018-12-18 | 2022-06-07 | Chad Daloia | Determining a change in volume of fluid added or removed from a vessel |
CN112239491A (zh) * | 2019-07-01 | 2021-01-19 | 中国农业科学院油料作物研究所 | 与抗锈病相关的蛋白及其编码基因与应用 |
AR119542A1 (es) * | 2019-07-31 | 2021-12-29 | Syngenta Crop Protection Ag | Locus genéticos asociados con la resistencia a enfermedades en la soja |
CA3143917A1 (en) * | 2019-08-01 | 2021-02-04 | Syngenta Crop Protection Ag | Novel resistance genes associated with disease resistance in soybeans |
CN110910959B (zh) * | 2019-11-04 | 2022-08-30 | 中国水稻研究所 | 群体遗传进化图谱及其构建方法 |
CA3164582A1 (en) * | 2020-01-27 | 2021-08-05 | Jr. Thomas Joseph Curley | Novel genetic loci associated with disease resistance in soybeans |
CN111378778B (zh) * | 2020-04-08 | 2023-03-31 | 河北省农林科学院粮油作物研究所 | 与豇豆抗豆象qtl位点紧密连锁的分子标记及其在豇豆抗豆象分子标记辅助育种中的应用 |
WO2024018016A1 (en) | 2022-07-21 | 2024-01-25 | Syngenta Crop Protection Ag | Crystalline forms of 1,2,4-oxadiazole fungicides |
GB202214202D0 (en) | 2022-09-28 | 2022-11-09 | Syngenta Crop Protection Ag | Agricultural methods |
GB202214203D0 (en) | 2022-09-28 | 2022-11-09 | Syngenta Crop Protection Ag | Fungicidal compositions |
WO2024100069A1 (en) | 2022-11-08 | 2024-05-16 | Syngenta Crop Protection Ag | Microbiocidal pyridine derivatives |
WO2024107673A1 (en) * | 2022-11-15 | 2024-05-23 | Two Blades Foundation | Asian soybean rust resistance genes |
CN116555471B (zh) * | 2023-04-17 | 2024-07-19 | 河北省农林科学院粮油作物研究所 | 用于鉴定大豆耐密植的InDel分子标记及其应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060288444A1 (en) * | 2004-08-13 | 2006-12-21 | Mccarroll Robert | Soybean polymorphisms and methods of genotyping |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57501692A (zh) | 1980-09-24 | 1982-09-16 | ||
US4582788A (en) | 1982-01-22 | 1986-04-15 | Cetus Corporation | HLA typing method and cDNA probes used therein |
DE3381518D1 (de) | 1982-01-22 | 1990-06-07 | Cetus Corp | Verfahren zur charakterisierung von hla und die darin benutzten cdns-testmittel. |
US4605735A (en) | 1983-02-14 | 1986-08-12 | Wakunaga Seiyaku Kabushiki Kaisha | Oligonucleotide derivatives |
US4582789A (en) | 1984-03-21 | 1986-04-15 | Cetus Corporation | Process for labeling nucleic acids using psoralen derivatives |
US4683194A (en) | 1984-05-29 | 1987-07-28 | Cetus Corporation | Method for detection of polymorphic restriction sites and nucleic acid sequences |
US4563417A (en) | 1984-08-31 | 1986-01-07 | Miles Laboratories, Inc. | Nucleic acid hybridization assay employing antibodies to intercalation complexes |
US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
US4937970A (en) | 1985-09-20 | 1990-07-03 | Lubrizol Genetics, Inc. | In vitro screening for and selection of glycine max resistant to phialophora gregata |
CA1284931C (en) | 1986-03-13 | 1991-06-18 | Henry A. Erlich | Process for detecting specific nucleotide variations and genetic polymorphisms present in nucleic acids |
CA1338457C (en) | 1986-08-22 | 1996-07-16 | Henry A. Erlich | Purified thermostable enzyme |
US5217863A (en) | 1988-02-04 | 1993-06-08 | Medical Research Council | Detection of mutations in nucleic acids |
IE61148B1 (en) | 1988-03-10 | 1994-10-05 | Ici Plc | Method of detecting nucleotide sequences |
US6013431A (en) | 1990-02-16 | 2000-01-11 | Molecular Tool, Inc. | Method for determining specific nucleotide variations by primer extension in the presence of mixture of labeled nucleotides and terminators |
US5210015A (en) | 1990-08-06 | 1993-05-11 | Hoffman-La Roche Inc. | Homogeneous assay system using the nuclease activity of a nucleic acid polymerase |
US5762876A (en) | 1991-03-05 | 1998-06-09 | Molecular Tool, Inc. | Automatic genotype determination |
US6004744A (en) | 1991-03-05 | 1999-12-21 | Molecular Tool, Inc. | Method for determining nucleotide identity through extension of immobilized primer |
US5616464A (en) | 1994-12-27 | 1997-04-01 | Naxcor | Nucleic acid sequence detection employing amplification probes |
US5538848A (en) | 1994-11-16 | 1996-07-23 | Applied Biosystems Division, Perkin-Elmer Corp. | Method for detecting nucleic acid amplification using self-quenching fluorescence probe |
US5547781A (en) | 1994-03-02 | 1996-08-20 | Micron Communications, Inc. | Button-type battery with improved separator and gasket construction |
US5945283A (en) | 1995-12-18 | 1999-08-31 | Washington University | Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer |
WO1999014375A2 (en) | 1997-09-19 | 1999-03-25 | Genetrace Systems, Inc. | Dna typing by mass spectrometry with polymorphic dna repeat markers |
US20040031072A1 (en) | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
US6913879B1 (en) | 2000-07-10 | 2005-07-05 | Telechem International Inc. | Microarray method of genotyping multiple samples at multiple LOCI |
US7097975B1 (en) | 2001-07-19 | 2006-08-29 | The United States Of America As Represented By The Secretary Of Agriculture | PCR methods for the identification and detection of the soybean rust pathogen Phakopsora pachyrhizi |
US6799122B2 (en) | 2001-08-31 | 2004-09-28 | Conagra Grocery Products Company | Method for identifying polymorphic markers in a population |
US20050204780A1 (en) | 2002-05-09 | 2005-09-22 | The Furukawa Electric Co., Ltd. | Method for manufacturing optical fiber |
US6996476B2 (en) | 2003-11-07 | 2006-02-07 | University Of North Carolina At Charlotte | Methods and systems for gene expression array analysis |
US7328230B2 (en) | 2004-03-26 | 2008-02-05 | Intel Corporation | SIMD four-data element average instruction |
US7642403B2 (en) | 2004-08-23 | 2010-01-05 | Pioneer Hi-Bred International, Inc. | Marker mapping and resistance gene associations in soybean |
MX2008014925A (es) | 2006-05-25 | 2009-03-05 | Monsanto Technology Llc | Metodo para identificar loci de rasgos cuantitativos resistentes a enfermedades en la soya, y composiciones de los mismos. |
-
2009
- 2009-04-22 BR BRPI0911551A patent/BRPI0911551B8/pt active IP Right Grant
- 2009-04-22 CN CN200980124059.9A patent/CN102098909B/zh active Active
- 2009-04-22 EP EP09734233.1A patent/EP2271201B1/en active Active
- 2009-04-22 US US12/988,424 patent/US8669414B2/en active Active
- 2009-04-22 WO PCT/US2009/041390 patent/WO2009132089A2/en active Application Filing
- 2009-04-22 CN CN201410717972.2A patent/CN104388568B/zh active Active
- 2009-04-24 AR ARP090101465A patent/AR071218A1/es active IP Right Grant
-
2014
- 2014-01-16 US US14/157,176 patent/US8796503B2/en active Active
- 2014-06-24 US US14/313,228 patent/US8921645B2/en active Active
- 2014-11-25 US US14/553,465 patent/US9332698B2/en active Active
-
2016
- 2016-04-07 US US15/093,686 patent/US9681616B2/en active Active
-
2017
- 2017-06-05 US US15/614,151 patent/US10477787B2/en active Active
-
2018
- 2018-03-02 AR ARP180100498A patent/AR111117A2/es unknown
- 2018-03-02 AR ARP180100499A patent/AR111118A2/es unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060288444A1 (en) * | 2004-08-13 | 2006-12-21 | Mccarroll Robert | Soybean polymorphisms and methods of genotyping |
Non-Patent Citations (2)
Title |
---|
Map Location of the Rpp1 Locus That Confers Resistance to Soybean Rust in Soybean;Hyten D.L.et al.;《CROP SCIENCE》;20070430;第47卷;837-840 * |
Mapping and Confirmation of the‘Hyuuga’ Red-Brown Lesion Resistance Gene for Asian Soybean Rust;Monteros M.J. et al.;《CROP SCIENCE》;20070430;第47卷;829 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009132089A9 (en) | 2009-12-30 |
US8669414B2 (en) | 2014-03-11 |
EP2271201B1 (en) | 2014-07-09 |
CN102098909B (zh) | 2014-12-31 |
US8796503B2 (en) | 2014-08-05 |
US9681616B2 (en) | 2017-06-20 |
US20110055960A1 (en) | 2011-03-03 |
AR111117A2 (es) | 2019-06-05 |
AR111118A2 (es) | 2019-06-05 |
WO2009132089A3 (en) | 2010-12-23 |
US20140137299A1 (en) | 2014-05-15 |
US20150135359A1 (en) | 2015-05-14 |
WO2009132089A2 (en) | 2009-10-29 |
US9332698B2 (en) | 2016-05-10 |
US20170273260A1 (en) | 2017-09-28 |
US8921645B2 (en) | 2014-12-30 |
AR071218A1 (es) | 2010-06-02 |
US20160212955A1 (en) | 2016-07-28 |
BRPI0911551A2 (pt) | 2015-08-04 |
US20140325695A1 (en) | 2014-10-30 |
CN104388568A (zh) | 2015-03-04 |
BRPI0911551B8 (pt) | 2023-10-03 |
BRPI0911551B1 (pt) | 2023-08-22 |
EP2271201A2 (en) | 2011-01-12 |
CN102098909A (zh) | 2011-06-15 |
US10477787B2 (en) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104388568B (zh) | 鉴定大豆中亚洲大豆锈病抗性数量性状基因座的方法和其组合物 | |
CN101821409B (zh) | 用于优选性状育种的方法和组合物 | |
CN103725709B (zh) | 用于选择南方根结线虫抗性大豆植物的方法和组合物 | |
US20090100537A1 (en) | Methods and compositions for high yielding soybeans with nematode resistance | |
CN101677516B (zh) | 用于选择抗疫霉根腐病的大豆植物的方法和组合物 | |
Huynh et al. | Identification of QTLs associated with partial resistance to white mold in soybean using field‐based inoculation | |
CN107849570A (zh) | 用于产生短枝玉米植物的方法和组合物 | |
US11160225B2 (en) | Methods and compositions for selecting corn plants resistant to diplodia ear rot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |