CN104377369B - 一种纤维状电化学发光电池及其制备方法 - Google Patents

一种纤维状电化学发光电池及其制备方法 Download PDF

Info

Publication number
CN104377369B
CN104377369B CN201410555186.7A CN201410555186A CN104377369B CN 104377369 B CN104377369 B CN 104377369B CN 201410555186 A CN201410555186 A CN 201410555186A CN 104377369 B CN104377369 B CN 104377369B
Authority
CN
China
Prior art keywords
electrochemical luminescence
fibrous
luminescence battery
wire
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410555186.7A
Other languages
English (en)
Other versions
CN104377369A (zh
Inventor
彭慧胜
张智涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihe New Material Group Co.,Ltd.
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201410555186.7A priority Critical patent/CN104377369B/zh
Publication of CN104377369A publication Critical patent/CN104377369A/zh
Application granted granted Critical
Publication of CN104377369B publication Critical patent/CN104377369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于电化学发光电池技术领域,具体为一种纤维状电化学发光电池及其制备方法。本发明以金属丝作为纤维基底电极,采用多壁取向碳纳米管薄膜同轴缠绕的方法,使多壁碳纳米管薄膜均匀的包裹纤维状电化学发光电池上,作为外层透明电极;发光聚合物夹在两极之间,形成纤维状电化学发光电池。多壁取向碳纳米管薄膜具有良好的透光性和导电性,是一种良好的透明电极材料,使纤维状电化学发光电池的发光效率大大提高,而成本却大大的降低。

