CN104350601A - Hemt装置和制造hemt装置的方法 - Google Patents

Hemt装置和制造hemt装置的方法 Download PDF

Info

Publication number
CN104350601A
CN104350601A CN201380027246.1A CN201380027246A CN104350601A CN 104350601 A CN104350601 A CN 104350601A CN 201380027246 A CN201380027246 A CN 201380027246A CN 104350601 A CN104350601 A CN 104350601A
Authority
CN
China
Prior art keywords
charge carrier
carrier accommodating
accommodating layer
hemt device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380027246.1A
Other languages
English (en)
Other versions
CN104350601B (zh
Inventor
S·卡里尔
K·S·布特罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/479,018 external-priority patent/US8680536B2/en
Priority claimed from US13/478,609 external-priority patent/US9379195B2/en
Priority claimed from US13/478,402 external-priority patent/US9000484B2/en
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of CN104350601A publication Critical patent/CN104350601A/zh
Application granted granted Critical
Publication of CN104350601B publication Critical patent/CN104350601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/34Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3085Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开了一种HEMT装置,包括:衬底;设置在衬底上方的缓冲层;设置在缓冲层上方的载流子供应层;贯穿载流子供应层的栅极元件;和设置在载流子供应层上的漏极元件。载流子供应层在栅极元件和漏极元件之间具有不均匀的厚度,载流子供应层具有相邻于漏极元件的相对较大的厚度和相邻于栅极元件的相对较小的厚度。非均匀的二维电子气导电沟道形成在载流子供应层中,二维电子气导电沟道在栅极元件与漏极元件之间具有非均匀分布。

Description

HEMT装置和制造HEMT装置的方法
相关申请的交叉引用
本申请相关于提交于2012年5月23日的名称为“Controlling LateralTwo-Dimens ional Electron Gas HEMT inШ-Nitride Devices Us ing IonImplantat ion Through Gray Scale Mask”的美国专利申请第13/478,402号、以及提交于2013年5月23日的名称为“HEMT GaN Device with a Non-UniformLateral Two-Dimens ional Electron Gas Profi le and Process forManufacturing the Same”的美国专利申请第13/478,609号,所述申请在此并入本文作为参考。此外,本申请相关于并要求于2012年5月23日提出申请的名称为“Non-Uniform Two Dimens ional Electron Gas Profile inШ-NitrideHEMT Devices”的美国专利申请第13/479,018号的优先权,该申请在此整体并入本文作为参考。
技术领域
本发明涉及一种在载流子供应层中具有非均匀的二维电子气(2DEG)分布的III-氮HEMT装置。
背景技术
III-氮高电子迁移率晶体管(HEMT)装置常在电力应用和/或高温应用中用于RF电路和其他应用中,包括用于电动力电动机车辆的电力供应。
HEMT的通态电阻(Ron)和击穿电压(BV)之间的设计权衡通过在此包含的以下教示可以显著地完善。因为BV和Ron之间的关系至少为二次方,提高BV对于一个给定的漂移区长度可极大地提高所述装置的品质因数(FOM),该品质因数被定义为BV2/Ron
HEMT使用具有不同带隙的两种半导体材料,从而在两种半导体材料(例如,AlGaN和GaN)之间的异质结面处形成电子势阱。势阱限制电子并限定二维电子气(2DEG)导电沟道。由于在导电沟道中的电子的二维特性,载流子迁移性提高。
现有技术的III-氮HEMT利用均匀的2DEG密度,该密度在栅极区域下方或附近导致峰值电场。电场分布趋向于接近三角形形状,而不是更理想的梯形形状,从而降低了装置的每单位漂移区长度的BV。场板和/或多级场板(multistepfield plate)的使用是现有技术中使用的技术,用以改进电场分布,但这些技术通常导致多峰值和达不到理想平场分布(它们会表现出锯齿型轮廓),这也会增加到栅极而使电容泄漏。此外,工艺的复杂性和成本通常会增加使用的场板级(电平)的数量增加。
现有技术包括:
Furukawa的发布于2006年5月2日的美国专利第US 7,038,253号公开了一种基于GaN的装置,该装置呈现出本领域的在漂移区使用均匀2DEG轮廓的硅基氮化镓(GaN on S i)技术的状态。在缺乏任何场成形技术的情况下,期望的是本专利装置的击穿和动态导通阻抗(Rdson)性能将通过在电场中在栅极区域下方的局部增加而受到限制,因此需要超过降低品质因数(FOM)的装置的设计,这可以通过这样的结构来实现。
H.Xing等人已经提出了一种装置结构,其发表在名为“High BreakdownVol tage AlGaN/GaN HEMTs achieved by Mul t iple Field Plates”的文章中(参见H.Xing、Y.Dora、A.Chini、S.Hikman、S.Keller和U.K.Mishra”的“HighBreakdown Vol tage AlGaN-GaN HEMTs Achieved by Mul t iple FieldPlates”,IEEE电子器件报告(IEEE ELECTRON DEVICE LETTERS),第25卷,编号4,第161-163页,2004年4月),该装置结构利用使用多个场板来改进电场分布的场成形技术,但是这种技术对比本文所公开的技术并不有利,因为多个场板将无法实现均匀的电场(将具有锯齿型分布),并将使栅极增加漏电容。在实施这种结构中增加了装置的复杂性和成本。
美国马里兰州学院公园,高级计算机研究协会的马里兰大学电气与计算机工程系的C.M.Wai ts、R.Ghodss i和M.Dubey在2006年的“Gray-ScaleLi thography for MEMS Appl icat ions”。
W.Henke、W.Hoppe、H.J.Quenzer、P.Staudt-Fischbach和B.Wagner的“Simulation and exper imenta l study of gray-tone li thography for thefabricat ion of arbi trarily shaped surfaces”Proc.IEEE Micro ElectroMechanica l Syst.MEMS 1994年,大矶,日本,205-210页。
华盛顿特区2001年12月5-7日举办的国际半导体器件研究研讨会(ISDRS),C.M.Wai ts、R.Ghodssi、M.H.Ervin和M.Dubey的“MEMS-based Gray-ScaleLi thography”。
发明内容
本发明涉及一种在栅电极和漏电极之间实现非均匀的二维电子气分布的装置结构和方法。通过实现从栅极到漏极的锥形AlGaN层(电荷供应层),可以得到单调增加的2DEG分布,从而获得均匀的电场分布,因此最大化装置的FOM。
附图说明
图1a为载流子供应层(优选的为AlGaN)形成锥形之前的电荷密度的示意图,并因此为部分形成的HMET装置的均匀2DEG密度(深度没有按比例画出)的示意图;
图2b为载流子供应层(优选的为AlGaN)形成锥形之后的电荷密度的示意图,并因此为图1a的部分形成的HMET装置的在AlGaN层已经形成锥形后的非均匀2DEG密度(深度没有按比例画出)的示意图;
图1 c类似于图1b,但不是正视图而是以立体图示出了图1b的部分形成的HMET装置;
图2为图1a的完整HMET装置的在载流子供应层(优选AlGaN)已经在栅极与漏极之间的区域中形成锥形之后的优选实施例的电荷密度(深度没有按比列画出)的示意图;
图3描述的是在载流子供应层(优选AlGaN)中形成锥形部的可选方法;
图4描述的是图2装置的电场分布(平的)和锥形的2DEG密度;以及
图5描述的是具有零个、一个和两个场板的现有技术的HEMT装置的电场分布(锥形的)和平的2DEG密度。
具体实施方式
如图1a、图1b、图1c和图2中所示,为了改进沿漂移区26(在栅极30和漏极34之间的区域)的电场分布并因此提高HMET装置8的每单位漂移区长度的击穿电压能力,在一个优选实施例中,通过使载流子供应层16的轮廓(厚度或z方向)在栅极30与漏极34之间沿着x方向成单一锥形来沿着层18中的漂移区提供非均匀的横向2DEG剖面(profile)12。锥形由图1b和1c中的附图标记14表示。载流子供应层16例如可以为AlGaN/GaN HEMT中的AlGaN。使载流子供应层16的轮廓(厚度)为单一锥形将有效地建立二维电子气(2DEG)12的非均匀分布,其中载流子供应层16的厚度增加使得2_DEG密度增加。
图1a显示正在制造的过程中的HMET装置8。装置8的栅电极、源电极和漏电极尚未形成。在该图中,装置8在制造过程中为优选地生长在衬底10上的第III-V层的堆叠。衬底10可以是通常用于生长III-氮材料(例如,Si、蓝宝石、SiC、块状单晶GaN和其它材料)的任何适当衬底。如图1a可以看到,在一个实施例中,衬底10为GaN材料层18提供支承表面(但诸如AlGaN的其它材料也可以用来代替层18),或者由交替层(例如交替的AlGaN/GaN或交替的AlN/GaN)形成的超晶格可以用来代替层18,或者C-掺杂的GaN缓冲剂和AlGaN背势垒(back barrier)的结合可以用来代替层18,或者上述任意组合在其它实施例中可以被证明是适合于层18,该层用作HMET装置8中的缓冲层。
载流子供应层16优选由AlGaN材料形成并优选具有适当的Al摩尔分数,该摩尔分数的范围通常为在20-30%之间,并且在缓冲层18上生长或以其它方式形成。图1a还显示出设置在载流子供应层16上的光致抗蚀剂层22,该层22已经被光刻处理,优选地通过灰度级光刻法进行光刻处理,以允许三角形楔块(从横截面上看)部分24被从光刻层22上蚀刻掉。在随后的将楔形图案24从所述光致抗蚀剂22转移到载流子供应层16中,从而限定其中的锥形部14的RIE蚀刻过程期间,去除光致抗蚀剂22及其三角形的楔形部分24的层(参照图1b和/或图1C)。该过程优选地被优化成使光致抗蚀剂22保留在其中载流子供应层16优选地在锥形区14外保持完整的区域中,使得所述光致抗蚀剂的厚度优选地在锥形或楔形区14外不会由于上述的RIE蚀刻而减小。任何剩余的光致抗蚀剂22之后会通过适当的化学蚀刻剂被去除。
载流子供应层16在x方向上沿着所述漂移区26的给定位置上较厚(参照图2),其中x是从栅极30的边缘(面向漏极,其中x=0)朝向漏极34(其中在漏极34的面向栅极30的边缘处,x=LD)的水平方向。如上所述,在载流子供应层16中的锥形部14(参照图1b和/或图1c)优选通过光致抗蚀剂层22的灰度级光刻(以除去光致抗蚀剂的楔形部分24)而产生。紧跟这个过程的是上述受控的RIE,其中剩余的光致抗蚀剂22初始在楔形图案24的区域中被去除,并最终随着上面提到的RIE处理的进展或者通过化学蚀刻被完全去除。载流子供应层16在楔形图案24的较薄部分下比载流子供应层16在楔形图案24的较厚部分下会经历更长时间的RIE蚀刻,导致从所述光致抗蚀剂的楔形图案24的轮廓转移到载流子供应层16。载流子供应层的厚度优选地在横向方向上沿着栅极或漏极区的横向长度(沿着图1c的y方向)是一致的。
图3显示用于在载流子供应层16中形成这样的锥形图案或楔形部14的一种可选方法。这种可选方法涉及在光致抗蚀剂层22中打开具有不同尺寸的窗口或导孔24’,其中所述开口的尺寸是从将形成栅极的位置到将形成漏极的位置的横向距离的函数(该图案与灰度级光刻中通常采用的图案相似)。由于光致抗蚀剂22被完全从开口的窗口或导孔24’中移除,所述RIE蚀刻的加载效应将导致在较大的光致抗蚀剂窗口中的蚀刻速率比在较小的窗口开口中的蚀刻速率快,因此在载流子供应层16中获得锥形部14,如图1b和1c所示。该可选方法中的掩模图案类似于传统的灰度级掩模,但对于制作不同开口以在光致抗蚀剂22中形成锥形轮廓24则不依赖于光的强度,该可选方法依赖于用于在较宽开口窗口中蚀刻载流子供应层16的更多部分的RIE蚀刻过程的加载效应。
不用考虑何种方法用于形成锥形部14,该锥形部14在台阶部20处结束(参见图1b或1c)回到层16的正常高度,在该处附件将形成栅极30。锥形部14平滑地结束的位置为使载流子供应层16在将形成漏极34的位置附近(优选直接相邻)在楔形部或锥形部14的另一端38返回到其正常高度的位置。图2显示了栅极30、漏极34和钝化层28最终占据该区域。图1b显示了锥形部14在x方向上变化。图1c显示了锥形部14优选在y方向上保持不变。
在AlGaN层16的逐渐变细优选地使用上面关于图1a、图1b和图3中任一个所讨论的技术完成后,优选使用的是叠层的金属剥离之后是快速热退火(RTA)处理将欧姆接触部36和34形成到源极和漏极2DEG区域。此后,电介质28被沉积在暴露的表面处以进行钝化,并且接着在源极和漏极接触区36和34中形成图案以显现欧姆接触部36和34,随后形成栅极30。首先,栅极脚优选地使用干蚀刻或湿蚀刻或干蚀刻/湿蚀刻的组合在钝化电介质28中蚀刻出来。在此所公开的技术适于与增强模式HMET装置或耗尽模式HMET装置一起使用。在一个优选实施例中,如在增强模式装置中,氟处理或氟处理和栅极凹槽(借助于另外的干蚀刻)的组合可以被执行以耗尽其2DEG的栅极30下面的通道。然后沉积适当的栅极电介质32。在一个优选实施例中,栅极电介质32可以为通过原子层沉积沉积的Al2O3氧化物,然而,栅极电介质材料也可以采用不同于A1203的材料。
栅极30的金属叠列被沉积并形成图案。接着可以使用实现多级场板的进一步的步骤,其中可以结合使用非均匀的2DEG密度分布的场成形技术和多级场板技术的累积效应。尤其是在最后得到的HMET是大型动力装置的情况下,额外的中间金属电解质层和金属层可以用于减小互连阻抗。
由于局部通过在任意给定位置处控制载流子供应层16的厚度来确定2DEG区12中的电荷密度,因此通过控制载流子供应层16的高度(厚度)来获得非均匀的2DEG分布,其中所述流子供应层16的高度(厚度)应该作为沿着漂移区朝向漏极34横向远离栅极30的距离的函数而增加。参见图2,栅极30结构的右手侧优选定位在之前出现台阶部20的位置处,漏极34的左手侧优选定位于楔形部或锥形部的另一端38。2DEG密度对载流子供应层16的厚度的依赖性显示在以下论文中:Smorchkova,I.P.等人的“Polarizat ion-induced chargeand electron mobility in AlGaN/GaN heterostructures grown byplasma-assisted molecular epitaxy”,应用物理杂志,86卷,第8期,第4520-4526页,1999年10月,并且具体体现在图5c中。
如图5的能带图所示,该图来自于上述的Smorchkova,I.P.等人,可以看出当薄的AlGaN层被用作载流子供应层16时,费米能级高于施主表面态水平(donor surface states level),这导致供体原子被填充,而不是在GaN/AlGaN界面处将2DEG电子供应到阱中。随着AlGaN层厚度的增加,费米能级向下移动并最终与施主态能级重叠,导致一些施主空闲,且这些空闲施主初始的补偿电子被转移到2DEG阱。该重叠越高,则2DEG密度越高。
一种平电场分布是使用非均匀的2DEG密度的概念来实现,如图5所示,该图来自于上述的Smorchkova I.P.等人的论文,非均匀的2DEG密度的概念使漂移区的每单位长度的横向击穿电压最大并提高动态Ron衰变。与此相反,对于不同的结构如图5a-5c,如果使用均匀的2DEG密度分布,则电场分布可以是三角形(无场板)或者具有多个峰值,如图5b和5c(多场板)所示。均匀的2DEG和零个或多个场板导致降低的击穿电压BV和对图4中的动态Ron衰变与锥形2DEG分布的比较的较小抗扰性。
如果图2的实施例增加一个或多个场板,如上所述,这将会增加过程的复杂性,这是因为接着需要附加的工艺步骤,这将增加制造装置的成本。然而,图2的实施例增加一个或多个场板可以产生额外的性能优势。无论是否通过增加制造成本对图2的实施例增加一个或多个场板来改进性能都是设计选择的问题。
未显示在附图中,但由于是公知的,例如,可以在层16和18之间插入AlN分隔层以改进装置的电性能。
以上是对本发明优选实施例的详细描述。为了例示和说明已经呈现包括本发明的优选实施例的前述描述。它的目的不是要描述详尽或限制本发明到所公开的准确形式。许多修改和变化在上述教示的范围内都是可以的。本发明的额外变化可以在不脱离以下权利要求中所阐述的本发明的概念的情况下来设计。
概念
至少以下概念已经被公开:
概念1.一种HEMT装置,包括:
a.衬底;
b.缓冲层,所述缓冲层设置在所述衬底的上方;
c.载流子供应层,所述载流子供应层设置在所述缓冲层的上方;
d.栅极元件,所述栅极元件贯穿所述载流子供应层;
e.漏极元件,所述漏极元件设置在所述载流子供应层上;
f.其中,所述载流子供应层在所述栅极元件和所述漏极元件之间具有不均匀的厚度,所述载流子供应层具有相邻于所述漏极元件的相对较大的厚度和相邻于所述栅极元件的相对较小的厚度。
概念2.根据概念1所述的HEMT装置,其中,所述缓冲层包含GaN,并且其中所述载流子供应层含有AlGaN。
概念3.根据概念1所述的HEMT装置,其中,所述缓冲层和所述载流子供应层含有包括不同组III-氮的化合物。
概念4.根据概念1所述的HEMT装置,其中,在所述载流子供应层中形成二维电子气导电沟道,所述二维电子气导电沟道在所述栅极元件和所述漏极元件之间具有非均匀分布。
概念5.一种HEMT装置,所述HEMT装置具有非均匀的二维电子气导电沟道,所述二维电子气导电沟道在HEMT装置的栅极元件和HEMT装置的漏极元件之间形成在HEMT装置的载流子供应层中,所述HMET装置还在所述栅极元件和所述漏极元件之间具有恒定电场分布。
概念6.一种HEMT装置,包括:
a.衬底;
b.缓冲层,所述缓冲层设置在所述衬底的上方;
c.载流子供应层,所述载流子供应层设置在所述缓冲层的上方;
d.栅极元件,所述栅极元件贯穿所述载流子供应层;
e.漏极元件,所述漏极元件设置在所述载流子供应层上;
其中,所述栅极元件和所述漏极元件之间形成二维电子气(2DEG);以及
其中,所述载流子供应层被构造为适应于2DEG,使得作为栅极与漏极之间的距离的函数的电场强度变化基本上是恒定的。
概念7.根据概念6所述的HEMT装置,其中,所述缓冲层包含GaN,并且其中所述载流子供应层含有AlGaN。
概念8.根据概念6所述的HEMT装置,其中,所述缓冲层和所述载流子供应层含有包括不同组III-氮的化合物。
概念9.根据概念6所述的HEMT装置,其中,二维电子气导电沟道形成在所述载流子供应层中,所述二维电子气导电沟道在所述栅极元件和所述漏极元件之间具有非均匀分布。
概念10.一种制造HEMT装置的方法,包括以下步骤:
a.形成衬底;
b.在所述衬底的上方设置缓冲层;
c.在所述缓冲层的上方设置载流子供应层;
d.在所述载流子供应层上形成光致抗蚀剂层;
e.在所述光致抗蚀剂层中形成多个窗口开口,所述窗口开口的尺寸从起点处开始增加并到终点处结束;
f.通过光致抗蚀剂层至少在紧邻所述窗口开口的区域中蚀刻,从而在所述载流子供应层中蚀刻出锥形部;和
g.在所述起点处或者紧邻所述起点形成栅极元件,并且在所述终点处或者紧邻所述终点形成漏极元件,从而在所述载流子供应层中紧跟在所述栅极元件之后设置所述锥形部的相对较薄部分,所述载流子供应层的厚度沿着所述锥形部向所述漏极元件增加。
概念11.根据概念10所述的方法,还包括以下步骤:
以钝化材料至少填充所述载流子供应层的通过所述多个窗口开口蚀刻的区域。
概念12.根据概念10所述的方法,其中,所述形成所述栅极元件的步骤包括形成栅极电介质层和金属栅极。
权利要求书(按照条约第19条的修改)
1.一种HEMT装置,包括:
a.衬底;
b.缓冲层,所述缓冲层设置在所述衬底的上方;
c.载流子供应层,所述载流子供应层设置在所述缓冲层的上方;
d.栅极元件,所述栅极元件贯穿所述载流子供应层;和
e.漏极元件,所述漏极元件设置在所述载流子供应层上,
其中,所述载流子供应层具有单调递减的厚度,所述厚度从所述栅极元件朝向所述漏极元件增加。
2.根据权利要求1所述的HEMT装置,其中,所述缓冲层包含GaN,并且其中所述载流子供应层含有AlGaN。
3.根据权利要求1所述的HEMT装置,其中,所述缓冲层和所述载流子供应层含有包括不同组I I I-氮的化合物。
4.根据权利要求1所述的HEMT装置,其中,在所述载流子供应层中形成二维电子气导电沟道,所述二维电子气导电沟道在所述栅极元件和所述漏极元件之间具有非均匀分布。
5.一种HEMT装置,所述HEMT装置具有非均匀的二维电子气导电沟道,所述二维电子气导电沟道在所述HEMT装置的栅极元件和所述HEMT装置的漏极元件之间形成在所述HEMT装置的载流子供应层中,所述HMET装置还在所述栅极元件和所述漏极元件之间具有恒定的电场分布。
6.一种HEMT装置,包括:
a.衬底;
b.缓冲层,所述缓冲层设置在所述衬底的上方;
c.载流子供应层,所述载流子供应层设置在所述缓冲层的上方;
d.栅极元件,所述栅极元件贯穿所述载流子供应层;和
e.漏极元件,所述漏极元件设置在所述载流子供应层上;
其中,所述栅极元件和所述漏极元件之间形成二维电子气(2DEG);以及
其中,所述载流子供应层被构造为适应于所述2DEG,使得作为栅极与漏极之间的距离的函数的电场强度变化基本上是恒定的。
7.根据权利要求6所述的HEMT装置,其中,所述缓冲层包含GaN,并且其中所述载流子供应层含有AlGaN。
8.根据权利要求6所述的HEMT装置,其中,所述缓冲层和所述载流子供应层含有包括不同组III-氮的化合物。
9.根据权利要求6所述的HEMT装置,其中,二维电子气导电沟道形成在所述载流子供应层中,所述二维电子气导电沟道在所述栅极元件和所述漏极元件之间具有非均匀分布。
10.一种制造HEMT装置的方法,包括以下步骤:
a.形成衬底;
b.在所述衬底的上方设置缓冲层;
c.在所述缓冲层的上方设置载流子供应层;
d.在所述载流子供应层上形成光致抗蚀剂层;
e.在所述光致抗蚀剂层中形成多个窗口开口,所述窗口开口的尺寸从起点向终点减小;
f.通过所述光致抗蚀剂层至少在紧邻所述窗口开口的区域中蚀刻,从而在所述载流子供应层中蚀刻出单调变化的锥形部;和
g.在所述起点处或者紧邻所述起点形成栅极元件,并且在所述终点处或者紧邻所述终点形成漏极元件,所述载流子供应层的厚度沿着所述单调变化的锥形部从所述栅极元件朝向所述漏极元件增加。
11.根据权利要求10所述的方法,还包括以下步骤:
以钝化材料至少填充所述载流子供应层的通过所述多个窗口开口蚀刻的区域。
12.根据权利要求10所述的方法,其中,所述形成所述栅极元件的步骤包括形成栅极电介质层和金属栅极。

Claims (12)

1.一种HEMT装置,包括:
a.衬底;
b.缓冲层,所述缓冲层设置在所述衬底的上方;
c.载流子供应层,所述载流子供应层设置在所述缓冲层的上方;
d.栅极元件,所述栅极元件贯穿所述载流子供应层;和
e.漏极元件,所述漏极元件设置在所述载流子供应层上;
f.其中,所述载流子供应层在所述栅极元件和所述漏极元件之间具有不均匀的厚度,所述载流子供应层具有相邻于所述漏极元件的相对较大的厚度和相邻于所述栅极元件的相对较小的厚度。
2.根据权利要求1所述的HEMT装置,其中,所述缓冲层包含GaN,并且其中所述载流子供应层含有AlGaN。
3.根据权利要求1所述的HEMT装置,其中,所述缓冲层和所述载流子供应层含有包括不同组III-氮的化合物。
4.根据权利要求1所述的HEMT装置,其中,在所述载流子供应层中形成二维电子气导电沟道,所述二维电子气导电沟道在所述栅极元件和所述漏极元件之间具有非均匀分布。
5.一种HEMT装置,所述HEMT装置具有非均匀的二维电子气导电沟道,所述二维电子气导电沟道在所述HEMT装置的栅极元件和所述HEMT装置的漏极元件之间形成在所述HEMT装置的载流子供应层中,所述HMET装置还在所述栅极元件和所述漏极元件之间具有恒定的电场分布。
6.一种HEMT装置,包括:
a.衬底;
b.缓冲层,所述缓冲层设置在所述衬底的上方;
c.载流子供应层,所述载流子供应层设置在所述缓冲层的上方;
d.栅极元件,所述栅极元件贯穿所述载流子供应层;和
e.漏极元件,所述漏极元件设置在所述载流子供应层上;
其中,所述栅极元件和所述漏极元件之间形成二维电子气(2DEG);以及
其中,所述载流子供应层被构造为适应于所述2DEG,使得作为栅极与漏极之间的距离的函数的电场强度变化基本上是恒定的。
7.根据权利要求6所述的HEMT装置,其中,所述缓冲层包含GaN,并且其中所述载流子供应层含有AlGaN。
8.根据权利要求6所述的HEMT装置,其中,所述缓冲层和所述载流子供应层含有包括不同组III-氮的化合物。
9.根据权利要求6所述的HEMT装置,其中,二维电子气导电沟道形成在所述载流子供应层中,所述二维电子气导电沟道在所述栅极元件和所述漏极元件之间具有非均匀分布。
10.一种制造HEMT装置的方法,包括以下步骤:
a.形成衬底;
b.在所述衬底的上方设置缓冲层;
c.在所述缓冲层的上方设置载流子供应层;
d.在所述载流子供应层上形成光致抗蚀剂层;
e.在所述光致抗蚀剂层上形成多个窗口开口,所述窗口开口的尺寸从起点处开始增加并到终点处结束;
f.通过所述光致抗蚀剂层至少在紧邻所述窗口开口的区域中蚀刻,从而在所述载流子供应层中蚀刻出锥形部;和
g.在所述起点处或者紧邻所述起点形成栅极元件,并且在所述终点处或者紧邻所述终点形成漏极元件,从而在所述载流子供应层中紧跟在所述栅极元件之后设置所述锥形部的相对较薄部分,所述载流子供应层的厚度沿着所述锥形部向所述漏极元件增加。
11.根据权利要求10所述的方法,还包括以下步骤:
以钝化材料至少填充所述载流子供应层的通过所述多个窗口开口蚀刻的区域。
12.根据权利要求10所述的方法,其中,所述形成所述栅极元件的步骤包括形成栅极电介质层和金属栅极。
CN201380027246.1A 2012-05-23 2013-05-09 Hemt装置和制造hemt装置的方法 Active CN104350601B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US13/479,018 2012-05-23
US13/479,018 US8680536B2 (en) 2012-05-23 2012-05-23 Non-uniform two dimensional electron gas profile in III-Nitride HEMT devices
US13/478,609 2012-05-23
US13/478,609 US9379195B2 (en) 2012-05-23 2012-05-23 HEMT GaN device with a non-uniform lateral two dimensional electron gas profile and method of manufacturing the same
US13/478,402 2012-05-23
US13/478,402 US9000484B2 (en) 2012-05-23 2012-05-23 Non-uniform lateral profile of two-dimensional electron gas charge density in type III nitride HEMT devices using ion implantation through gray scale mask
PCT/US2013/040447 WO2013176906A1 (en) 2012-05-23 2013-05-09 Hemt device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
CN104350601A true CN104350601A (zh) 2015-02-11
CN104350601B CN104350601B (zh) 2018-04-20

Family

ID=54292264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380027246.1A Active CN104350601B (zh) 2012-05-23 2013-05-09 Hemt装置和制造hemt装置的方法

Country Status (3)

Country Link
EP (1) EP2852980B1 (zh)
CN (1) CN104350601B (zh)
WO (1) WO2013176906A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244376A (zh) * 2015-09-08 2016-01-13 东南大学 一种增强型AlGaN/GaN高电子迁移率晶体管
CN106298906A (zh) * 2016-05-24 2017-01-04 苏州捷芯威半导体有限公司 一种功率半导体器件及其制造方法
CN110970488A (zh) * 2018-10-01 2020-04-07 半导体元件工业有限责任公司 电子器件
CN115799331A (zh) * 2023-01-30 2023-03-14 南京理工大学 一种基于蓝宝石衬底的多凹槽AlGaN/GaN HEMT器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376104A1 (en) * 2021-05-20 2022-11-24 Cree, Inc. Transistors including semiconductor surface modification and related fabrication methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800172A (en) * 1987-02-09 1989-01-24 Kabushiki Kaisha Toshiba Manufacturing method for cascaded junction field effect transistor
US20030139014A1 (en) * 2001-10-15 2003-07-24 Khalil Najafi Method of fabricating a device having a desired non-planar surface or profile and device produced thereby
US20090315075A1 (en) * 2008-06-23 2009-12-24 Sanken Electric Co., Ltd. Semiconductor device
US20100052015A1 (en) * 2008-08-26 2010-03-04 Sanken Electric Co., Ltd. Semiconductor device
CN101971308A (zh) * 2008-03-12 2011-02-09 日本电气株式会社 半导体器件
US20110057257A1 (en) * 2009-09-08 2011-03-10 Samsung Electro-Mechanics Co., Ltd. Semiconductor device and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759186B2 (en) * 2008-09-03 2010-07-20 The United States Of America As Represented By The Secretary Of The Navy Method for fabricating junction termination extension with formation of photosensitive dopant mask to control doping profile and lateral width for high-voltage electronic devices
US7968913B2 (en) * 2008-12-08 2011-06-28 National Semiconductor Corporation CMOS compatable fabrication of power GaN transistors on a <100> silicon substrate
US7898004B2 (en) * 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
US8390000B2 (en) * 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US8124505B1 (en) * 2010-10-21 2012-02-28 Hrl Laboratories, Llc Two stage plasma etching method for enhancement mode GaN HFET

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800172A (en) * 1987-02-09 1989-01-24 Kabushiki Kaisha Toshiba Manufacturing method for cascaded junction field effect transistor
US20030139014A1 (en) * 2001-10-15 2003-07-24 Khalil Najafi Method of fabricating a device having a desired non-planar surface or profile and device produced thereby
CN101971308A (zh) * 2008-03-12 2011-02-09 日本电气株式会社 半导体器件
US20090315075A1 (en) * 2008-06-23 2009-12-24 Sanken Electric Co., Ltd. Semiconductor device
US20100052015A1 (en) * 2008-08-26 2010-03-04 Sanken Electric Co., Ltd. Semiconductor device
US20110057257A1 (en) * 2009-09-08 2011-03-10 Samsung Electro-Mechanics Co., Ltd. Semiconductor device and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244376A (zh) * 2015-09-08 2016-01-13 东南大学 一种增强型AlGaN/GaN高电子迁移率晶体管
CN106298906A (zh) * 2016-05-24 2017-01-04 苏州捷芯威半导体有限公司 一种功率半导体器件及其制造方法
CN110970488A (zh) * 2018-10-01 2020-04-07 半导体元件工业有限责任公司 电子器件
CN110970488B (zh) * 2018-10-01 2024-01-30 半导体元件工业有限责任公司 电子器件
CN115799331A (zh) * 2023-01-30 2023-03-14 南京理工大学 一种基于蓝宝石衬底的多凹槽AlGaN/GaN HEMT器件
CN115799331B (zh) * 2023-01-30 2023-06-09 南京理工大学 一种基于蓝宝石衬底的多凹槽AlGaN/GaN HEMT器件

Also Published As

Publication number Publication date
CN104350601B (zh) 2018-04-20
WO2013176906A1 (en) 2013-11-28
EP2852980A1 (en) 2015-04-01
EP2852980A4 (en) 2017-01-18
EP2852980B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
US8680536B2 (en) Non-uniform two dimensional electron gas profile in III-Nitride HEMT devices
CN104377241B (zh) 功率半导体器件及其制造方法
JP5260550B2 (ja) Iii族窒化物素子のための活性領域成形およびその製造方法
CN100508212C (zh) 半导体器件
US9024357B2 (en) Method for manufacturing a HEMT transistor and corresponding HEMT transistor
US9525052B2 (en) Active area shaping of III-nitride devices utilizing a field plate defined by a dielectric body
US9536966B2 (en) Gate structures for III-N devices
US9252255B2 (en) High electron mobility transistor and method of manufacturing the same
WO2008021544A2 (en) High breakdown enhancement mode gallium nitride based high electron mobility transistors with integrated slant field plate
DE102013108698B4 (de) III-Nitrid-Vorrichtung mit hoher Durchbruchspannung und Verfahren
CN110754001B (zh) 用以改善氮化镓间隔件厚度均匀度的增强型氮化镓晶体管
TWI736600B (zh) 高電子遷移率電晶體
JP6393758B2 (ja) 低減された出力キャパシタンスを有するGaNデバイスおよびこれを作製するためのプロセス
CN104350601A (zh) Hemt装置和制造hemt装置的方法
US11538908B2 (en) Semiconductor device
US8946778B2 (en) Active area shaping of III-nitride devices utilizing steps of source-side and drain-side field plates
JP6199147B2 (ja) 電界効果型化合物半導体装置及びその製造方法
US20200273974A1 (en) Iii-n transistor structures with stepped cap layers
CN116344586A (zh) 折叠沟道氮化镓基场效应晶体管及其制备方法
US9318592B2 (en) Active area shaping of III-nitride devices utilizing a source-side field plate and a wider drain-side field plate
TW201929221A (zh) 半導體元件及其製作方法
US8987784B2 (en) Active area shaping of III-nitride devices utilizing multiple dielectric materials
CN116613189A (zh) 高电子迁移率晶体管及其制造方法
JP2015211063A (ja) 窒化物半導体とリセスゲート電極を利用する電界効果型トランジスタ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant