CN104353407B - 一种Fe-Mn体系吸附剂及其制备和应用方法 - Google Patents

一种Fe-Mn体系吸附剂及其制备和应用方法 Download PDF

Info

Publication number
CN104353407B
CN104353407B CN201410663272.XA CN201410663272A CN104353407B CN 104353407 B CN104353407 B CN 104353407B CN 201410663272 A CN201410663272 A CN 201410663272A CN 104353407 B CN104353407 B CN 104353407B
Authority
CN
China
Prior art keywords
adsorbent
preparation
ball milling
arsenic
system adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410663272.XA
Other languages
English (en)
Other versions
CN104353407A (zh
Inventor
闵小波
柴立元
王密
梁彦杰
李阳文君
唐崇俭
刘恢
廖骐
柯勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201410663272.XA priority Critical patent/CN104353407B/zh
Publication of CN104353407A publication Critical patent/CN104353407A/zh
Application granted granted Critical
Publication of CN104353407B publication Critical patent/CN104353407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种Fe-Mn体系吸附剂及其制备和应用方法。本发明吸附剂以铁和二氧化锰为原料,利用机械球磨的活化作用,在水介质中球磨Fe-Mn体系混合物,球磨适当时间后将产物取出,调节pH值至4-6、陈化、过滤、干燥、研磨、过筛得到Fe-Mn体系吸附剂。该吸附剂对砷具有良好的吸附性能和较大的吸附容量,对水体中其他重金属离子也有一定的吸附效果。且该吸附剂易沉淀,固液分离方便。

Description

一种Fe-Mn体系吸附剂及其制备和应用方法
技术领域
本发明属于重金属污染水体治理领域,具体涉及一种Fe-Mn体系吸附剂及其制备和应用方法。
背景技术
我国是有色金属冶炼大国,在有色冶炼过程中会产生大量有害重金属,其中砷是对人体健康和环境都具有严重危害的重金属之一。它对人体能产生致畸、致癌、致突变作用。砷主要存在于水体介质中进行迁移,因此我国对水体中砷的含量有着严格的限制,饮用水中砷的最高浓度不能超过0.01mg/L,工业废水中砷浓度不能高于0.5mg/L。因此,水体中砷的去除具有重要意义。
目前常用的去除水中砷酸根或亚砷酸根的方法有膜处理法、化学沉淀法、生物法、吸附法等。这些处理方法都具有良好效果,但也有制约因素。膜处理法处理成本昂贵;化学沉淀法会产生大量化学污泥;生物法处理周期长。吸附法因其处理方法简单易行、去除效果好、能循环利用,吸附剂来源广泛,价格低廉而广泛受到关注。当前,砷吸附剂种类繁多,有活性炭、矿物材料、金属氧化物、稀有金属、工业废弃物等。但是,因其价格昂贵、吸附容量低、固液不易分离、循环利用困难,使得其实际应用受到一定限制。
近年来,关于砷吸附剂的研究主要集中在稀有金属和金属氧化物等方面。苑春刚等利用锆锰复合氧化物对酸洗后的粉煤灰进行修饰制得砷吸附剂。此吸附不仅吸附效果好,而且利用粉煤灰这种固体废弃物,变废为宝,达到以废治废的目的。其砷的吸附容量达到了38.36mg/g。(苑春刚.一种去除水中有毒元素砷的吸附剂及其应用.专利申请号:201210360306.9)。林森等利用磁性颗粒和铁盐制备出具有磁性的砷吸附剂。此吸附剂不仅砷的吸附容量可达85.29mg/g,而且还因其具有磁性而大大降低了固液分离的难度。(林森.磁性砷吸附剂及其制备方法与应用.专利申请号:201310412712.X)。
当前,对于高砷复杂多金属的冶炼废水还缺乏更高效的吸附剂。因此,开发一种吸附容量大、固液分离方便、经济可靠的砷吸附剂具有重要意义。
发明内容
本发明的目的是提供一种高效,环保,经济,不产生二次污染的Fe-Mn体系吸附剂及其制备和应用方法。
一种Fe-Mn体系吸附剂的制备方法,将铁粉和二氧化锰的混合物,加水进行球磨至颗粒粒径为10-70μm,调节球磨后混合液pH值为4-6,分散之后静置陈化;产物过滤、洗涤、烘干、研磨过筛,获得吸附剂。
上述方法中优选铁粉和二氧化锰的质量比为2-9:1。铁粉可用工业废铁屑、钢渣代替。
上述方法中加水后的固液比为1:4-10。
上述方法中球磨的球料比为10:1-20:1,球磨转速为300-500r/min,球磨至少2h。
上述方法中调节好pH值的混合液分散之后静置陈化至少8小时。
上述方法中将产物过滤并用95%的酒精洗涤三次,之后在40-60℃下烘干,研磨并过100目筛,获得吸附剂。
上述方法中pH调节剂优选为10%的硫酸溶液、10%的盐酸溶液或10%的硝酸溶液。
一种Fe-Mn体系吸附剂,是由上述的制备方法制备而成。
所述的Fe-Mn体系吸附剂的应用方法,调节含砷废液pH至酸性,然后直接将所述的吸附剂加入含砷废水,振荡或搅拌至少5h。含砷废液pH值调节至3-7,pH调节剂为10%的硫酸溶液。
本发明具有如下优势:
1.本发明首次利用单质铁粉和二氧化锰为原料制备得到新型除砷吸附剂,其中单质铁粉可用工业废旧铁屑、钢渣代替,原料来源广泛、成本低廉。
2.本发明首次采用球磨的方式处理单质铁粉和二氧化锰,仅仅是通过物理球磨混合过程得到纳米级别的混合物,单质铁和二氧化锰没有发生化学反应,得到的产物形式与现有技术完全不同。
3、本发明经过球磨处理后颗粒具有巨大的比表面积和表面活化能,有利于增强后期的吸附效果;二氧化锰也强化了铁系活性吸附剂的吸附性能。
4、本发明在特定的pH值范围内陈化处理,使得球磨产物的表面被腐蚀生成一层具有极强吸附能力的活化层。
5、本发明所述吸附剂不溶于水,易沉淀,且具有磁性,能用磁选方法使固液分离。
6、本发明吸附剂与其他常用吸附剂相比,吸附容量大,且制备工艺简单,操作简便,利于大规模生产。
附图说明
图1为本发明工艺流程图;
图2为本发明吸附剂实物图;
图3为本发明吸附剂的扫描电镜图(SEM);
图4为实施例1中吸附剂球磨前后,以及陈化后产物的XRD图;
由图4可知,未球磨的单质铁和二氧化锰混合物具有良好的晶型;球磨3h后,体系中没有新的特征峰出现,而单质铁的特征峰较球磨前变宽,二氧化锰的特征峰基本消失;说明球磨过程仅仅是一个非晶化过程,在此过程中,颗粒粒径变小,比表面积增大,物质晶体出现缺陷;陈化后,颗粒表面出现大量Fe3O4、α-Fe2O3、α-FeOOH,而这些腐蚀生成的物质砷具有良好吸附效果;
图5为实施例2中吸附量随时间变化图。
具体实施方式
下面结合附图和具体实施例旨在对本发明做进一步详细说明,而非限制本发明。
实施例1
制备本发明Fe-Mn体系吸附剂:
(1)按质量比5:1称取单质铁粉和二氧化锰共计30g。
(2)将步骤(1)中原料和300ml水一起加入500ml不锈钢球磨罐,在球料比为20:1,球磨转速500r/min的条件下球磨3小时。
(3)将(2)中产物取出,用10%的硫酸溶液调节其pH为5。
(4)将(3)中混合液超声分散20min,之后静置陈化10h。
(5)将(4)中产物过滤并用95%的酒精洗涤三次,之后在50℃下烘干,研磨并过100目筛,得到吸附剂。
实施例2
在本实例中,处理对象为实验室配制的砷酸钠溶液。其中砷的浓度为1g/L,并调节pH为6。将每个锥形瓶中加入实施例1中制备的吸附剂0.10g,再加入100ml调节好pH的砷酸钠溶液,室温下放在摇床上振荡,每隔1小时取上清液检测。结果显示,随着时间增大,处理后溶液中砷的浓度逐渐下降,当T=5h时砷浓度趋于稳定。每小时测定的砷含量:950mg/L、922.4mg/L、902.2mg/L、880.1.0mg/L、860.0mg/L、859.1mg/L、858.3mg/L,此时吸附容量分别为50mg/g、77.6mg/g、97.8mg/g、119.9mg/g、140mg/g、140.9mg/g、141.7mg/g。
实施例3
实验用含砷废水来自某冶炼厂硫化沉砷废水,此含砷废水呈酸性,其重金属浓度如表1。在本实例中,将锥形瓶中加入1.0g实施例1中制备的吸附剂,然后加入100ml含砷废液,室温下放在摇床上摇5小时后取下静置,取上清液检测。结果显示,含砷废液中砷的浓度由1859mg/L降低到652.4mg/L,砷的吸附容量为120.7mg/g。铅的浓度由139.3mg/L降低到29.1mg/L,铅的吸附容量为11.02mg/g。
表1废水中主要重金属浓度(mg/L)
元素 Pb Fe Zn Cu As Na Al
浓度 139.3 0.1 0.1 13.9 1859 2106 5.6
实施例4
在本实例中Fe-Mn体系吸附剂分别在pH值为3-9的条件下陈化10h。之后将不同陈化pH条件下的Fe-Mn体系吸附剂加入pH=7的砷酸钠溶液(1000mg/L)中进行吸附试验。在100ml含砷废液中分别加入0.2g吸附剂,室温下放在摇床上摇5小时后取下静置,取上清液检测。结果显示,在pH为4-6的陈化条件下具有较好的吸附效果。但pH小于6时,都具有良好的吸附效果,但是pH值太低会导致单质铁与酸直接反应生成氢气和亚铁离子,降低了吸附剂产量,同时耗费了更多的酸。具体结果如表2。
表2不同陈化pH条件下的吸附容量(mg/g)
pH 3 4 5 6 7 8 9
吸附容量 126.3 150.1 168.2 140.3 90.7 55.6 16.0

Claims (9)

1.一种Fe-Mn体系吸附剂的制备方法,其特征在于,将质量比为2-9:1的铁粉和二氧化锰的混合物,加水进行球磨至颗粒粒径为10-70μm,调节球磨后混合液pH值为4-6,分散之后静置陈化;产物过滤、洗涤、烘干、研磨过筛,获得吸附剂。
2.根据权利要求1所述的Fe-Mn体系吸附剂的制备方法,其特征在于,加水后的固液比为1:4-10。
3.根据权利要求1所述的Fe-Mn体系吸附剂的制备方法,其特征在于,球磨的球料比为10:1-20:1,球磨转速为300-500r/min,球磨至少2h。
4.根据权利要求1所述的Fe-Mn体系吸附剂的制备方法,其特征在于,调节好pH值的混合液分散之后静置陈化至少8小时。
5.根据权利要求1所述的Fe-Mn体系吸附剂的制备方法,其特征在于,将产物过滤并用95%的酒精洗涤三次,之后在40-60℃下烘干,研磨并过100目筛,获得吸附剂。
6.根据权利要求1所述的Fe-Mn体系吸附剂的制备方法,其特征在于,pH调节剂为10%的硫酸溶液、10%的盐酸溶液或10%的硝酸溶液。
7.一种Fe-Mn体系吸附剂,其特征在于,是由权利要求1-6任一项所述的制备方法制备而成。
8.权利要求7所述的Fe-Mn体系吸附剂的应用方法,其特征在于,调节含砷废液pH至酸性,然后直接将所述的吸附剂加入含砷废水,振荡或搅拌至少5h。
9.根据权利要求8所述的Fe-Mn体系吸附剂的应用方法,其特征在于:含砷废液pH值调节至3-7,pH调节剂为10%的硫酸溶液。
CN201410663272.XA 2014-11-19 2014-11-19 一种Fe-Mn体系吸附剂及其制备和应用方法 Active CN104353407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410663272.XA CN104353407B (zh) 2014-11-19 2014-11-19 一种Fe-Mn体系吸附剂及其制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410663272.XA CN104353407B (zh) 2014-11-19 2014-11-19 一种Fe-Mn体系吸附剂及其制备和应用方法

Publications (2)

Publication Number Publication Date
CN104353407A CN104353407A (zh) 2015-02-18
CN104353407B true CN104353407B (zh) 2016-03-23

Family

ID=52520769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410663272.XA Active CN104353407B (zh) 2014-11-19 2014-11-19 一种Fe-Mn体系吸附剂及其制备和应用方法

Country Status (1)

Country Link
CN (1) CN104353407B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803520A (zh) * 2015-05-05 2015-07-29 山东师范大学 一种利用铁锰复合氧化物处理电镀废水中铬(vi)的系统和方法
CN106669586B (zh) * 2016-12-29 2019-05-17 中南大学 一种Fe@FeS2复合材料及其制备方法和应用
CN109225134B (zh) * 2018-09-30 2021-07-09 东北农业大学 一种针状Fe-Mn-S三元纳米材料负载多孔生物炭复合材料的制备方法
CN114588878B (zh) * 2022-03-31 2024-05-14 石河子大学 一种除砷吸附剂及其制备方法
CN118263018A (zh) * 2024-02-23 2024-06-28 中国矿业大学 钕铁硼二次废料制备微纳米磁性复合材料的方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335307B2 (en) * 2003-11-03 2008-02-26 U.S. Epa Method for removing contaminants from water using ruthenium based contaminant sorbents and oxidizers
CN102172510A (zh) * 2011-04-01 2011-09-07 哈尔滨工业大学 MnO2/Fe3O4复合吸附剂的制备方法及其去除水中铅的方法
CN102188948A (zh) * 2011-04-12 2011-09-21 哈尔滨工业大学 MnO2/Fe3O4复合吸附剂的制备方法及其去除水中砷(Ⅴ)的方法
CN102188949A (zh) * 2011-04-12 2011-09-21 哈尔滨工业大学 MnO2/Fe3O4复合吸附剂的制备方法及其去除水中砷(III)的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335307B2 (en) * 2003-11-03 2008-02-26 U.S. Epa Method for removing contaminants from water using ruthenium based contaminant sorbents and oxidizers
CN102172510A (zh) * 2011-04-01 2011-09-07 哈尔滨工业大学 MnO2/Fe3O4复合吸附剂的制备方法及其去除水中铅的方法
CN102188948A (zh) * 2011-04-12 2011-09-21 哈尔滨工业大学 MnO2/Fe3O4复合吸附剂的制备方法及其去除水中砷(Ⅴ)的方法
CN102188949A (zh) * 2011-04-12 2011-09-21 哈尔滨工业大学 MnO2/Fe3O4复合吸附剂的制备方法及其去除水中砷(III)的方法

Also Published As

Publication number Publication date
CN104353407A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
Ma et al. Efficient adsorption of Selenium (IV) from water by hematite modified magnetic nanoparticles
CN104475012B (zh) 一种Fe3O4@SiO2磁性纳米球及其制备方法和应用
CN104353407B (zh) 一种Fe-Mn体系吸附剂及其制备和应用方法
Rozumová et al. Magnetically modified peanut husks as an effective sorbent of heavy metals
Zeng et al. As (V) adsorption by a novel core-shell magnetic nanoparticles prepared with Iron-containing water treatment residuals
US7445718B2 (en) Removal of arsenic from drinking and process water
Chigondo et al. Removal of lead (II) and copper (II) ions from aqueous solution by baobab (Adononsia digitata) fruit shells biomass
Fard et al. Batch kinetics and isotherms for biosorption of cadmium onto biosolids
Chang et al. Removal of As (V) and Cr (VI) in aqueous solution by sand media simultaneously coated with Fe and Mn oxides
Zhou et al. A comparison of water treatment sludge and red mud as adsorbents of As and Se in aqueous solution and their capacity for desorption and regeneration
CN109012565A (zh) 一种掺氮的磁性碳材料吸附去除废水中重金属离子的方法
CN102001734A (zh) 处理含汞废水的重金属沉降剂
CN103332810A (zh) 一种脱硫废水中重金属的处理方法
Yunnen et al. Removal of Ammonia Nitrogen from Wastewater Using Modified Activated Sludge.
Guo et al. Chemical Reduction of Nitrate Using Nanoscale Bimetallic Iron/Copper Particles.
CN104438288B (zh) 一种含砷废料中砷的稳定及分离方法
CN102816933B (zh) 一种铬渣的处理工艺方法
CN103332773B (zh) 一种去除废水中汞的方法
CN111250052B (zh) 一种多基团螯合型磁性菌丝净水剂及其制备方法与应用
CN102531094A (zh) 含重金属离子或含磷的废水的处理方法
Pang et al. Adsorption of chromium (VI) onto activated carbon modified with KMnO4
CN102489263A (zh) 一种环保型含汞废水的处理方法
CN105293659B (zh) 一种水体中重金属污染物的沉积物的应急稳定化处理方法
CN116161834A (zh) 一种基于零价铁填充床系统的重金属废水处理方法
Etale et al. Mesoporous silica nanoparticles for the adsorptive removal of Cu (II), Mn (II), and U (VI) from acid mine drainage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant