CN104347747A - 硅电池上生长氮镓铟系的三结太阳能电池 - Google Patents

硅电池上生长氮镓铟系的三结太阳能电池 Download PDF

Info

Publication number
CN104347747A
CN104347747A CN201310335019.7A CN201310335019A CN104347747A CN 104347747 A CN104347747 A CN 104347747A CN 201310335019 A CN201310335019 A CN 201310335019A CN 104347747 A CN104347747 A CN 104347747A
Authority
CN
China
Prior art keywords
cell
battery
layer
solar cell
grows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310335019.7A
Other languages
English (en)
Inventor
张启明
王帅
高鹏
吴艳梅
刘如彬
孙强
肖志斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201310335019.7A priority Critical patent/CN104347747A/zh
Publication of CN104347747A publication Critical patent/CN104347747A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种硅电池上生长氮镓铟系的三结太阳能电池,自下至上包括Si底电池、InxGa1-xN第一电池和InyGa1-yN第二电池;所述底电池的p-Si层上面至第一电池之间依次有AlN成核层和GaN缓冲层,第一电池和第二电池之间有隧道结,其特点是:所述底电池衬底下面制有负电极;第二电池上面制有半透明电流扩展层、半透明电流扩展层上制有正电极。本发明由于在底电池衬底下面直接蒸镀负电极,简化了工艺,降低了成本,还可当做反射镜使用,充分利用了太阳光谱、电池总转换效率可达40%以上;通过蒸镀半透明电流扩展层,加强了正电极对载流子的收集,提高了电池的抗辐射能力,延长了电池的使用寿命。

Description

硅电池上生长氮镓铟系的三结太阳能电池
技术领域
本发明属于太阳电池技术领域,特别是涉及一种硅电池上生长氮镓铟系的三结太阳能电池。
背景技术
公知的能源都是不可再生的,经过多年的开采之后,这些能源的储量都在一天天地减少,而且使用后会造成严重的环境问题,于是人们对太阳能这种取之不尽用之不竭的绿色能源越来越重视,长期以来,都在孜孜不倦地寻找太阳能高转换效率的材料。近年来,以GaN及InGaN,AlGaN为代表的第三代半导体材料—Ⅲ族氮化物是人们研究的热点,它主要应用于光电器件和高温、高频、大功率器件。2002年的研究结果表明,InN的禁带宽度不是之前报道的1.89eV而是0.7eV,这就意味着通过调节InGaN材料中In组分,可使其禁带宽度从3.4eV(GaN)到0.7eV(InN)连续可调,也就是其对应吸收光谱的波长从紫外部分(365nm)可以一直延伸到近红外部分(1770nm),几乎完整地覆盖了整个太阳光谱,除此之外,还有吸收系数高、电子迁移率高、抗辐射能力强等优点,于是InGaN材料在太阳能电池领域中的应用引起了人们的密切关注。
蓝宝石和碳化硅衬底是目前生长InGaN使用最多的材料,使用蓝宝石衬底的制备工艺已经很成熟了,但是其硬度高、导电及导热差,限制了InGaN器件的性能;碳化硅衬底相比蓝宝石衬底具有更优良的性能,但其价格昂贵,限制了它的应用;而硅衬底不仅硬度和价格低,而且具有易解理、易得到大面积高质量商业化衬底以及硅基器件易于集成,带隙为1.12eV等优点,被认为是最有希望取代以上两种衬底生长InGaN的一种理想材料,但是硅衬底存在晶格失配和热膨胀失配的问题。
经过检索发现,人们开始研究如何采用Si衬底生长InGaN材料制备太阳能电池,并克服晶格失配和热膨胀失配的问题。如:申请号为200810240351.4,名称为“p-i-n型InGaN量子点太阳能电池结构及其制作方法”的发明专利,结构包括:一衬底,其上依次为低温氮化镓成核层、非有意掺杂氮化镓缓冲层、n型掺杂InxGa1-xN层、非掺杂i层InyGa1-yN量子点结构和p型掺杂InxGal-xN层;申请号为201110300096.X,名称为“含有超晶格结构的p-i-n型InGaN太阳电池”的发明专利,结构包括:一衬底,其上依次为高温AlN成核层、非有意掺杂氮化镓缓冲层、n型掺杂GaN层、InGaN/GaN超晶格和p型掺杂GaN层,而且p型GaN层表面有Ni/Au电极,n型GaN层表面有Al/Au电极;申请号为201210246805.5,名称为“InGaN/Si双结太阳能电池”的发明专利,结构包括:n-Si衬底,n-Si衬底上面自下至上依次有AlN成核层、GaN缓冲层、Si掺杂的n-InxGa1-xN层、Mg掺杂的p-InxGa1-xN层、半透明电流扩展层和正电极;申请号为201210246406.9,名称为“一种InGaN/Si双结太阳能电池的制备方法”的实用新型专利,结构包括:n-Si衬底,n-Si衬底上面自下至上依次有AlN成核层、GaN缓冲层、Si掺杂的n-InxGa1-xN层、Mg掺杂的p-InxGa1-xN层、半透明电流扩展层和正电极。
上述检索到的专利申请均采用Si作为衬底制备InGaN系太阳能电池,解决了晶格失配和热膨胀失配的问题,但前两个由于增加了外延工艺的复杂度,降低了电池的总转换效率,提高了生产成本;后两个为两结太阳能电池,并不能充分利用太阳光谱。
发明内容
本发明为解决现有技术存在的问题,提供了一种易于制备、生产成本低、能够充分利用太阳光谱、总转换效率高、抗辐射能力强、使用寿命长的硅电池上生长氮镓铟系的三结太阳能电池。
本发明采取的技术方案是:
硅电池上生长氮镓铟系的三结太阳能电池,自下至上包括Si底电池、InxGa1-xN第一电池和InyGa1-yN第二电池,Si底电池由n-Si衬底和p-Si层构成;所述p-Si层上面至InxGa1-xN第一电池之间依次有AlN成核层和GaN缓冲层,InxGa1-xN第一电池和InyGa1-yN第二电池之间有隧道结,其特点是:所述n-Si衬底下面制有负电极;所述InyGa1-yN第二电池上面制有半透明电流扩展层、半透明电流扩展层上制有正电极。
本发明还可以采用如下技术方案:
所述半透明电流扩展层为ITO薄膜;ITO薄膜上表面涂有光刻胶作为保护区,涂有光刻胶的ITO薄膜上光刻有梳状凹槽作为正电极区域,所述正电极一端置于正电极区域内。
所述正电极为自下至上蒸镀成一体构成厚度为20nm/60nm的Ni/Au电极。
所述的负电极为自上至下蒸镀成一体构成厚度为15nm/15nm/400nm的Ti/Pd/Ag电极。
所述的正电极区域的深度为50-100nm。
本发明具有的优点和积极效果:
1、本发明由于在n-Si衬底的下面直接蒸镀负电极,简化了工艺,降低了成本,并且这样蒸镀的负电极还可以当做反射镜使用,充分利用了太阳光谱、有效提高了电池的总转换效率,可达到40%以上;
2、本发明通过蒸镀ITO薄膜作为半透明电流扩展层,加强了正电极对载流子的收集,在ITO薄膜上光刻出梳状凹槽蒸镀正电极,提高了电池的抗辐射能力,延长了电池的使用寿命。
附图说明
图1是本发明硅电池上生长氮镓铟系的三结太阳能电池结构示意图;
图2是图1中半透明电流扩展层上光刻出的正电极区域和保护区。
图中:1-Si底电池,2-AlN成核层,3-GaN缓冲层,4-InxGa1-xN第一电池,5-隧道结,6-InyGa1-yN第二电池,7-半透明电流扩展层,8-正电极,9-负电极,10-正电极区域,11-保护区。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
硅电池上生长氮镓铟系的三结太阳能电池,自下至上包括Si底电池、InxGa1-xN第一电池和InyGa1-yN第二电池,Si底电池由n-Si衬底和p-Si层构成;所述p-Si层上面至InxGa1-xN第一电池之间依次有AlN成核层和GaN缓冲层,InxGa1-xN第一电池和InyGa1-yN第二电池之间有隧道结。
本发明的创新点包括:
所述n-Si衬底下面制有负电极;所述InyGa1-yN第二电池上面制有半透明电流扩展层、半透明电流扩展层上制有正电极。
本发明的创新点还包括:
所述半透明电流扩展层为ITO薄膜;ITO薄膜上表面涂有光刻胶作为保护区,涂有光刻胶的ITO薄膜上光刻有梳状凹槽作为正电极区域,所述正电极一端置于正电极区域内。
所述正电极为自下至上蒸镀成一体构成厚度为20nm/60nm的Ni/Au电极。
所述的负电极为自上至下蒸镀成一体构成厚度为15nm/15nm/400nm的Ti/Pd/Ag电极。
所述的正电极区域的深度为50-100nm。
本发明硅电池上生长氮镓铟系的三结太阳能电池的制作过程:
步骤1、选用超声清洗后的n-Si作为衬底;
步骤2、采用金属有机化学气相沉积技术(MOCVD),将n-Si衬底置于反应室中,并通入TMAl和NH3,随着温度的升高,Al原子开始扩散到n-Si层中替代Si原子,n-S衬底上形成p-Si层,构成了Si底电池1;在900-1100℃(最佳值1000℃)进行生长厚度为50-100nm(最佳值60nm)的AlN成核层2;
步骤3、采用金属有机化学气相沉积技术在AlN成核层上生长GaN缓冲层3,生长温度为900-1100℃,厚度范围为0.5-2μm,本层可减少外延层的缺陷密度,从而提高晶体质量;
步骤4、在GaN缓冲层上生长InxGa1-xN第一电池4,包括Si掺杂的n-InxGa1-xN层和Mg掺杂的p-InxGa1-xN层,生长温度为600-1100℃(最佳值为1000℃),其中0.5≤x≤0.7(最佳值为0.61),掺杂浓度为1×1017-1×1019cm-3(最佳值分别为1×1017和1×1018),厚度范围为50nm-350nm(最佳值分别为200nm和100nm);
步骤5、在InxGa1-xN第一电池上生长隧道结5,包括Mg掺杂的p+-InxGa1-xN层和Si掺杂的n+-InxGa1-xN层,生长温度为600-1100℃(最佳值为900℃),其中0.5≤x≤0.7(最佳值为0.43),掺杂浓度为1×1019-1×1020cm-3(最佳值分别为5×1019),厚度范围为10nm-50nm(最佳值分别为20nm);
步骤6、在GaN缓冲层上生长InyGa1-yN第二电池6,包括Si掺杂的n-InyGa1-yN层和Mg掺杂的p-InyGa1-yN层,生长温度为600-1100℃(最佳值为1000℃),其中0.3≤y≤0.5(最佳值为0.43),掺杂浓度为1×1017-1×1019cm-3(最佳值分别为1×1017和1×1018),厚度范围为50nm-350nm(最佳值分别为200nm和100nm);
步骤7、在InyGa1-yN第二电池上蒸镀半透明电流扩展层7;即将步骤6生长后的材料和ITO材料置于电子束蒸发设备中,其真空度为10-4Pa以下,同时通入流量为2-5sccm(最佳值3.5sccm)的氧气,温度约为150-300℃(最佳值200℃),蒸镀1-3小时(最佳值2小时),p-InxGa1-xN层上形成150-350nm(最佳值200nm)厚的ITO膜;取出蒸镀后的材料,再放入退火炉中,350-500℃(最佳值450℃)的N2环境下,退火10-20分钟(最佳值15分钟),随炉冷却至常温,InyGa1-yN第二电池的ITO膜为半透明电流扩展层,在ITO薄膜上表面涂上光刻胶作为保护区11,采用光刻机,在涂有光刻胶的ITO薄膜上光刻出如图2所示,深度为50-100nm(最佳值80nm)的梳状凹槽作为正电极区域10;这样加强了正电极对载流子的收集,提高了电池的抗辐射能力,延长了电池的使用寿命;
步骤8、蒸镀正电极:将光刻后的材料和Au、Ni置于电子束蒸发设备中,其真空度为10-4Pa以下时开始蒸镀,正电极区域蒸镀出一层厚度10-30nm(最佳值为20nm)的Ni,在Ni上蒸镀出一层厚度50-70nm(最佳值为60nm)的Au,整个蒸镀过程中温度为50-150℃(最佳值为100℃)、蒸镀时间为1-3小时(最佳值为2小时);在500-600℃(最佳值为550℃)的N2环境下,退火1-10分钟(最佳值为5分钟),随炉自然冷却至常温后,半透明电流扩展层的正电极区域即蒸镀出自下至上成为一体的Ni/Au正电极8;
步骤9、蒸镀负电极:将蒸镀正电极后材料的n-Si衬底背面朝上,置于电子束蒸发设备中,并将Ti、Pd和Ag一同置于电子束蒸发设备中,其真空度为10-4Pa以下时开始蒸镀,在n-Si衬底的底面依次蒸镀出厚度10-20nm(最佳值为15nm)的Ti、10-30nm(最佳值为15nm)的Pd和300-500nm(最佳值为400nm)的Ag,整个蒸镀过程中温度约为50-150℃(最佳值为100℃)、蒸镀时间为1-3小时(最佳值为2小时);在700-800℃(最佳值为750℃)的N2环境下,退火1-10分钟(最佳值为5分钟),随炉自然冷却至常温后,n-Si衬底的背面蒸镀出图1所示电池位置自上至下成为一体的Ti/Pd/Ag负电极9,即完成本发明硅电池上生长氮镓铟系的三结太阳能电池的制备方法的制作。该负极的制备过程简化了工艺,降低了成本,并可以当做反射镜使用,进一步提高了电池的总转换效率,可达到40%以上。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式,这些均属于本发明的保护范围之内。

Claims (7)

1.硅电池上生长氮镓铟系的三结太阳能电池,自下至上包括Si底电池、InxGa1-xN第一电池和InyGa1-yN第二电池,Si底电池由n-Si衬底和p-Si层构成;所述p-Si层上面至InxGa1-xN第一电池之间依次有AlN成核层和GaN缓冲层,InxGa1-xN第一电池和InyGa1-yN第二电池之间有隧道结,其特征在于:所述n-Si衬底下面制有负电极;所述InyGa1-yN第二电池上面制有半透明电流扩展层、半透明电流扩展层上制有正电极。
2.根据权利要求1所述的硅电池上生长氮镓铟系的三结太阳能电池,其特征在于:所述半透明电流扩展层为ITO薄膜;ITO薄膜上表面涂有光刻胶作为保护区,涂有光刻胶的ITO薄膜上光刻有梳状凹槽作为正电极区域,所述正电极一端置于正电极区域内。
3.根据权利要求1所述的硅电池上生长氮镓铟系的三结太阳能电池,其特征在于:所述正电极为自下至上蒸镀成一体构成厚度为20nm/60nm的Ni/Au电极。
4.根据权利要求1所述的硅电池上生长氮镓铟系的三结太阳能电池,其特征在于:所述的负电极为自上至下蒸镀成一体构成厚度为15nm/15nm/400nm的Ti/Pd/Ag电极。
5.根据权利要求2所述的硅电池上生长氮镓铟系的三结太阳能电池,其特征在于:所述的正电极区域的深度为50-100nm。
6.根据权利要求1所述的硅电池上生长氮镓铟系的三结太阳能电池,其特征在于:所述InxGa1-xN第一电池中0.5≤x≤0.7;所述InyGa1-yN第二电池中0.3≤y≤0.5。
7.根据权利要求1所述的硅电池上生长氮镓铟系的三结太阳能电池,其特征在于:所述隧道结包括Mg掺杂的p+-InxGa1-xN层和Si掺杂的n+-InxGa1-xN层,其中0.5≤x≤0.7。
CN201310335019.7A 2013-08-01 2013-08-01 硅电池上生长氮镓铟系的三结太阳能电池 Pending CN104347747A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310335019.7A CN104347747A (zh) 2013-08-01 2013-08-01 硅电池上生长氮镓铟系的三结太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310335019.7A CN104347747A (zh) 2013-08-01 2013-08-01 硅电池上生长氮镓铟系的三结太阳能电池

Publications (1)

Publication Number Publication Date
CN104347747A true CN104347747A (zh) 2015-02-11

Family

ID=52502931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310335019.7A Pending CN104347747A (zh) 2013-08-01 2013-08-01 硅电池上生长氮镓铟系的三结太阳能电池

Country Status (1)

Country Link
CN (1) CN104347747A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265502A (zh) * 2019-06-13 2019-09-20 深圳市科创数字显示技术有限公司 一种硅基氮化铟太阳能电池及其制备方法
CN112928178A (zh) * 2021-02-07 2021-06-08 中山德华芯片技术有限公司 一种三色探测器及其制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265502A (zh) * 2019-06-13 2019-09-20 深圳市科创数字显示技术有限公司 一种硅基氮化铟太阳能电池及其制备方法
CN112928178A (zh) * 2021-02-07 2021-06-08 中山德华芯片技术有限公司 一种三色探测器及其制作方法
CN112928178B (zh) * 2021-02-07 2021-11-02 中山德华芯片技术有限公司 一种三色探测器及其制作方法

Similar Documents

Publication Publication Date Title
CN102290478B (zh) 一种p-i-n型单结InGaN太阳能电池
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN101515607B (zh) Ⅲ-v族氮化物基有机/无机杂化纳米结构太阳电池
CN104300015B (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
CN103000758B (zh) 双面外延生长GaAs三结太阳能电池的制备方法
CN102290493A (zh) 一种p-i-n型单结InGaN太阳能电池的制备方法
CN102324443A (zh) 一种倒装三结InGaN太阳能电池
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN102969387B (zh) GaInP/GaAs/InGaAs三结太阳能电池外延结构
CN102738311B (zh) 一种InGaN/Si双结太阳能电池的制备方法
CN102790117B (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN102751368B (zh) InGaN/Si双结太阳能电池
CN109216484A (zh) 一种石墨烯/AlGaAs多结异质太阳能电池及其制备方法
CN210778633U (zh) 一种氮化物多结太阳能电池
CN104347747A (zh) 硅电池上生长氮镓铟系的三结太阳能电池
CN110137269A (zh) 一种石墨烯/InGaN多结异质太阳能电池及其制备方法
CN103594540A (zh) 一种含有界面δ掺杂的异质结太阳电池
CN102779865B (zh) 一种以锗为隧穿结的硅基三结太阳能电池
CN103367480B (zh) GaAs隧道结及其制备方法
CN102790119A (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
CN203398145U (zh) 一种InGaN/Si三结太阳能电池
CN103579388B (zh) 一种含有双背场结构的太阳电池
CN102324448B (zh) 一种倒装三结InGaN太阳能电池的制备方法
CN102231402B (zh) 一种ii-vi族稀释氧化物半导体薄膜太阳电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150211

WD01 Invention patent application deemed withdrawn after publication