Description

一种纤维状电化学发光电池及其制备方法
技术领域
本发明属于电化学发光电池技术领域,具体一种涉及纤维状电化学发光电池及其制备方法。
背景技术
自从1991年日本Iijima首次发现碳纳米管以来,碳纳米管以其独特的力学、电学、热学等性能受到人们广泛的重视,具有良好的发展前景,必将成为新一代热门材料。
碳纳米管是可以根据石墨片层的数目分为单壁碳纳米管和多壁碳纳米管。独特的碳纳米管结构赋予了其优异的力学、电学性能, 如杨氏模量高达1000吉帕(约为钢的5倍),拉伸强度高达63吉帕(约为钢的50倍). 由于碳纳米管较低的密度(约为钢的1/6)、较高的强度、较高的电导率以及其他优异的物理性能, 碳纳米管被认为在结构材料、电子器件、场发射、生物医药和电化学等广泛领域有着巨大的应用前景。同时,碳纳米管被广泛应用于发光器件、聚合物太阳能电池和超级电容器等领域。
随着现代电子事业的发展需要,柔性发光器件变得越来越重要。如采用柔性基底的有机发光二极管和电化学发光电池等,形成可以柔性发光器件[1-20,24]。然而这些柔性发光器件不能满足轻质、小巧和可编织的发展要求。
未来的发展要求是微型器件具有发光或者显示功能,目前尚没有文献报道纤维状电化学发光电池。制作纤维状电化学发光电池的主要难关在于其良好的界面接触,以及寻找合适的透明柔性电极。如果能够解决上述问题,纤维状电化学发光电池在未来的发展中会具有非常好的前景。在不久的将来,将纤维状电化学发光电池将具有非常重要的意义。
发明内容
本发明的目的在于提供一种发光效率高、成本低的纤维状电化学发光电池及其制备方法。
本发明提供的纤维状电化学发光电池,包括:一金属丝,作为纤维基底电极,该金属丝表面修饰有氧化锌纳米粒子,作为电子传输层;一发光聚合物层,沾涂在氧化锌纳米粒子修饰的金属丝表面;一透明电极,由多壁取向碳纳米管薄膜以同轴缠绕在沾涂了发光聚合物层的金属丝基底上组成。其结构示意图图1所示。
由于多壁取向碳纳米管薄膜具有良好的透明性和导电性,作为透明电极,使纤维状电化学发光电池的发光的效率大大提高,而成本却大大的降低。
本发明还提出了纤维状电化学发光电池的制备方法,具体步骤如下:
(1)制备透明电极材料:在多壁可纺碳纳米管阵列上拉出多壁取向碳纳米管薄膜;
(2)制备纤维状金属丝基底:将金属丝沾涂氧化锌溶液,再退火,退火温度为300-600摄氏度,退火时间为0.5-2小时,在金属丝表面形成氧化锌纳米粒子层;该步骤重复多次,使氧化锌纳米粒子层具有适当厚度,一般厚度20-100纳米,从而得到氧化锌纳米粒子作为电子传输层修饰的金属丝;所述金属丝如钢丝、钛丝或铝丝等;
(3)然后,在氧化锌纳米粒子修饰的金属丝表面沾涂一层发光聚合物层,并在真空环境中放置1-10小时;将多壁取向碳纳米管薄膜均匀的缠绕在其上面作为透明电极,得到完整的线状发光器件;
(4)最后,将得到的纤维状电化学发光电池在干燥的惰性气体环境下采用密封性较好的高分子材料封装。
本发明中,所述发光聚合物层材料可为聚芴或SuperYellow等不同颜色发光聚合物。
下面是制备纤维状电化学发光电池的具体操作步骤:
首先,通过沾涂法在金属丝(如不锈钢丝)表面形成氧化锌纳米粒子层,然后在管式炉中300摄氏度下煅烧30分钟并退火,待温度降到室温以后取出。将此过程重复3次在金属丝表面形成一定厚度的氧化锌纳米粒子层作为电子传输层,放入充满氩气的手套箱中;在充满氩气的手套箱中将氧化锌纳米粒子修饰的不锈钢丝用于制作纤维状电化学发光电池。通过沾涂发光聚芴的一种衍生物PF-B(20-60 mg/mL),乙氧基化三羟甲基丙烷三丙烯酸酯和三氟甲基磺酸锂的四氢呋喃溶液,然后抽真空一小时;将多壁取向碳纳米管薄膜均匀的缠绕在金属丝上面,最终形成完整的纤维状电化学发光电池。最后,采用封装材料将器件在干燥的惰性气体环境中封装起来,得到完整的纤维状聚合物发光电池。
所述取向碳纳米管薄膜中使用的碳纳米管阵列采用常规技术制备,具体步骤为:
合成碳纳米管阵列的催化剂结构为Si/SiO2/Al2O3/Fe,其中,SiO2厚度为300-1000μm,Al2O3厚度为1-30 nm,Fe厚度为0.5-1.5 nm,Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚度的膜;采用化学气相沉积法,用乙烯做碳源,以氩气和氢气作为载气,在有氧化层Si基片上合成高度取向的碳纳米管阵列;其中乙烯流量为190-290 sccm,氩气流量为400-620 sccm,氢气流量为20-48 sccm,在管式炉中生长5-20 min。
本发明制备的纤维状电化学发光电池,能够有效的实现360度发光,并且具有很好的柔性以及可编织性能。同轴结构对于器件的发光具有非常明显的优势。对于发光器件来说,在径向方向上相似于平面状发光器件,大大的降低了接触电阻,同轴结构具有高的接触面积,有利于电子的快速传递和转移;同时采用多壁碳纳米管薄膜作为透明电极,大大的改善了器件的发光效率,具有广阔的发展前景。多壁碳纳米管薄膜是通过将化学气相沉积法合成的多壁可纺碳纳米管阵列进行干法纺丝得到的[21-23]。电化学发光电池的机理是当器件两端受到足够的电压,电致发光共轭聚合物两端发生化学掺杂,在靠近阴极的一端发生N型掺杂,在靠近阳极的一端发生P型掺杂。由于掺杂,聚合物层具有较高的电导率。形成PIN结,有利于电子和空穴在两端的有效注入,最终电子和空穴发生复合,产生光。在未来,纤维状电化学发光电池在光电子织物技术领域具有广阔的发展前景。本发明在实验中采用的氧化锌前驱体溶液是1.46 g 的Zn(CH3COO)2• 2H2O 和 0.2 mL的 NH2CH2CH2OH 溶解于25 mL CH3OCH2CH2OH 中,并在60度条件下搅拌30分钟。
附图说明
图1是纤维状电化学发光电池的示意图,金属丝和多壁取向碳纳米管薄膜分别作为纤维状电化学发光电池的两极。
图2对纤维状电化学发光电池各部分进行了SEM表征。其中,a为金属丝低倍SEM图片。b为金属丝表面沾涂氧化锌纳米粒子后的SEM图片。c和d为沾涂聚合物发光层之后的顶视图和截面图。e和f为均匀缠绕取向碳纳米管薄膜后的低倍和高倍SEM图片。
图3为纤维状电化学发光电池的电压-电流-亮度测试曲线。
图4是缠绕取向碳纳米管薄膜的示意图。
图5是纤维状电化学发光电池的不同角度发光性能测试。
图6是纤维状电化学发光电池的弯曲性能测试。
图7是器件的可编织性能以及发光可控性能表征。
图8是可纺碳纳米管阵列的低倍SEM扫描电镜照片。
图9是可纺碳纳米管阵列的高倍SEM扫描电镜照片。
图10是纤维状电化学发光电池的实物图。
具体实施方式
1. 制备透明电极,在多壁可纺碳纳米管阵列上拉出多壁取向碳纳米管薄膜。
2. 制备纤维状金属基底,将清洗后的金属丝沾涂氧化锌溶液并退火在其表面形成氧化锌纳米粒子层。将该步骤重复多次得到均匀的具有一定厚度的氧化锌纳米粒子层,从而得到氧化锌纳米粒子作为电子传输层修饰的金属丝。
3. 然后通过沾涂法在氧化锌纳米粒子修饰的金属丝表面沾涂一层发光聚合物层,该层是将聚芴的共聚物,离子导电溶液以及离子组分三氟甲基磺酸锂溶解于四氢呋喃溶剂中(质量比为20:10:1),并在真空环境中放置1小时。将多壁取向碳纳米管薄膜均匀的缠绕在其上面作为透明电极,得到完整的线状发光器件。
4. 最后将得到的纤维状电化学发光电池在干燥的惰性气体环境下采用密封性较好的高分子材料封装。
纤维状电化学发光电池结构是通过扫描电镜(Hitachi FE-SEM S-4800 operatedat 1 kV)来表征的。电流-电压-亮度测试曲线采用Keithley 2400源表和PhotoresearchPR-650。取向碳纳米管薄膜透过率由Shimadzu UV-2550 spectrophotometer测定。
参考文献
1. Shao, Y., Bazan, G.C. & Heeger, A.J. Long-Lifetime Polymer Light-Emitting Electrochemical Cells. Adv. Mater.19, 365-370 (2007).
2.Yu, Z. et al. Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes. Adv. Mater.23, 664-668 (2011).
3.Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A.J. Polymer Light-Emitting Electrochemical Cells. Science269, 1086-1088 (1995).
4.Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymerlight-emitting devices and displays. Nature Photon.7, 817-824 (2013).
5.Shao, Y., Gong, X., Heeger, A.J., Liu, M. & Jen, A.K.Y. Long-Lifetime Polymer Light-Emitting Electrochemical Cells Fabricated withCrosslinked Hole-Transport Layers. Adv. Mater.21, 1972-1975 (2009).
6.Li, L. et al. Efficient Flexible Phosphorescent Polymer Light-Emitting Diodes Based on Silver Nanowire-Polymer Composite Electrode. Adv.Mater.23, 5563-5567 (2011).
7.Kuik, M. et al. 25th Anniversary Article: Charge Transport andRecombination in Polymer Light-Emitting Diodes. Adv. Mater.26, 512-531(2014).
8.Höfle, S., Schienle, A., Bruns, M., Lemmer, U. & Colsmann, A.Enhanced Electron Injection into Inverted Polymer Light-Emitting Diodes byCombined Solution-Processed Zinc Oxide/Polyethylenimine Interlayers. Adv.Mater.26, 2750-2754 (2014).
9.Ying, L., Ho, C.-L., Wu, H., Cao, Y. & Wong, W.-Y. White PolymerLight-Emitting Devices for Solid-State Lighting: Materials, Devices, andRecent Progress. Adv. Mater.26, 2459-2473 (2014).
10. Matyba, P., Yamaguchi, H., Chhowalla, M., Robinson, N.D. & Edman,L. Flexible and Metal-Free Light-Emitting Electrochemical Cells Based onGraphene and PEDOT-PSS as the Electrode Materials. ACS Nano5, 574-580 (2010).
11. Reineke, S. et al. White organic light-emitting diodes withfluorescent tube efficiency. Nature459, 234-238 (2009).
12. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highlyefficient organic light-emitting diodes from delayed fluorescence. Nature492,234-238 (2012).
13. Groves, C. Organic light-emitting diodes: Bright design. NatureMater.12, 597-598 (2013).
14. Sun, Y. & Forrest, S.R. Enhanced light out-coupling of organiclight-emitting devices using embedded low-index grids. Nature Photon.2, 483-487 (2008).
15. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photon.6, 105-110(2012).
16. White, M.S. et al. Ultrathin, highly flexible and stretchablePLEDs. Nature Photon.7, 811-816 (2013).
17. Wu, H.B. et al. Efficient Single Active LayerElectrophosphorescent White Polymer Light-Emitting Diodes. Adv. Mater.20,696-702 (2008).
18. Kabra, D., Lu, L.P., Song, M.H., Snaith, H.J. & Friend, R.H.Efficient Single-Layer Polymer Light-Emitting Diodes. Adv. Mater.22, 3194-3198 (2010).
19. Yook, K.S. & Lee, J.Y. Small Molecule Host Materials for SolutionProcessed Phosphorescent Organic Light-Emitting Diodes. Adv. Mater.26, 4218-4233 (2014).
20. Pei, Q., Yang, Yu, G., Zhang, C. & Heeger, A.J. Polymer Light-Emitting Electrochemical Cells:  In Situ Formation of a Light-Emitting p−nJunction. J. Am. Chem. Soc.118, 3922-3929 (1996).
21. Sun, X. et al. Electric Current Test Paper Based on ConjugatedPolymers and Aligned Carbon Nanotubes. Angew. Chem. Int. Ed.52, 7776-7780(2013).
22. Peng, H. Aligned Carbon Nanotube/Polymer Composite Films withRobust Flexibility, High Transparency, and Excellent Conductivity. J. Am.Chem. Soc.130, 42-43 (2007).
23. Zhang, M. et al. Strong, Transparent, Multifunctional, CarbonNanotube Sheets. Science309, 1215-1219 (2005).
24. Liu, D. et al. Solid-State, Polymer-Based Fiber Solar Cells withCarbon Nanotube Electrodes. ACS Nano6, 11027-11034 (2012).。

Claims (3)

1.一种纤维状电化学发光电池的制备方法,该电池包括:一金属丝,作为纤维基底电极,该金属丝表面修饰有氧化锌纳米粒子,作为电子传输层;一发光聚合物层,沾涂在氧化锌纳米粒子修饰的金属丝表面;一透明电极,由同轴缠绕在沾涂了发光聚合物层的金属丝基底上的多壁取向碳纳米管薄膜组成;
其特征在于具体步骤为:
(1)在多壁可纺碳纳米管阵列上拉出多壁取向碳纳米管薄膜;
(2)制备纤维状金属丝基底:将金属丝沾涂氧化锌溶液,再退火,退火温度为300-600摄氏度,退火时间为0.5-2小时,在金属丝表面形成氧化锌纳米粒子层;该步骤重复多次,使氧化锌纳米粒子层具有适当厚度,从而得到氧化锌纳米粒子层作为电子传输层修饰的金属丝;
(3)然后,在氧化锌纳米粒子修饰的金属丝表面沾涂一发光聚合物层,并在真空环境中放置1-10小时;将多壁取向碳纳米管薄膜均匀的缠绕在其上面作为透明电极,得到完整的纤维状电化学发光电池;
(4)最后,将得到的纤维状电化学发光电池在干燥的惰性气体环境下采用密封性较好的高分子材料封装。
2.根据权利要求1所述的纤维状电化学发光电池的制备方法,其特征在于所述发光聚合物层材料为:聚芴。
3.根据权利要求2所述的纤维状电化学发光电池的制备方法,其特征在于所述多壁可纺碳纳米管阵列的制备步骤为:
采用结构为Si/SiO2/Al2O3/Fe的催化剂,其中,SiO2厚度为300-1000 μm,Al2O3厚度为1-30 nm,Fe厚度为0.5-1.5 nm,Al2O3位于硅片和Fe的中间,作为缓冲层,Fe作为催化剂,它们分别通过电子束蒸发镀膜仪在硅片上沉积一层纳米厚度的膜得到;采用化学气相沉积法,用乙烯做碳源,以氩气和氢气作为载气,在有氧化层的Si基片上合成高度取向的碳纳米管阵列;其中乙烯流量为190-290 sccm,氩气流量为400-620 sccm,氢气流量为20-48 sccm,在管式炉中生长5-20 min。
CN201410555186.7A 2014-10-20 2014-10-20 一种纤维状电化学发光电池及其制备方法 Active CN104377369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410555186.7A CN104377369B (zh) 2014-10-20 2014-10-20 一种纤维状电化学发光电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410555186.7A CN104377369B (zh) 2014-10-20 2014-10-20 一种纤维状电化学发光电池及其制备方法

Publications (2)

Publication Number Publication Date
CN104377369A CN104377369A (zh) 2015-02-25
CN104377369B true CN104377369B (zh) 2016-05-25

Family

ID=52556131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410555186.7A Active CN104377369B (zh) 2014-10-20 2014-10-20 一种纤维状电化学发光电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104377369B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047999B (zh) * 2015-07-31 2017-07-07 复旦大学 具有高能量密度和高功率密度的纤维状杂化储能器件及其制备方法
CN105244565B (zh) * 2015-10-26 2018-06-08 复旦大学 一种可弯曲拉伸的可充电线状锌空气电池及其制备方法
CN107564730B (zh) * 2017-07-06 2019-07-05 复旦大学 一种荧光纤维状超级电容器纤维及其制备方法
CN107680828A (zh) * 2017-09-18 2018-02-09 西南交通大学 一种以不锈钢弹簧为基底的可拉伸超级电容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7194173B2 (en) * 2004-07-16 2007-03-20 The Trustees Of Princeton University Organic devices having a fiber structure
ES2327446T3 (es) * 2006-05-01 2009-10-29 Wake Forest University Dispositivos optoelectronicos organicos y aplicaciones de los mismos.
JP2012533156A (ja) * 2009-07-07 2012-12-20 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インク. 安定な全塗布型(allsolutionprocessable)量子ドット発光ダイオード
WO2013113349A1 (en) * 2012-01-30 2013-08-08 Merck Patent Gmbh Nanocrystals on fibers
CN103400889B (zh) * 2013-07-02 2016-03-30 宁国市龙晟柔性储能材料科技有限公司 全固态纤维状同轴聚合物太阳电池和超级电容器集成器件及其制备方法

Also Published As

Publication number Publication date
CN104377369A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
Zhu et al. Ag-Doped PEDOT: PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%
Zhou et al. MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance
Ma et al. Embedding cobalt atom clusters in CNT‐wired MoS2 tube‐in‐tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries
Liu et al. 1 D hierarchical MnCo2O4 nanowire@ MnO2 sheet core–shell arrays on graphite paper as superior electrodes for asymmetric supercapacitors
Yu et al. Nanowires in energy storage devices: structures, synthesis, and applications
Chen et al. Macroscopic‐scale three‐dimensional carbon nanofiber architectures for electrochemical energy storage devices
Lv et al. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes
CN107235472B (zh) 氮掺杂多孔垂直石墨烯纳米墙阵列及其制备方法与应用
Sun et al. Recent progress in solar cells based on one-dimensional nanomaterials
Chen et al. Design of Novel Wearable, Stretchable, and Waterproof Cable‐Type Supercapacitors Based on High‐Performance Nickel Cobalt Sulfide‐Coated Etching‐Annealed Yarn Electrodes
Zhu et al. 3D Cu (OH) 2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability
CN104392845B (zh) 一种可拉伸的线状超级电容器和锂离子电池制备方法
Jiang et al. Facile preparation of Cu/Ag core/shell electrospun nanofibers as highly stable and flexible transparent conductive electrodes for optoelectronic devices
Yu et al. A stretchable high performance all-in-one fiber supercapacitor
Xi et al. Facile synthesis of free-standing NiO/MnO 2 core-shell nanoflakes on carbon cloth for flexible supercapacitors
Zhang et al. Ultrathin Ni-MOF nanosheet coated NiCo2O4 nanowire arrays as a high-performance binder-free electrode for flexible hybrid supercapacitors
Yu et al. Simultaneously enhanced performances of flexible CuNW networks by covering ATO layer for polymer solar cells
Yang et al. Flexible SnTe/carbon nanofiber membrane as a free-standing anode for high-performance lithium-ion and sodium-ion batteries
Zhu et al. SnO2 nanorods on ZnO nanofibers: a new class of hierarchical nanostructures enabled by electrospinning as anode material for high-performance lithium-ion batteries
CN104377369B (zh) 一种纤维状电化学发光电池及其制备方法
Zhu et al. Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries
JP6556923B2 (ja) 電池電極の製造方法
JP2017500741A (ja) 溶液で処理できる金属酸化物バッファー層を含む電子機器
Sami et al. The Pine‐Needle‐Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High‐Performance Flexible Supercapacitors
CN102263221A (zh) 取向碳纳米管/聚合物复合膜及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211224

Address after: 264006 Heilongjiang Road, Yantai economic and Technological Development Zone, Shandong 10

Patentee after: YANTAI TAYHO ADVANCED MATERIALS Co.,Ltd.

Address before: 200433 No. 220, Handan Road, Shanghai, Yangpu District

Patentee before: FUDAN University

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 264006 Heilongjiang Road, Yantai economic and Technological Development Zone, Shandong 10

Patentee after: Taihe New Material Group Co.,Ltd.

Address before: 264006 Heilongjiang Road, Yantai economic and Technological Development Zone, Shandong 10

Patentee before: YANTAI TAYHO ADVANCED MATERIALS Co.,Ltd.