CN104345049A - 激光诱导击穿光谱的小波阈值降噪的阈值校正方法 - Google Patents

激光诱导击穿光谱的小波阈值降噪的阈值校正方法 Download PDF

Info

Publication number
CN104345049A
CN104345049A CN201310349855.0A CN201310349855A CN104345049A CN 104345049 A CN104345049 A CN 104345049A CN 201310349855 A CN201310349855 A CN 201310349855A CN 104345049 A CN104345049 A CN 104345049A
Authority
CN
China
Prior art keywords
wavelet
laser
threshold
threshold value
induced breakdown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310349855.0A
Other languages
English (en)
Other versions
CN104345049B (zh
Inventor
于海斌
张博
孙兰香
杨志家
辛勇
丛智博
齐立峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Automation of CAS
Original Assignee
Shenyang Institute of Automation of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Automation of CAS filed Critical Shenyang Institute of Automation of CAS
Priority to CN201310349855.0A priority Critical patent/CN104345049B/zh
Publication of CN104345049A publication Critical patent/CN104345049A/zh
Application granted granted Critical
Publication of CN104345049B publication Critical patent/CN104345049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种用于激光诱导击穿光谱的小波阈值降噪的阈值校正方法,基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。通过本方法取得了很好的激光诱导击穿光谱的降噪效果,在提高了信噪比的同时降低了检出限。

Description

激光诱导击穿光谱的小波阈值降噪的阈值校正方法
技术领域
本发明涉及激光诱导击穿光谱的信号预处理分析领域,具体是一种基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。
背景技术
激光诱导击穿光谱(LIBS)是一种典型的原子发射光谱测量技术。它利用聚焦的强脉冲激光将待测样品激发成等离子体而形成发射光谱,通过分析等离子体中原子或离子光谱来实现对样品的元素分析。LIBS发射强度的严重波动受到以冲击波形式的等离子传播的影响,并且受到来自多种噪声源,比如光电耦合器的暗电流,电子电路的热噪声以及光谱仪的杂散光和等离子体的连续辐射等。这些噪声夹杂在LIBS光谱信号中,不利于后续的样品元素分析。
为了解决LIBS光谱信号的降噪问题,人们通常采用的手段有两类:直接影响测量采集的硬件优化方式(设计滤波器、隔离器和探测器)以及LIBS光谱信号采集之后使强度增强的软件方法(设计数字滤波器、平滑滤波器和小波滤波器)。硬件优化方式由于其研发周期长和耗费大,造成了硬件优化手段的应用存在很大的局限性。软件方法不仅具有比硬件优化方式更高的精度而且还具有硬件优化方式不能比拟的可靠性,甚至能够实现硬件优化方式在理论上也无法达到的性能。软件滤波方法主要包括平滑滤波器、数字滤波器和小波滤波方法。平滑滤波器虽然能够保留LIBS信号的形状特征但是会导致LIBS信号在幅值上的损失较大,这不利于后续的LIBS定量分析。数字滤波器由于需要选择的合理滤波器参数较多会增加算法的复杂性并存在计算量大的不足。小波滤波方法主要包括三种:系数相关性方法、模极大值方法和阈值方法。系数相关性方法不仅需要定义直接影响到降噪效果的相关系数,而且需要迭代,计算量较大。模极大值方法存在一个由模极大值重构小波系数的问题,由于其重构算法的不同会导致降噪结果的不理想,此外还有算法复杂、计算量较大、收敛缓慢和稳定性较差的不足。阈值方法不仅具有需要选择的滤波参数(阈值和阈值函数)较少的优点,而且实现最简单、计算量最小。
发明内容
为了解决现有小波阈值降噪中选择阈值的困难所引起的降噪效果不理想的不足,本发明的目的在于提出了一种基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。
本发明为实现上述目的所采用的技术方案是:一种激光诱导击穿光谱的小波阈值降噪的阈值校正方法,包括以下步骤:
输入整个激光诱导击穿光谱信号,利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
根据所述小波基函数以及小波阈值降噪的分解层数J对激光诱导击穿光谱信号进行离散小波变换,得到每一个分解层j上的近似系数cAj和细节系数cDj,j=1,…,J;
在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj;根据模糊系统理论计算小波系数模糊集合的隶属度:近似系数模糊集合的隶属度和细节系数模糊集合的隶属度
在每一个分解层j上,根据计算得到下阈值的修正参数Cj
在每一个分解层j上,根据上阈值的修正参数γj和下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2jj·λj和新的下阈值λ1j=Cj·λ2j
在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
通过Mallet方法,利用cAJ和校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
所述的每一个分解层j上的近似系数cAj={aj,1,…,aj,i,…,dj,k}和细节系数cDj={dj,1,…,dj,i,…,dj,k},其中,i代表小波系数的序号,k代表小波系数的个数。
所述Donoho阈值的计算公式其中,σj是噪声方差的估计值Median(cDj)表示在每一个分解层j上细节系数cDj的中位数,Lj是每一个分解层j上细节系数cDj的个数。
所述的上阈值的修正参数γj的计算公式:
γ j = min j min i | a J , i - d j , i | + ξ max j max i | a J , i - d j , i | | a J , i - d j , i | + ξ max j max i | a J , i - d j , i |
其中,ξ是辨识系数,取ξ=0.5;当j≠J时,对aJ,k进行上抽样插零,其中,j代表分解层数,j=1,…,J;i代表每一分解层数上小波系数的序号,max代表极大值,min代表极小值。
所述小波系数模糊集合的隶属度的计算公式:
&mu; ( x ) = 0 , x &le; p 1 2 + 1 2 sin [ &pi; q - p ( x - p + q 2 ) ] , p < x &le; q 1 , x > q
其中,p是隶属度函数μ(x)等于0时自变量x的取值,q是隶属度函数μ(x)等于1时自变量x的取值;
所述p和q的计算公式是:
p = t 1 + t 2 2 + &pi; ( t 1 - t 2 ) 4 arcsin ( 2 &Delta; - 1 ) q = t 1 + t 2 2 - &pi; ( t 1 - t 2 ) 4 arcsin ( 2 &Delta; - 1 )
其中,t1是小波系数模糊集合的绝对极小值,t2是小波系数模糊集合的绝对极大值;⊿→0;
将|aj,i|和|dj,i|代入到μ(x)中就可以分别得到的隶属度。
所述下阈值的修正参数Cj=1-Nj;其中,Nj是欧几里德贴近度,Nj的计算公式: N j ( A &OverBar; , D &OverBar; ) = 1 - 1 k &Sigma; i = 1 k [ &mu; A &OverBar; ( | a j , i | ) - &mu; A &OverBar; ( | d j , i | ) ] 2 ; 其中,i代表小波系数的序号,k代表小波系数的个数。
所述半软阈值函数的计算公式:
其中,sgn(.)代表符号函数,j代表分解层数,j=1,…,J;λ1j代表每一个分解层上的下阈值,λ2j代表每一个分解层上的上阈值,cDj代表每个分解层上的细节小波系数;代表每一个分解层上修正后的小波细节系数,Tj代表半软阈值函数。
所述小波重构是根据Mallet方法,利用cAJ和校正后的细节系数进行小波逆变换完成了小波信号重构。
本发明具有以下优点:
1、本发明激光诱导击穿光谱的小波阈值降噪的阈值校正方法建立了上阈值和下阈值校正的数学模型,不仅根据不同分解层数上的小波系数特征进行校正,而且还根据半软阈值函数的特点进行调节,提高了小波阈值选择的自适应性、准确性和可靠性。
2、本发明的方法不需要人为参与小波阈值的设定,极大地减小了人为因素的干扰,而且本方法算法简单、计算速度快,易于实施。
3、本发明的方法可以提高LIBS光谱信号的信噪比,降低了最低检出限。
附图说明
图1本发明工作流程图;
图2为本发明铜合金样品未进行降噪处理的局部信号谱图;
图3为本发明对铜合金样品进行小波阈值降噪的小波细节系数的结果图;
图4为本发明对铜合金样品进行小波阈值降噪前后的局部信号对比谱图。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示,本发明基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪的工作流程为:
基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪,具体步骤如下:
步骤1)输入整个LIBS光谱信息;
步骤2)利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
步骤3)根据2)中确定的小波基函数以及小波阈值降噪的分解层数J对1)中光谱信号进行离散小波变换得到每一个分解层j上的近似系数cAj和细节系数cDj(j=1,…,J);
所述的每一个分解层j上的近似系数cAj={aj,1,…,aj,i,…,dj,k}和细节系数cDj={dj,1,…,dj,i,…,dj,k},其中,i代表小波系数的序号,k代表小波系数的个数。
步骤4)在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj
Donoho阈值的计算公式σj是噪声方差的估计值Median(cDj)表示在每一个分解层j上细节系数cDj的中位数,Lj是每一个分解层j上细节系数cDj的个数。根据灰色系统理论,通过计算每一分解层j上的灰色关联度得到所述的上阈值的修正参数γj。所述的上阈值的修正参数γj的计算公式: &gamma; j = min j min i | a J , i - d j , i | + &xi; max j max i | a J , i - d j , i | | a J , i - d j , i | + &xi; max j max i | a J , i - d j , i | . 其中,ξ是辨识系数,取ξ=0.5;当j≠J时,对aJ,k进行上抽样插零。
步骤5)在每一个分解层j上,根据模糊系统理论计算小波系数模糊集合的隶属度:近似系数模糊集合的隶属度μA(|aj,i|)和细节系数模糊集合的隶属度
根据模糊系统理论,建立每一分解层j上的小波系数模糊集合:近似系数模糊集合和细节系数模糊集合计算近似系数模糊集合的隶属度μA(|aj,i|)和细节系数模糊集合的隶属度的计算公式:
&mu; ( x ) = 0 , x &le; p 1 2 + 1 2 sin [ &pi; q - p ( x - p + q 2 ) ] , p < x &le; q 1 , x > q . 其中,p是隶属度函数μ(x)等于0时自变量x的取值,q是隶属度函数μ(x)等于1时自变量x的取值。p和q的计算公式是: p = t 1 + t 2 2 + &pi; ( t 1 - t 2 ) 4 arcsin ( 2 &Delta; - 1 ) q = t 1 + t 2 2 - &pi; ( t 1 - t 2 ) 4 arcsin ( 2 &Delta; - 1 ) . 其中,t1是小波系数模糊集合的绝对极小值,t2是小波系数模糊集合的绝对极大值;⊿→0。
步骤6)在每一个分解层j上,根据5)中得到的计算得到下阈值的修正参数Cj
所述的下阈值的修正参数Cj=1-Nj。其中,Nj是欧几里德贴近度,Nj的计算公式:其中,i代表小波系数的序号,k代表小波系数的个数。
步骤7)在每一个分解层j上,根据4)中得到上阈值的修正参数γj和根据6)下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2jj·λj和新的下阈值λ1j=Cj·λ2j
步骤8)在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
所述的半软阈值函数的计算公式:其中,sgn(.)代表符号函数。
步骤9)通过Mallet方法,利用3)中得到的cAJ和8)中得到的校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
图2、图3及图4给出了本实施例针对铜合金样品的测定过程。
请参阅图1,本发明的具体分析铜合金实施例步骤为:
步骤1)输入整个光谱信息;
本实施例中选择波长在220~375nm之间的光谱数据。图2中黑色实线是所选择的光谱局部信号。
步骤2)步骤2)利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
本实施例中确定的小波基函数是‘db5’,确定小波阈值降噪的分解层数J=4。
步骤3)根据2)中确定的小波基函数以及小波阈值降噪的分解层数J对1)中光谱信号进行离散小波变换得到每一个分解层j上的近似系数cAj和细节系数cDj(j=1,…,J);
步骤4)在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj
本实施例中Donoho阈值λ1=2.3982,λ2=3.5038,λ3=6.0059,λ4=14.2357。
上阈值的修正参数γ1=0.9996,γ2=0.8878,γ3=0.8179,γ4=0.7948。
步骤5)在每一个分解层j上,根据模糊系统理论计算小波系数模糊集合的隶属度;
步骤6)在每一个分解层j上,根据5)中得到的μA(|aj,i|)和计算得到下阈值的修正参数Cj
本实施例中下阈值的修正参数C1=0.4938,C2=0.5625,C3=0.5443,C4=0.9342.
步骤7)在每一个分解层j上,根据4)中得到上阈值的修正参数γj和根据6)下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2jj·λj和新的下阈值λ1j=Cj·λ2j
本实施例中新的上阈值λ21=2.3972,λ22=3.1106,λ23=4.9122,λ24=11.3145;新的下阈值λ11=1.1837,λ12=1.7497,λ13=2.6737,λ14=10.5700。
步骤8)在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
图3是对铜合金样品进行小波阈值降噪的小波细节系数的结果图;
步骤9)通过Mallet方法,利用3)中得到的cAJ和8)中得到的校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
图4中的红色实线是LIBS光谱信号降噪的最终结果。从图4的对比降噪前后的效果可以看出,本方法的选择小波阈值的效果很好,不仅很好的保留了原来的LIBS光谱信号的特征,而且提高了信噪比,降低了最低检出限。

Claims (8)

1.一种激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,包括以下步骤:
输入整个激光诱导击穿光谱信号,利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
根据所述小波基函数以及小波阈值降噪的分解层数J对激光诱导击穿光谱信号进行离散小波变换,得到每一个分解层j上的近似系数cAj和细节系数cDj,j=1,…,J;
在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj;根据模糊系统理论计算小波系数模糊集合的隶属度:近似系数模糊集合的隶属度和细节系数模糊集合的隶属度
在每一个分解层j上,根据计算得到下阈值的修正参数Cj
在每一个分解层j上,根据上阈值的修正参数γj和下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2jj·λj和新的下阈值λ1j=Cj·λ2j
在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
通过Mallet方法,利用cAJ和校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
2.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述的每一个分解层j上的近似系数cAj={aj,1,…,aj,i,…,dj,k}和细节系数cDj={dj,1,…,dj,i,…,dj,k},其中,i代表小波系数的序号,k代表小波系数的个数。
3.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述Donoho阈值的计算公式其中,σj是噪声方差的估计值Median(cDj)表示在每一个分解层j上细节系数cDj的中位数,Lj是每一个分解层j上细节系数cDj的个数。
4.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述的上阈值的修正参数γj的计算公式:
&gamma; j = min j min i | a J , i - d j , i | + &xi; max j max i | a J , i - d j , i | | a J , i - d j , i | + &xi; max j max i | a J , i - d j , i |
其中,ξ是辨识系数,取ξ=0.5;当j≠J时,对aJ,k进行上抽样插零,其中,j代表分解层数,j=1,…,J;i代表每一分解层数上小波系数的序号,max代表极大值,min代表极小值。
5.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述小波系数模糊集合的隶属度的计算公式:
&mu; ( x ) = 0 , x &le; p 1 2 + 1 2 sin [ &pi; q - p ( x - p + q 2 ) ] , p < x &le; q 1 , x > q
其中,p是隶属度函数μ(x)等于0时自变量x的取值,q是隶属度函数μ(x)等于1时自变量x的取值;
所述p和q的计算公式是:
p = t 1 + t 2 2 + &pi; ( t 1 - t 2 ) 4 arcsin ( 2 &Delta; - 1 ) q = t 1 + t 2 2 - &pi; ( t 1 - t 2 ) 4 arcsin ( 2 &Delta; - 1 )
其中,t1是小波系数模糊集合的绝对极小值,t2是小波系数模糊集合的绝对极大值;⊿→0;
将|aj,i|和|dj,i|代入到μ(x)中就可以分别得到的隶属度。
6.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述下阈值的修正参数Cj=1-Nj;其中,Nj是欧几里德贴近度,Nj的计算公式: N j ( A &OverBar; , D &OverBar; ) = 1 - 1 k &Sigma; i = 1 k [ &mu; A &OverBar; ( | a j , i | ) - &mu; A &OverBar; ( | d j , i | ) ] 2 ; 其中,i代表小波系数的序号,k代表小波系数的个数。
7.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述半软阈值函数的计算公式:
其中,sgn(.)代表符号函数,j代表分解层数,j=1,…,J;λ1j代表每一个分解层上的下阈值,λ2j代表每一个分解层上的上阈值,cDj代表每个分解层上的细节小波系数;代表每一个分解层上修正后的小波细节系数,Tj代表半软阈值函数。
8.根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述小波重构是根据Mallet方法,利用cAJ和校正后的细节系数进行小波逆变换完成了小波信号重构。
CN201310349855.0A 2013-08-09 2013-08-09 激光诱导击穿光谱的小波阈值降噪的阈值校正方法 Active CN104345049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310349855.0A CN104345049B (zh) 2013-08-09 2013-08-09 激光诱导击穿光谱的小波阈值降噪的阈值校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310349855.0A CN104345049B (zh) 2013-08-09 2013-08-09 激光诱导击穿光谱的小波阈值降噪的阈值校正方法

Publications (2)

Publication Number Publication Date
CN104345049A true CN104345049A (zh) 2015-02-11
CN104345049B CN104345049B (zh) 2017-02-08

Family

ID=52501114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310349855.0A Active CN104345049B (zh) 2013-08-09 2013-08-09 激光诱导击穿光谱的小波阈值降噪的阈值校正方法

Country Status (1)

Country Link
CN (1) CN104345049B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817239A (zh) * 2016-09-13 2018-03-20 中国科学院沈阳自动化研究所 一种基于等离子体位置信息的libs光谱校正方法
CN108444981A (zh) * 2018-01-30 2018-08-24 中国科学院上海技术物理研究所 基于mart乘性重建的libs定量求解方法
CN108460321A (zh) * 2017-12-19 2018-08-28 重庆川仪自动化股份有限公司 激光分析仪小波分析数据处理方法
CN111603174A (zh) * 2020-05-11 2020-09-01 浙江荷清柔性电子技术有限公司 血氧检测方法、装置、电子设备及存储介质
CN112101141A (zh) * 2020-08-25 2020-12-18 中国人民解放军火箭军工程大学 频域n-γ的识别方法及装置
CN114398926A (zh) * 2022-01-12 2022-04-26 江苏金晟元控制技术有限公司 一种基于小波分析的电阻点焊塑性环成像方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301887A1 (en) * 2009-11-12 2011-12-08 Onzo Limited Method and apparatus for noise reduction and data compression
CN102620928A (zh) * 2012-03-02 2012-08-01 燕山大学 基于小波半软阈值和emd的风电齿轮箱故障诊断方法
CN103197001A (zh) * 2013-03-13 2013-07-10 西南交通大学 一种基于振动信号小波阈值降噪的高速道岔伤损识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301887A1 (en) * 2009-11-12 2011-12-08 Onzo Limited Method and apparatus for noise reduction and data compression
CN102620928A (zh) * 2012-03-02 2012-08-01 燕山大学 基于小波半软阈值和emd的风电齿轮箱故障诊断方法
CN103197001A (zh) * 2013-03-13 2013-07-10 西南交通大学 一种基于振动信号小波阈值降噪的高速道岔伤损识别方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
G.Y.CHEN ET AL.: "Image denoising with neighbour dependency and customized wavelet and threshold", 《PATTERN RECOGNITION》 *
QISHENG XU,ZHUGUO LI: "Recognition of wear mode using multi-variable synthesis approach based on wavelet packet and improved three-line method", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》 *
ZHONG REN ET AL.: "Research of the bio-chemical spectrum denoise based on a novel wavelet", 《PROC.OF SPIE》 *
刘泽华,高亚奎: "基于多小波熵灰色理论的故障诊断应用研究", 《计算机测量与控制》 *
魏文畅等: "基于小波变换的半软阈值参数算法研究", 《计算机工程与应用》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817239A (zh) * 2016-09-13 2018-03-20 中国科学院沈阳自动化研究所 一种基于等离子体位置信息的libs光谱校正方法
CN107817239B (zh) * 2016-09-13 2019-06-18 中国科学院沈阳自动化研究所 一种基于等离子体位置信息的libs光谱校正方法
CN108460321A (zh) * 2017-12-19 2018-08-28 重庆川仪自动化股份有限公司 激光分析仪小波分析数据处理方法
CN108444981A (zh) * 2018-01-30 2018-08-24 中国科学院上海技术物理研究所 基于mart乘性重建的libs定量求解方法
CN108444981B (zh) * 2018-01-30 2020-06-26 中国科学院上海技术物理研究所 基于mart乘性重建的libs定量求解方法
CN111603174A (zh) * 2020-05-11 2020-09-01 浙江荷清柔性电子技术有限公司 血氧检测方法、装置、电子设备及存储介质
CN111603174B (zh) * 2020-05-11 2022-05-27 杭州柔谷科技有限公司 血氧检测方法、装置、电子设备及存储介质
CN112101141A (zh) * 2020-08-25 2020-12-18 中国人民解放军火箭军工程大学 频域n-γ的识别方法及装置
CN114398926A (zh) * 2022-01-12 2022-04-26 江苏金晟元控制技术有限公司 一种基于小波分析的电阻点焊塑性环成像方法及其应用

Also Published As

Publication number Publication date
CN104345049B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN104345049A (zh) 激光诱导击穿光谱的小波阈值降噪的阈值校正方法
CN107144829B (zh) 一种高效的激光雷达回波信号去噪方法
CN103675617A (zh) 一种用于高频局部放电信号检测的抗干扰方法
Martinez et al. Testing the impact of stratigraphic uncertainty on spectral analyses of sedimentary series
US8345960B2 (en) Method for the three-dimensional synthetic reconstruction of objects exposed to an electromagnetic and/or elastic wave
CN103983617A (zh) 一种基于小波变换改进激光探针定量分析的方法
CN110879980A (zh) 基于神经网络算法的核磁共振波谱去噪方法
CN109871733A (zh) 一种自适应海杂波信号去噪方法
CN104931518A (zh) 一种用于x射线荧光光谱本底扣除的方法
CN104751000A (zh) 一种机电复合传动状态监测信号小波降噪方法
CN105069309A (zh) 一种识别水文时间序列非线性趋势的方法
CN103543132B (zh) 一种基于小波变换的煤质特性测量方法
Ghanati et al. Joint application of a statistical optimization process and empirical mode decomposition to magnetic resonance sounding noise cancelation
CN105021210A (zh) Mems陀螺仪随机漂移误差的处理方法
CN107632326A (zh) 地球物理信号去噪方法
CN104346516B (zh) 激光诱导击穿光谱的小波降噪的最佳分解层数选择方法
Li et al. Random noise suppression and parameter estimation for Magnetic Resonance Sounding signal based on maximum likelihood estimation
CN104268896A (zh) 基于光谱抽样直方图的超光谱降维匹配方法及系统
CN103455986A (zh) 基于分数阶微分梯度的随机噪声点检测算法
Schmidt et al. Estimating the order of an autoregressive model using normalized maximum likelihood
Zhang et al. Research on signal denoising method based on adaptive lifting wavelet transform
Ke et al. Fault diagnosis method of weak vibration signal based on improved VMD and MCKD
Hou et al. Uncertainty reduction in power generation forecast using coupled wavelet-ARIMA
Cai et al. De-noising for NMR oil well logging signals based on empirical mode decomposition and independent component analysis
CN103441975B (zh) 一种基于功率谱的二相编码信号参数估值方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant