CN104334289A - 过滤器清洗 - Google Patents

过滤器清洗 Download PDF

Info

Publication number
CN104334289A
CN104334289A CN201380029638.1A CN201380029638A CN104334289A CN 104334289 A CN104334289 A CN 104334289A CN 201380029638 A CN201380029638 A CN 201380029638A CN 104334289 A CN104334289 A CN 104334289A
Authority
CN
China
Prior art keywords
rotor
cleaning
filter
nozzle
backwash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380029638.1A
Other languages
English (en)
Other versions
CN104334289B (zh
Inventor
杰森·戴尔
奥格·比约恩·安德森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOSSHYDRO A/S
Original Assignee
SEA LIX AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEA LIX AS filed Critical SEA LIX AS
Publication of CN104334289A publication Critical patent/CN104334289A/zh
Application granted granted Critical
Publication of CN104334289B publication Critical patent/CN104334289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/04Cleaning by suction, with or without auxiliary action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/70Arrangements for moving spray heads automatically to or from the working position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • B01D29/684Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles with a translatory movement with respect to the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/70Arrangements for moving spray heads automatically to or from the working position
    • B05B15/72Arrangements for moving spray heads automatically to or from the working position using hydraulic or pneumatic means
    • B05B15/74Arrangements for moving spray heads automatically to or from the working position using hydraulic or pneumatic means driven by the discharged fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/02Cleaning by methods not provided for in a single other subclass or a single group in this subclass by distortion, beating, or vibration of the surface to be cleaned

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Nozzles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

本发明涉及一种用于过滤器反冲洗机构的清洗头,所述清洗头包括:用于与滤芯壁1相接触并接收反冲洗流体流8、9的喷嘴,其中所述喷嘴包括转子3,转子用于当被暴露于所述反冲洗流体流8、9时生成扭矩,且其中所述清洗头被布置成使得所述喷嘴的至少一部分将由于所述转子3生成的所述扭矩而向所述滤芯壁1移动和/或向所述滤芯壁1施力。

Description

过滤器清洗
技术领域
本发明涉及一种过滤器清洗头以及清洗过滤器的相关方法,例如,用于清洗水过滤装置的滤芯。
背景技术
过滤是许多流体处理工艺,特别是水处理工艺中的准备步骤。这种工艺通常旨在改善水质和减少与水或其他液体中含有不需要的元素相关的风险。过滤工艺也可用于从工艺气体去除固体和液体。过滤可在后续的工艺中有效地使用流体,例如,在清洗、冷却或制造工艺中将流体作为工艺流体。改善的过滤技术将有利于当前所应用的处理方法,而无论介质和应用如何,且该技术将进一步开拓以发展所改善的工艺和技术。
按照惯例,过滤用于许多应用中,如淡水应用、包括对源自家庭和工业过程的水的再循环的饮用水生产、用于发电厂的冷却水的摄入、源于油/气开采的生产的水处理应用、海水的应用、废水的应用以及在陆地上或在飘浮单元上的水产养殖的应用,如飘浮的水产养殖装置(养鱼场)、空气调节和气体净化、与油气生产相关联的装置、以及板载船、压载水管理板载船、食品和饮料加工、矿物和泥水加工、医药加工、化学加工和发电应用,如发电站的冷却水的预加工或电变压器油的加工。虽然这些过滤用途中的许多用途涉及水基液体,但对本文所述类型的过滤器的使用不仅限于水基液体,且可用于在希望从流体去除不想要的元素的地方处理酸、碱或其它流体。
这些用途中的许多需要以高流速过滤大量的水。其中一个实例为过滤船舶压载水,例如,在压载水的处理期间进行过滤以杀死微生物,且这对于船舶建造者和船队经营者来说具有日益增加的重要性。在不同的地理位置之间传送大量的海水已知会损害海洋生物的多样性。监管要求和环境问题使得在排放压载水之前有效处理船舶的压载水以去除污染物和生物,包括微生物的做法是很重要的。规则针对必须进行去除或禁止的生物体规模,设定了繁复的要求,且这就需要对大量的水进行有效的过滤和微过滤。现代船舶的规模意味着压载水舱的容积很大,且因此用于装载和卸载压载舱所花费的时间对船队经营者来说具有商业重要性。此外,对于已装载的船而言,空间是极其稀缺的。其结果是,非常需要有效的过滤系统或更具体地是微过滤系统,其节省空间且还能够过滤大量的水并移除相当数量的物质(有机以及无机的)。
一些过滤器系统可用于这些能够过滤流体的应用中。这种系统通常包括传统滤芯,其中流体,例如原海水流过该传统滤芯。所有过滤器系统自然需要去除被滤出的材料。在一个典型的系统中,随着液体流通过滤芯壁,任何大于过滤器尺寸规格的污垢、颗粒或有机物可能无法通过滤芯,且被截留在滤芯的内壁上并开始形成滤渣的增生物,其被称为“饼”。随着物质饼增大,在滤芯上的压力损失将增加。有必要将所增生的滤渣从滤芯的内壁清洗掉以维持效率。即使最好的过滤器设计也将受残渣积聚的困扰,且该问题会随过滤器在从液体移除固体的有效性的增加而加剧。因此,为了对液体进行有效的过滤,有必要不仅提供改善的过滤,而且确保对过滤器进行有效的清洗。
该清洗过程可通过将过滤器剥离下来以进入滤芯而实现。由于需要维修人员,要进入过滤器并且需要过滤器装置的停机时间,这具有明显的劣势。可通过使用反冲洗工艺而提供更自给自足的过滤机构。这种工艺使用反冲洗机构,其可配置成,进行连续清洗或仅当在过滤器上的压力损失达到某个监控等级时被触发,或以现有时间间隔或手动地进行触发。压力损失将随滤渣“饼”的增大而增加。已在允许经通过过滤器壁的反向水流清洗滤芯的各种反冲洗机构中采用了各种过滤器清洗头。反向流除掉被过滤的材料,随后将其从过滤器装置去除。
WO2006/008729和WO2011/058556描述了已知的反冲洗工艺,其中清洗头在过滤器壁上通过以清洗过滤器并移除滤渣。清洗头使用在过滤器壁的相对较小的部分中反向的本地流以移开残渣并将其从过滤装置移除。可在使用过滤器的同时进行该反冲洗工艺,从而允许过滤器在被清洗的同时连续地对水进行过滤。清洗头被布置成在过滤器表面上移动,从而可清洗所有的区域。通常,过滤器表面为圆筒且清洗头被布置成在跟随螺旋路径的圆筒表面上移动以清洗整个表面。清洗头必须在清洗操作中与过滤器表面紧密接触,从而保持用于反向流的压力差。这意味着需要某种装置以抵靠过滤器表面持有清洗头。此外,清洗头的接触部将由于与过滤器表面的滑动接触而遭受磨损。这意味着有必要不断地调整装置或提供某种机构以自动调整位置至清洗头,从而随接触部的磨损而保持与过滤器表面的紧密接触。
以WO2006/008729中,可通过使用在清洗头中的弹簧元件实现清洗头位置的调整,其将抵靠过滤器壁推动清洗头。然而,弹簧必须提供足够的力以在预期的最高压力差下抵靠清洗壁持有清洗头。这所产生的结果是,通常,在正常的操作压力差的期间太难于抵靠壁推动清洗头,其中正常的操作压力差与最大设计压力差相比则相当的低。所增加的力加大了磨损并导致了过滤器壁的不良变形和损坏。
WO2011/058556试图通过使用具有不同于WO2006/008729的弹簧的弹性变形特征的弹性波纹管而改善WO2006/008729的装置。然而,波纹管的布置产生了进一步的问题,这是因为当具有高压力差时,吸入压力会使波纹管缩回。这需要用于压力均衡的布置以确保清洗头保持与过滤器壁相接触。压力均衡使用特别引入的孔以均衡在过滤器清洗头内和周围的压力。这些孔容易被污垢堵塞,这是因为孔必须位于滤芯的肮脏侧上。
因此,使用WO2006/008729的弹簧装置,在清洗头和具有低压力差的过滤器壁之间施加的力则太高,而WO2011/058556的波纹管装置则需要压力均衡以避免与具有高压力差的过滤器壁形成接触损失。
发明内容
从第一方面看,本发明提供了一种用于过滤器反冲洗机构的清洗头,该清洗头包括:用于与滤芯壁相接触并接收反冲洗流体流的喷嘴,其中喷嘴包括转子,所述转子用于当被暴露于反冲洗流体流时生成扭矩的转子,且其中清洗头被布置成使得喷嘴的至少一部分将由于由转子生成的扭矩而移向滤芯壁和/或向滤芯壁施力。
使用该布置,可通过基于反冲洗流体流而产生的力推动喷嘴或喷嘴的一部分抵靠过滤器壁。由转子生成的扭矩将根据流体的流速发生变化,而流速自身则将根据压力差而变化。其结果是,保持喷嘴部分与过滤器壁相接触的力则依赖于压力差。这就避免了使用上述现有技术中的系统所产生的问题。在低压力差的情况下,生成较低的扭矩且因此使被施加至壁的压力不会像在WO2006/008729中一样过大。较高的压力差由更高的扭矩所匹配且不需要如在WO2011/058556中所述的压力均衡机构。这降低了碎屑弄脏清洗头的功能部分的风险。
在一个优选实施例中,由转子生成的扭矩在使用中产生了喷嘴或喷嘴的一部分在朝向滤芯壁的方向上的线性移动,和/或在使用中导致了通过喷嘴或其一部分在朝向滤芯壁的方向上施加线性力。可使用用于将转子的旋转转换成线性运动/力的任何适当的机构以任何方式安装转子。然而,优选地,转子被安装在清洗头内,且该转子具有通常与滤芯壁的表面相垂直的旋转轴线。由转子所生成的扭矩可通过螺纹布置被转换成线性力和/或移动。
在一个优选实施例中,转子经螺纹布置被安装至清洗头且螺纹具有通常与滤芯壁的表面相垂直的旋转轴线。这意味着转子本身将随其旋转而线性移动且因此可包括向滤芯壁移动的喷嘴的一部分。例如,可能有被直接连接至转子或清洗头的螺纹轴,而转子或清洗头的另一端则设有螺纹孔或螺母。优选地,螺纹机构为封闭且密封的以防流体进入,且从而避免源自未过滤的工艺流体的碎屑弄脏螺纹。转子可形成喷嘴的至少一个端部,从而使转子的入口形成旨在与滤芯壁相接触的喷嘴的接触部。
在一个替代的优选实施例中,喷嘴包括转子和单独的接触部,其被布置成经转子旋转被驱动而实现线性移动,接触部在反冲洗期间与滤芯壁相接触。使用该布置,转子可被安装至清洗头以仅进行旋转运动,例如,经轴承或类似的而实现。接触部可以是带螺纹部件,其关于喷嘴的主体滑动安装,且被连接至经转子旋转而被驱动旋转的螺纹部件,如转子本身的螺纹部件。用于接触部的一个特定布置可包括沿转子的旋转轴线而滑动安装的且沿转子轴线与互补的螺纹孔相接合的螺纹杆,由此,转子的旋转以线性方式移动接触部,从而在反冲洗期间抵靠滤芯壁推动接触部的一端。
使用这种类型的布置,由于接触部线性移动而不发生旋转,因此与旋转转子向滤芯壁移动且与其相接触的地方使用上述布置的情况相比,减少了接触区域的磨损。折衷是一种可能更复杂的机构,这是因为具有至少两个移动部分,其为线性滑动部分和旋转部分。
优选地,转子包括接收反冲洗流体的入口,以及将反冲洗流体排放至反冲洗机构的下游部分的出口。
清洗头可被布置成使得用于清洗头的反冲洗流体中的所有在通往反冲洗机构的下游部分前通过转子。这使转矩产生最大化且使通过转子的流速最大化也可使弄脏转子的情况以及在转子和清洗头的相关联部分内的滤渣的积聚最小化。
随着在喷嘴顶端的接触部在与壁相接触的滤芯的内壁上移动,可发生磨损。优选地,相对较软的材料,如塑料或PTFE或可稍微变形的材料被用于喷嘴的接触部以减少摩擦、减少昂贵的滤芯的磨损并吸收小的制造公差。因此,优选地,接触部的材料比滤芯壁的材料更软。随着磨损的发生,喷嘴的接触部将被允许在源自转子的扭矩的推动下进一步地向过滤器壁移动,这增加了其线性移动直到喷嘴的顶端再一次在滤芯的内壁和喷嘴之间创建密封为止。因此,喷嘴自动地补偿喷嘴的磨损至预定极限。一旦达到该预定极限,则可容易地更换喷嘴。
优选地,过滤器清洗头包括用于反冲洗流体从喷嘴至反冲洗机构的下游部分的通行的空心管道。空心管道可支撑转子和/或喷嘴,例如,空心管道可持有支撑转子的轴承或支撑相应螺母或转子的螺纹轴的螺纹轴或螺母。
过滤器清洗头可被设计为被加装至现有的反冲洗机构,例如,空心管道可包括用于装至现有反冲洗机构的管道的接头或接口。
可替代地,过滤器清洗头可与反冲洗机构的其他部分一同设计且被制造成反冲洗机构的一部分,且该反冲洗机构被设计为与该过滤器清洗头一起使用。在这种情况下,一个优选实施例包括空心管道,其包括用于反冲洗机构的主流路的一部分以及从主流路的一部分延伸的以支撑喷嘴的分支。空心管道可以为T形。因此,可通过将主流路的各部分相结合而连接多个清洗头,从而产生反冲洗机构,其包括位于从共同的主流路延伸的分支上的多个清洗头。
优选地,主流路的一部分包括区段,其被布置成被结合至另一个类似的区段,例如,经通过插头和插座的方式互联的两个管而实现,其可选地具有“卡接配合”。这允许反冲洗机构由多个过滤器清洗头所组成,其中过滤器清洗头是沿任何尺寸的滤芯的长度间隔开的且是按预定距离而分离的。塑料“钩”和密封件可被包括在空心管道中以便对每个分段进行组装和密封。然后,所组装的空心管道则在其相对于彼此的各自正确的位置上持有多个过滤器清洗头。空心管道可相对于彼此绕主流路的轴线旋转以使分支且因此使喷嘴从主流路沿不同的方向延伸开来。反冲洗机构可还包括用于多个空心管道的主流路的合适端件以连接至反冲洗机构的剩余部分。
优选地,转子包括一个或多个其节距在反冲洗流体流的方向上减少的螺旋形转子叶片。因此,叶片可具有在使用中在最接近滤芯壁的转子一端较大且在转子的另一端较小的节距。
转子可具有圆锥形,其具有在两个圆锥面之间形成的叶片。
喷嘴可通过转子以及随转子相对于滤芯壁线性移动而与转子一起移动的转子的外壳或罩所形成的。
在一个优选实施例中,转子包括:至少一个被布置成绕旋转轴线旋转的叶片,叶片是通过在内和外圆锥螺旋之间延伸的表面所形成的;围绕叶片的内表面和外缘,内和外表面跟随与圆锥螺旋的路径相应的回转的通常为圆锥形的内和外表面,其中圆锥螺旋中的每一个具有沿流向减少的节距且其中叶片在外缘和内表面之间延伸且被安装至外缘和内表面中的至少一个。已发现使用如上所述的转子可提供用于实现喷嘴的所需移动的有效机构。在一个实例布置中,螺旋的半径沿流向增加且以使圆锥形的小直径端形成用于反冲洗流体流的入口的方式布置转子。因此,在使用中圆锥形的小直径端面向滤芯壁,且随着反冲洗流体从喷嘴通往反冲洗机构的下游部分,使圆锥形的大直径端形成用于反冲洗流体的出口。可替代地,节距可能随半径的减少而减少,从而使转子的大直径端形成用于反冲洗流体的入口。
优选地,叶片被同时安装至外缘和内表面。这意味着外缘被直接结合至叶片以及转子的剩余部分并随其一起旋转。其结果是,当转子线性移动并旋转时,无需任何复杂的布置以连接外缘或内表面,从而允许这些部分随着转子的喷嘴向滤芯壁移动或从滤芯壁移开而相对于管道发生移动。
在本上下文中,圆锥螺旋为形成在基本上为圆锥体的表面上的三维曲线。基本上为圆锥体的表面可以是圆锥形、截头圆锥形或任何其他形状,其被形成为具有基本上大致增大或减少的半径的回转表面。因此,该表面并不特别受限于直边圆锥,反而可以是凸侧圆锥或截头圆锥,如区域或卵形鼻锥形,或可替代地,圆锥可以是凹侧圆锥或截头圆锥。重要的是每个圆锥螺旋均形成有沿转子的轴线增加的半径以及随半径的增加可减少的节距。优选地,内和外圆锥螺旋具有相同的节距减少量,然而在可使用用于内和外圆锥螺旋的不同节距减少量的地方应用也是可能的。
本文所使用的术语“内”和“外”是指距离转子的旋转轴线的较小或较大半径的转子的部分。
在内部,转子具有在前和后叶片表面之间以及在外缘和内表面之间形成的一个或多个流道。流道有效地含有流动的流体并防止能量因叶尖损失而发生损耗。当叶片在外缘和内表面之间延伸并被同时安装至外缘和内表面时,则能完全包含流体流并使叶尖损失最小化。
在一个优选实施例中,转子具有位于转子的小直径端且被布置成用于流体的轴向流动,优选为单独的轴向流动的入口。因此,该开口垂直于转子的旋转轴线且优选地,形成叶片以接收在大致沿轴向流动的流体且优选地不接收任何(显著的)径向流动。优选地,转子具有位于大直径端且也与转子的旋转轴线垂直的出口。然而,在优选的实施例中,位于大直径端的叶片并不被布置成用于单独的轴向流动,反而可适于用其移动的径向分量排出流动的流体。
优选地,内和外圆锥螺旋在沿转子的旋转轴线的方向延伸前起始于沿转子的旋转轴线的相同的纵向位置。优选地,内和外圆锥螺旋还沿转子的旋转轴线的方向延伸大约相同的轴向长度。使用该布置,当转子的外缘存在时,其自然地围绕开口,该开口要求用于流过开口的流体流的轴线分量。
圆锥螺旋可具有任何合适的形状,该形状允许如上所述的具有减少的节距和可选的具有增加的半径的三维曲线。一个优选的选择是使用其半径线性增加的阿基米德螺旋以产生具有基于直边截头圆锥的简单形状的转子。然而,可替代地,圆锥螺旋可基于欧拉、斐波纳契、双曲线、连锁、对数、西奥多勒斯或任何其他已知的螺旋,其具有作为极坐标θ的函数的变化的半径r,而且具有作为极坐标θ的函数而变化的第三变量,长度l。一些曲线和/或使用非线性半径的增加将产生基于具有凸或凹侧的圆锥形状的圆锥螺旋,如上面所讨论的。
内和外圆锥螺旋可基于相同形式的螺旋或曲线,其具有不同的初始和最终的半径。可替代地,不同形式的曲线或螺旋可用于内和外圆锥螺旋以产生用于叶片的更复杂的形状。
虽然可使用单个叶片,但使用多个叶片是有利的。这创建了多个流道且还允许转子很容易地进行平衡。二个、三个或多个转子叶片的选择可取决于转子强度的平衡、制造的容易性和因摩擦引起的能量损失。在本实施例中,三个转子叶片为优选的选择,这是因为其提供了强且平衡的三点构造,且具有最小的摩擦损失。
优选地,叶片被形成为通过在沿转子的旋转轴线的方向的在相同的纵向距离处的内和外圆锥螺旋上的点之间的直线所形成的表面。因此,叶片表面可连接在径向上的一对圆锥螺旋。可替代地,叶片被形成为通过在沿转子的旋转轴线的方向的在相同的纵向距离处的内和外圆锥螺旋上的点之间的曲线所形成的表面。使用该布置,例如,当从转子的大直径端看时,叶片表面可以是凹形的。
内和外圆锥螺旋可按相同的速率增加半径,从而使圆锥表面大致为平行的。然而,通过使内和外圆锥螺旋的直径增加的速率不同而调整转子的性能则可能是有利的。内圆锥螺旋的半径增加速率可低于外圆锥螺旋的半径增加速率,从而减少或限制流体动力学的反作用力和转子所产生的扭转力。可替代地,内圆锥螺旋的增加速率可比外圆锥螺旋的快,从而增加流体动力学的反作用力和扭转力。
优选地,如上所讨论的参数,包括圆锥螺旋的半径、圆锥螺旋的节距和内和外圆锥螺旋的半径的相对增加则沿转子的长度成线性变化。然而,半径、节距和相对半径的非线性变化也是有可能的。
通过喷嘴转换的流体流的动能是完全可调的。用于预定流动条件的所需扭转力可通过调整下列中的一项或多项而实现:(A)一个圆锥螺旋或两个圆锥螺旋的半径的变化速率;(B)内和外圆锥螺旋的半径的相对变化;以及(C)一个或两个圆锥螺旋的节距变化。
可在转子和支撑转子的空心管道之间设有密封件或柔性可拉伸盖以防损失工艺流体。这些密封件可以是被动O形圈或唇型密封件或可以是弹簧或可根据应用和所需的密封等级而以其他方式进行激活或其可以是当转子旋转时很容易地发生变形的柔性可拉伸盖。
必须认真地选择通过喷嘴向滤芯壁施加的密封力以在喷嘴的接触部和滤芯的内壁之间提供有效的密封,但不应选择密封力以产生如此高的力以使得喷嘴创建可能使滤芯壁变形和造成过多的磨损的力或其无法通过可在反冲洗机构的正常操作中经历的相对的力进行逆转。如果滤芯的制造公差需要喷嘴“后退”或需要短距离以容纳在滤芯尺寸中的小差异,则可能会产生这种相对的力。认真地选择密封力的提供且相对的力能够使喷嘴的旋转逆转,从而使卡住或损坏滤芯的机会最小化。一旦制造公差已发生变化,喷嘴的接触部则可在其正常的路线上向滤芯壁前进。
当不具有反冲洗流时,密封力为零,然后停用喷嘴且仅有接触部非常轻微地接触滤芯的内壁。正常地,在这个时候,反冲洗机构是不动的,这是因为此时不需要反冲洗机构进行操作。由于在喷嘴和过滤壁之间存在零密封力,因此可容易地拆除反冲洗机构。然而,在某个应用中,有利的做法为包括在过滤器清洗头内的张力或扭力弹簧,其使“可缩回的”力作用于接触部和/或转子上,从而使接触部从滤芯壁撤回和/或当移除正常的工作载荷时,即停止反冲洗时使转子反向旋转。按这种方式以线性运动将喷嘴的接触部从过滤壁移开允许在接触部和滤芯的内壁之间具有间隙。可替代地,可提供一种装置以创建与反冲洗流的方向相反的通过转子的流体流,因此使转子的旋转反向,从而使以线性运动将喷嘴的接触部从过滤壁移开允许在接触部和滤芯的内壁之间存在间隙。或者,更简单的机构包括在喷嘴中的空白孔,从而可插入合适的工具且可用手手动地使接触部后退。
优选地,过滤器清洗头形成用于在具有一个或多个滤芯的过滤器中进行安装的反冲洗机构的一部分,滤芯包括半透的过滤壁以及形成反冲洗机构的一部分的过滤器清洗头。
滤芯可以是通过金属编织线烧结丝网的方法而构造的元件,其中多个金属丝网层用支撑结构烧结在一起以创建能够支撑其自身重量的强滤芯。可替代地,在可使所处理的液体混合物、溶液或悬浮液中的一个或多个所选组分透过但不可使剩余组分透过的过滤器的操作条件下可使用其他类型的滤芯设计。这种滤芯可用天然或加工的纤维、人造有机或合成材料、铁和非铁金属、玻璃、活化或天然碳、陶瓷、纸和塑料、薄片或纺织材料、无纺材料、打褶熔纺材料、无机粘结多孔介质、矿棉、玻璃纤维、碳纤维、编织线和丝网、烧结网、穿孔板、楔形丝和膜型设计或其任意的组合而构成。
作为另一个好处是,使滤芯涂覆有合适的化合物以提供增加的耐腐蚀性和/或改善的表面质量则可能是有益的。例如,用通过原位聚合而合成的TiO2或聚苯胺纳米TiO2颗粒制成的涂层在恶劣的环境下具有优异的耐腐蚀性。因此,可对各滤芯进行涂覆以改善耐腐蚀性。此外,所实现的纳米表面可提供改善的表面质量,其使得表面非常光滑且难于使物质“粘附”至表面,从而不用那么频繁地进行清洗。该光滑的表面还降低了喷嘴接触部的磨损。
根据要进行过滤的液体和颗粒特性确定过滤尺寸规格。因此,过滤尺寸(即通过滤芯的孔或流路的尺寸)可以是取决于所需应用的任何合适的尺寸。例如,根据应用,滤芯的过滤尺寸规格可被选择为<1、1、10、20、40或50微米或更大。
反冲洗流是通过跨滤芯的压力差而生成的且这可按任何适当的方式而实现。然而,有利的是,压力差可通过减少在经空心管道与过滤器清洗头相连通的反冲洗流的出口处的压力而实现。这因此降低了在过滤器清洗头入口处的压力并使碎屑沿与过滤器清洗头相连通并最终达到反冲洗出口的空心管道而移至过滤器清洗头内。
在反冲洗出口处的大气压力与在滤芯外部的压力之间的差异可足以实现所需的回流且在这种布置中,可提供控制阀以选择性地打开和关闭反冲洗出口,从而创建所需的反向回流。
额外地或可替代地,可提供真空或抽吸装置以增加压力差,从而加强反冲洗或清洗操作。在这种布置中,真空或抽吸装置可被联接至反冲洗出口或与过滤器清洗头相连通的空心管道,其可与控制阀相结合或单独使用。
有利的是,在结合多个滤芯的过滤器的布置中,每个滤芯在滤芯内设有反冲洗机构,但多个滤芯可具有共同的反冲洗出口。使用多个圆筒形滤芯,反冲洗机构可按与每个滤芯的中心线相对齐的方式进行安装且可彼此独立地或同时地或作为一个子组,例如成对地进行驱动。因此,可按最有效的方式对过滤器布置进行反冲洗,其对过滤器布置内的工艺流体流具有最小的不利影响。事实上,也可对多个反冲洗机构进行编程以根据过滤载荷自动进行调整,从而根据在滤芯上检测到的压力损失使反冲洗机构中的两个、三个或所有按可能的最大效率一起运行。
为了移动反冲洗机构,总成可设有驱动机构,其被布置成旋转反冲洗机构并同时沿滤芯的轴线以线性运动移动反冲洗机构。可通过电动马达和螺杆或其他电气-机械、气动或液压布置进行移动。
随着反冲洗机构同时发生旋转和线性移动,形成反冲洗机构的一部分的每个过滤器清洗头随其经过过滤器表面而遵循螺旋形轨迹移动。因此,过滤器清洗头能够在滤芯的100%的整个内表面上进行传送,从而可从滤芯壁的所有部分收集碎屑。可清洗滤芯壁的整个表面上的碎屑。可对滤芯进行反冲洗,且同时允许继续进行过滤器布置的正常操作,即可在正常过滤的期间进行反冲洗。
优选地,反冲洗机构支撑多个过滤器清洗头,其可沿滤芯的轴向长度相间隔并按预定的距离相分离。通过这种方式,可通过过滤器清洗头的数量分割所需的线性移动的数量以使每个过滤器清洗头仅能在滤芯的半透壁的内表面的一部分上进行传送,且同时仍实现和清洗100%的半透过滤壁。
有利的是,形成反冲洗机构的一部分的过滤器清洗头可根据待清洗的滤芯的区域通过简单地复制过滤器清洗头而扩展至非常高的过滤能力,即从小于100m3/hr至10000m3/hr以上。
过滤器清洗头最终提供了改善的整体反冲洗机构,其高效且有效地从每个滤芯的过滤壁移除碎屑。有利的是,转子布置将反冲洗流内的流体流的动能转换成密封力,其使得过滤器清洗头与每个滤芯的内壁实现紧密的对齐。这产生了改善的密封效果,其以最小的工艺流体损失实现了对过滤壁的高效清洗。
喷嘴、转子或空心管道的几何形状很好地引导其自身进行有效的制造和组装,其中喷嘴、转子或空心管道在该几何形状中旋转并受其所支撑。这些部分可用机加工、铸造或焊接的材料所制成,但优选地,其可以是注塑成型的或通过快速成型的方法而制成的以减少大规模生产的成本。
包含本文所述的形成反冲洗机构的一部分的过滤器清洗头改善了反冲洗机构的整体效率。与现有技术相比,通过改善的反冲洗机构的工艺流体的损失有所减少。此外,还改善了对过滤器的清洗。这些改进允许减少过滤器的网目尺寸而不降低给定的过滤器布置的流速或能力。因此,改善的清洗允许改善过滤工艺。随后,液体可被传递至由于较细的过滤而相当“更清洁的”(高能力的)处理工艺,且这将减少处理工艺的负担,这允许其按比例缩小(例如,减少“调节”化学物质的浓度或开始引入替代的处理工艺)。
将认识到不仅可在液体过滤中利用清洗头,而且在气体过滤布置中也可使用清洗头。例如,清洗头可用于从气流过滤固体颗粒的过滤器中。
从第二方面看,本发明提供了一种方法,其包括使用用于清洗滤芯壁的清洗头,其中清洗头是关于上述的第一方面而描述的清洗头,且可选地,其可以是如关于第一方面的优选特性而描述的清洗头。该方法可包括使用如上所讨论的反冲洗机构。
该方法可包括下列步骤:(A)在过滤丝网的外部和过滤器清洗头之间创建压力差以使流体反向流过滤芯壁;(B)通过将流体流的动能转换成密封力而激活过滤器清洗头,密封力会用滤芯的内壁实现过滤器清洗头的自调整密封,从而防止工艺流体的流失并提高清洗的有效性;以及(C)相对于过滤壁移动过滤器清洗头以从100%的过滤壁移除碎屑。
因此,根据这种方面,提供了一种高效且有效地对过滤器布置进行反冲洗的方法。
从第三方面看,本发明提供了一种制造过滤器清洗头的方法,其包括提供如关于上述第一方面而描述的,且可选地如关于第一方面的优选特性而描述的喷嘴。该方法可以是一种制造反冲洗机构的方法,且有利地,其可包括将清洗头加装至预先存在的反冲洗机构或可替代地,提供在反冲洗机构中的整个清洗头中的部分或全部。
附图说明
现在,将仅通过示例的方式并参照附图描述本发明的某些优选实施例,其中:
图1a和1b示出过滤器清洗头及其各种组件的横截面图;
图1c和1d示出替代的过滤器清洗头的横截面图;
图2示出能够被加装至现有反冲洗机构上的过滤器清洗头的横截面图;
图3a为用于持有过滤器清洗头的模块化的管道区段的横截面图;
图3b示出结合在一起形成用于圆筒形滤芯的反冲洗机构的一部分的两个管道段;
图4示出具有单个滤芯的过滤器,其中单个滤芯具有带多个过滤器清洗头的反冲洗机构;
图5示出具有多个类似的滤芯的过滤器,其中每个滤芯具有带多个过滤器清洗头的反冲洗机构;
图6a和6b以侧视图和端视图示出转子的一个实施例;
图7a和7b示出局部切去外周缘以使得转子设计的更多细节可见的图6所示的转子;
图8a和8b为部分或完全省略外缘的图6和图7所示的转子的立体图;
图9a和9b示出转子的一个替代实施例,其中内圆锥螺旋的半径增加速率低于外圆锥螺旋的半径增加速率;
图10a和10b示出另一替代方案,其中内圆锥螺旋的半径增加速率高于外圆锥螺旋的半径增加速率;
图11a和11b示出一个替代实施例,其中螺旋节距减小的速率低于图6和7所示的转子的速率;
图12a和12b示出一个替代实施例,其中螺旋节距减小的速率高于图6和7所示的转子的速率;
图13为示出随圆锥螺旋的最小半径do与最大半径Do的比率变化而经转子生成的扭转力的变化的图;
图14为示出随着内圆锥螺旋半径与外圆锥螺旋半径相比的增加速率的修改而经转子生成的扭转力的变化的图;以及
图15为示出当通过改变螺旋频率增加的速率而调整螺旋节距的减小速率时经转子生成的扭转力的变化的图。
具体实施方式
图1a和1b示出过滤器清洗头及其各种组件的第一个实施例。图1a和1b中的过滤器清洗头被应用至半透滤芯壁1,其在优选的实施例中为金属编织线烧结丝网。空心管道2将组合转子/喷嘴3连接至反冲洗机构的剩余部分,且还发挥作用以支撑转子/喷嘴3。转子/喷嘴3为旋转的转子/喷嘴3且经作用为防止工艺流体损失的环密封件4被密封至管道2的端部。另一个密封件5描绘了另一个作用为防止污垢进入在转子/喷嘴3和空心管道2之间的间隙空间中的密封件。在该优选实施例中,转子/喷嘴3,通过保持在转子/喷嘴3内部的螺母7,被支撑为在螺纹6上进行绕其旋转轴线的旋转运动。滤芯1接收进入的流体8并提供过滤的流体9。在过滤期间,过滤的材料将在滤芯1的内表面上积聚。在如下所述的反冲洗工艺中使用清洗头以清洗滤芯1,并将过滤的材料和经反冲洗的流体10从滤芯1带走,如在横截面图中所示,在该实施例中,空心管道2看起来好像被阻塞了,但事实上包括螺纹6的中心部分被一些从中心部分延伸至外直径的臂或辐条(其中的两个在横截面图中示出)所支撑。在这些辐条之间的空间形成开放通路,其允许流体流过该支撑。
图1c和1d示出过滤器清洗头及其各种组件的一个替代实施例。如同上述实施例一样,图1c和1d中的过滤器清洗头被应用至半透滤芯壁1,其在优选的实施例中为金属编织线烧结丝网。空心管道2连接充当螺母7的一个部分,螺母7依次将组合转子/喷嘴3连接至反冲洗机构的剩余部分且还发挥作用以支撑转子/喷嘴3。因此,在该实施例中,机构的固定部分为形成在管道2上的螺母7,而在图1a和1b的实施例中,机构的固定部分为形成在管道2上的螺纹轴6。将理解的是,用于螺母7和螺纹轴6的其他布置也是可能的。
在图1c和1d的实施例中,旋转转子/喷嘴3经作用为防止工艺流体损失并防止污垢进入的环密封件4被密封至螺母7。螺母7则经另一个密封件5被密封至管道2,该密封件5作用为防止污垢进入以及防止工艺流体进入在螺母7和空心管道2之间的小间隙且紧紧地将螺母7保持在管道2上。可利用另一个简单的紧固件,如平头螺钉(未示出)以防止螺母7旋转。可替代地,螺母7可被胶合至管道2的一端或通过螺纹连接而结合。在那些替代方案中,不需要密封件4。
在该优选实施例中,支撑转子/喷嘴3以使其在螺纹6上进行旋转移动,其公部(male part)为转子/喷嘴3的集成特征且其母部(female part)为螺母7的集成特征。螺纹6将转子/喷嘴3保持在其旋转轴线上。
如同第一个实施例一样,滤芯1接收进入的流体8并提供过滤的流体9。在过滤期间,过滤的材料将在滤芯1的上表面上积聚。在如下所述的反冲洗工艺中使用清洗头以清洗滤芯1并将过滤的材料和经反冲洗的流体10从滤芯1带走。在使用中,如上面所讨论的过滤器清洗头中的每一个均按基本上与下述方式类似的方式发挥作用。转子/喷嘴3最初位于在图1a或图1c中所示的完全缩回的位置,且当发起反冲洗工艺时被激活。反冲洗工艺由位于滤芯1内部上的流体8和在反冲洗出口附近的流体10之间产生的压力差而启动,该压力差在当位于反冲洗出口的控制阀被打开时(或应用真空或抽吸装置时)出现。在此时,反冲洗流体开始从滤芯8的内部移至反冲洗出口。
一旦反冲洗流开始移动,在反冲洗流中含有的流体流的动能则被转换至使转子/喷嘴3旋转的扭矩。在该优选实施例中,转子/喷嘴3的设计包括转子叶片,其被形成为能特别有效地生成该扭矩的圆锥螺旋线。下面将参照图6至12更详细地讨论转子叶片的圆锥螺旋线的形状。
源自转子/喷嘴3的扭矩及其所产生的旋转通过螺纹6和螺母7被转换成转子/喷嘴3相对于管道2的线性运动。旋转的转子/喷嘴3从图1a或图1c中所示的缩回位置移动至如图1b至图1d所示的使转子/喷嘴3的一端与滤芯1相接触的展开位置。随着转子/喷嘴3与滤芯1相接触,反冲洗流受到位于滤芯1下游的流体9和在管道2中的流体10之间的压力差的推动。当通过滤芯1的内壁约束了转子/喷嘴3的运动时,被施加至转子/喷嘴3的转子叶片的扭矩发挥作用产生密封力,使得转子/喷嘴3的一端保持抵靠住密封元件的表面。该密封力促进了非常有效的密封并防止工艺流体在滤芯8的内部和转子/喷嘴3的密封面之间发生泄露并流到反冲洗出口10的附近。
因此,可通过反冲洗或工艺流体的反向流而从滤芯移除在滤芯壁1上累积的碎屑。在正常操作中,在滤芯内部上的压力大于在其外部上的压力,从而产生流体的前向流。通过在滤芯外部和形成反冲洗机构一部分的过滤器清洗头的入口之间形成的第二压力差,产生了工艺流体的高速局部(隔绝的)反向流或回流,从而使增生的滤渣能从过滤壁1进行剥除并由过滤器清洗头进行收集。通过高速反冲洗流所产生的大剪切力便于将碎屑从过滤壁1进行剥除,其中高速反冲洗流则是通过跨滤芯壁1的压力差而生成的。
仔细选择通过转子/喷嘴3所生成的密封力,以在转子/喷嘴3和滤芯1的内壁之间提供有效的密封,且同时避免产生很高的力导致滤芯可能发生变形,或导致转子/喷嘴3吸在滤芯1上且无法通过可在反冲洗机构的正常操作中出现的反力进行反转。如果滤芯1的制造公差需要转子/喷嘴3“后退离开”或后退一小段距离以适应滤芯1尺寸的小差异,施加这种反力则会是有用的。如果仔细地选择密封力,反力能够使转子/喷嘴3的反转,从而使卡住或损坏滤芯1的可能性最小化。一旦已经历过制造公差的变化,转子/喷嘴3则可在其正常的路线上向滤芯壁1前进。
当转子/喷嘴3位于图1b或图1d中所示的展开位置上时,反冲洗流体流则开始于外部区域9中、通过半透过滤壁1且因此使工艺流体的高速局部(隔绝的)反向流或回流以及冲下的碎屑移至过滤器清洗头的转子/喷嘴3中。该流体和碎屑沿空心管道2流至反冲洗机构的剩余部分中。然后,则将流体10排放至反冲洗出口。在许多过滤工艺中,反冲洗流体为废品且因此被丢弃。
在转子/喷嘴3生成的高速局部的反冲洗流导致对过滤器的清洗,这是因为碎屑从过滤壁1被剥除且通过过滤器清洗头而进行收集。通过高速反冲洗流所创建的大量的剪切力便于将碎屑从过滤壁1进行剥除。
图2示出被设计为待加装至现有反冲洗机构上的过滤器清洗头。空心管道2可安装在从现有反冲洗机构突出的现有管11的一端上,且可通过环形密封件12来密封,环形密封件12将管道2保持在管11的一端上并将接头密封住。管11可以是类似于在图4和5中所示的多头过滤器清洗装置。
使用这种设计,过滤器清洗头可用于取代采用喷嘴的传统的过滤器清洗头,如WO2006/008729所述的弹簧加载的喷嘴或WO2011/058556所述的波纹管型喷嘴。由于清洗头的喷嘴遭受磨损,其为易损部分且可在维护期间进行更换。如本文所述的用使用转子/喷嘴3的清洗头更换传统的清洗头可产生改善的性能,并可增加喷嘴再次因上述原因而需要进行更换之前的时间。
图3a和3b示出用于空心管道2的设计,该空心管道2提供了用于圆筒形滤芯1的多头过滤器清洗装置的模块化的布置。使用这种设计,管道2采用T形件的形式,其具有旨在与圆筒形滤芯1的轴线相对齐的主流道,以及将如在图1中所示的转子/喷嘴3结合至主流路的分支通道。通道2形成多清洗头系统的区段且可与其他类似的通道2安装在一起。
将理解的是,虽然为了方便起见在图2和图3a中所示的是具有如上面关于图1a和1b所述特性的清洗头,但清洗头也可改为具有如上面关于图1c和1d所述的特性。
图3b示出在圆筒形滤芯1内安装的两个通道2。以横截面示出了滤芯1。在通道之间的接头被设计成用于“卡接配合(snap fit)”且包括另一个环形密封件13以将相邻的区段密封在一起。利用该布置,可在清洗装置中组装多个头以构成所需要的各种长度的滤芯1。
为了有效地清洗圆筒形滤芯1的内表面,当位于缩回位置上时,每个清洗头的转子/喷嘴3应被放置在接近滤芯1的内表面处,从而将通过小的旋转移动使每个清洗头的转子/喷嘴3与过滤器表面相接触以进行有效的清洗。因此,管道2的侧分支的长度应基于滤芯1的半径进行设置。
图4示出被安装在含有单个滤芯的过滤器布置中的整个反冲洗机构。以横截面示出过滤器的各部分,从而使反冲洗机构能被看到。过滤器具有大致为圆筒形的构造,其具有圆筒形的滤芯1。过滤器本体14围绕滤芯1并具有入口15和出口16,以及将滤芯1保持在位的支撑托架17和18。反冲洗机构包括被“卡接”在一起的多个清洗头,如上面关于图3a和3b所述。每个清洗头包括空心管道2、转子/喷嘴3和其他组件,如上面关于图1a和1b所讨论的。在反冲洗机构的一端为出口端件19,其允许流体连接用于反冲洗流体10的反冲洗机构剩余部分,且还经轴承将空心管道2的主流路连接至轴和马达/齿轮箱22。轴承允许反冲洗机构的旋转移动和纵向移动。在反冲洗机构的另一端为盲端件20,其提供闭合端并连接至类似的轴承以固定反冲洗机构,以在两端19和20之间进行旋转移动且可使反冲洗机构沿圆筒形滤芯1的长度滑动。安装凸缘21支撑轴和马达/齿轮箱22,其提供了驱动机构。
由轴和马达/齿轮箱22所提供的驱动机构可使反冲洗机构旋转且同时沿滤芯1的轴线以线性运动移动反冲洗机构。可通过电动马达和螺杆或其他电气-机械、气动或液压布置进行移动。随着反冲洗机构同时发生旋转和线性移动,形成反冲洗机构的一部分的过滤器清洗头遵循螺旋形轨迹移动。因此,过滤器清洗头能够在滤芯1的100%的整个内表面上进行传送,从而可从半透过滤壁的所有部分收集碎屑。因此,可清洗半透过滤壁的整个表面上的碎屑。
在使用中,过滤器经入口15接收流体并将该流体8传递至圆筒形滤芯1的内部。经出口16排出过滤的流体9。当有必要清洗过滤器时,例如,当整个滤芯1的压力损失已上升超过阈值水平时,激活反冲洗机构。这可通过阀24或类似的控制机构进行。这在接受过滤的流体8、9和反冲洗流体10之间产生压力差。因此,流体沿转子/喷嘴3流动,产生扭矩,使得转子/喷嘴3密封抵靠住滤器壁,如上面所讨论的。然后,源自过滤器的外部区域的流体9回流通过半透过滤壁1,从而在转子/喷嘴3的开放端产生工艺流体的高速局部(隔绝的)反向流或回流。这导致工艺流体和碎屑移至过滤器清洗头的转子/喷嘴3中,沿空心管道2移至反冲洗机构的主流路并最终移至反冲洗出口区域10。过滤器本体14包括反冲洗出口23,在其上可安装有允许发起反冲洗工艺的压力差的合适的控制阀24和/或真空或抽吸装置25。
图5示出在含有多个圆筒形滤芯1的过滤器布置中安装多个反冲洗机构的一个实例。过滤器本体1具有入口15和出口16,以及将多个滤芯1保持在位的支架17和18。液体通过平行的滤芯1。在该实施例中,多个反冲洗机构中的每一个包括被“卡接”在一起的多个过滤器清洗头,如上所述。每个过滤器清洗头包括空心管道2和转子/喷嘴3,以及其他组件,如上面所讨论的。反冲洗机构的各端包括上面关于图4所述的端件19和20,其连接至提供合适的驱动机构的轴和马达/齿轮箱22。
由轴和马达/齿轮箱22所提供的驱动机构被布置成使各个反冲洗机构旋转且同时沿各个滤芯1的轴线以线性运动移动各个反冲洗机构。就图4的布置而言,可通过电动马达和螺杆或其他电气-机械、气动或液压布置进行移动。
在使用中,反冲洗流体通过过滤器壁1进入转子/喷嘴3并按上述方式清洗滤渣。图5的过滤器具有用于所有平行滤芯1的单个反冲洗出口23。该出口23包括合适的控制阀24和/或真空或抽吸装置25,能够产生压力差以启动同时用于所有平行滤芯的反冲洗工艺。
在替代的实施例中(未示出),滤芯中的每一个设有单独的出口或阀系统以允许单独地清洗单独的滤芯。这在残渣以不同的速度增长在不同的平行滤芯上的系统中是有用的。
图6a和6b描绘了组合转子/喷嘴3的转子的一个实施例,其包括外周缘30、叶片31和内周面32。如上面所说明的,转子用于将反冲洗期间的流体流和压力差变成在转子/喷嘴3上的旋转移动和扭矩,以将清洗头保持抵靠住滤器壁1。通过适用螺母的螺纹布置将转子安装至清洗装置,该螺母被保持在内周面32内部的转子本体内的旋转轴线上,因此按图1a、1b和2至3b所示的方式进行安装。图1c和1d所示的实施例可用作一个替代方案。叶片31在内周面32和外缘30之间延伸且因此形成封闭的流路。在该实施例中,形成叶片31形状的底层螺旋是基于阿基米德螺旋的,其中半径r随极坐标θ成线性增加的。因此,所产生的转子具有截头圆锥的形状。如下面所指出的,也可使用其他类型的曲线。在转子内可看到三个转子叶片31,也能看到内周面32。由中心线示出转子33的纵轴线。通过所有的这些图,以Do表示转子的最大外直径且以do表示最小外直径。以L表示转子的长度且从具有最小外直径do的转子的一端测量局部长度l。
图7a和7b描绘了为了清楚起见而部分隐藏外周缘30的图6a和6b所示的转子。其也突出显示了内周缘32。三个转子叶片31具有通过一对圆锥螺旋形成的形状。外圆锥螺旋34为形成在外缘30的内表面上的螺旋,且形成叶片31的变化的外半径ro。内圆锥螺旋35为形成在内圆锥32外部上的螺旋且形成叶片的变化的内半径ri。两个螺旋具有沿纵轴线33增加的半径和减少的螺旋节距。叶片32具有因增加的螺旋频率而产生减少的螺旋节距。一对圆锥螺旋34和35是按顺时针方向而产生的,且具有以相等的速率增加的不同的初始半径以形成一对平行的圆锥螺旋。
图8a和8b示出图6和7所示的转子的立体图,其中能看到叶片31形状的进一步的细节。
图9a和9b示出转子设计的变型。在该实施例中,一对圆锥螺旋34和35是按顺时针方向而产生的且按上面所讨论的方式形成叶片31的形状。然而,内圆锥螺旋35半径ri增加的速率低于外圆锥螺旋34半径ro增加的速率,从而形成在转子的大直径端比在转子的小直径端间隔更大的一对非平行的圆锥螺旋。
图10a和10b示出进一步的变型,其中内圆锥螺旋35半径ri增加的速率高于外圆锥螺旋34半径ro增加的速率,从而形成在转子的大直径端比在转子的小直径端靠得更近的一对非平行的圆锥螺旋。
图11a和11b示出进一步的变型,其具有如在图6和7中所示的平行的内和外圆锥,但其中的螺旋节距是按低于前述实施例的速率而减少的。这导致了以更低的速率增加螺旋频率。图12a和12b示出相反的变型,其中螺旋节距是按更高的速率减少的,从而导致更快的螺旋频率的增加速率。
对于旋转的转子/喷嘴3来说,可对叶片和转子的设计进行优化以用于过滤器预期的操作条件,如下面参照图13至15所讨论的。
转子的几何形状便于将液体的流体流中的动能转换成旋转力或扭矩。转子的几何形状是基于其半径r沿纵轴线33随极坐标θ增加的一对圆锥螺旋34和35,其中的每个螺旋34和35具有不同的初始半径。该对圆锥螺旋34和35还具有随着半径的增加而随极坐标θ减少的节距。减少的螺旋节距提供了增加的螺旋频率。这种类型的圆锥螺旋可被定义成三维螺旋,其具有作为极坐标θ的函数的变化的半径r,而且具有作为极坐标θ的函数而变化的第三变量,长度l。
该对圆锥螺旋可按顺时针或逆时针方向而产生,且如图11A至12B所示,导致螺旋频率增加的螺旋节距的减少速率可发生变化,以获得每单位长度最佳的螺旋节距的减少量。其他对所产生的扭矩产生直接影响的变量为该对圆锥螺旋的初始和最终的半径(且因此为转子的最小和最大的内直径和外直径)以及转子的总长。也可针对给定的流动情况对这些进行优化。
当该对圆锥螺旋沿径向连接在一起时,形成转子的转子叶片的表面。在附图中所示的转子中,存在有三个相同的转子叶片31。可替代地,在转子周围可按等间隔设有更少或更多的相同的转子叶片31。转子叶片31在内周面32和外缘30之间延伸且被同时固定至内周面32和外缘30以与其一起旋转。
当在固体表面上流动的流体经历动量变化时,在固体表面上创建了流体动力学的反作用力。在特定方向上作用于流体的净流体动力等于在该方向上的流体的动量变化率,如根据牛顿第二定律所决定的。根据牛顿第三定律,相等且相反的流体动力学的反作用力作用于界定流体的固体表面上。这种流体动力学的反作用力的实例为,当一股水击中墙壁时所发现的那些力,或是当迫使流体转弯时在管系统中所感受到的力,或当固体置于迫使流体在其周围流动的流动流体中时在固体上所感受到的力。
在本文所述的转子中,界定流动的流体本体的固体表面是通过一对转子叶片的前面和后面以及转子的内和外缘所形成的。随着流体流过具有特殊形状的转子及其复杂的流道,可因叶片的形状以及导致增加的螺旋频率的从入口至出口的减少的螺旋节距而不断地迫使其改变方向,从而导致连续的动量变化率。该动量变化率必然导致作用于转子的固体表面上的流体动力学的反作用力。由于圆锥螺旋具有给定的几何方向(这可以是顺时针或逆时针的),因此流体动力学的反作用力作用于相反的方向上,且由于流体动力学的反作用力的中心从纵轴线被转移一个径向距离,因此生成在转子的纵轴线周围发挥作用的扭转力。
圆锥螺旋的底层数学螺旋可基于阿基米德、欧拉、斐波纳契、双曲线、连锁、对数、西奥多勒斯或任何其他已知的螺旋,其具有作为极坐标θ的函数的变化的半径r,而且具有作为极坐标θ的函数而变化的第三变量,长度l。由于上面所讨论的原因,显而易见的是内和外半径r随极坐标θ变化更快的底层螺旋将导致更快的动量变化率,其必然会导致增加的流体动力学的反作用力。这与小弯和急转的比较相类似。众所周知的是当迫使流体转过两个弯中的较急的弯时在管系统中所感受到的力增加。
在上述实施例中,为了简单起见,当半径r随极坐标θ线性增加时,底层螺旋是基于阿基米德螺旋的。然而,通过使用不同的底层数学螺旋,如阿基米德、欧拉、斐波纳契、双曲线、连锁、对数、西奥多勒斯或任何其他已知的螺旋,其具有作为极坐标θ的函数的变化的半径r,而且具有作为极坐标θ的函数而变化的第三变量,长度1而使内和外半径r随极坐标θ非线性增加的方式构造转子也是同样可行的。使用半径r随极坐标θ线性增加的阿基米德螺旋提供了在直边截头圆锥周围形成的圆锥螺旋,如附图中所示。相反地,内和外半径r随极坐标θ的非线性增加将提供不同的形状,例如,外部和内部圆锥表面可被弯曲。
在本文所示的优选实施例中,选择该对圆锥螺旋以具有沿纵轴线随极坐标θ线性增加的半径r,每个圆锥螺旋均具有不同的初始半径。在一些实施例中,如在图9a至10b中所示,任一圆锥螺旋的增加的半径可按更快或更慢的速率增加以形成一对非平行的圆锥螺旋。在其他实施例中,如在图11a至12b中所示,其可按相同的速率增加以形成一对平行的圆锥螺旋。同时,螺旋节距也可通过作为θ的函数或在沿纵轴线33的离散步骤中连续地变化1而减少。在这些实施例中,螺旋节距的减少速率或螺旋频率的增加速率是线性的。可替代地,其也可以是非线性的。
螺旋形状、半径增加和节距减少相结合以提供在转子上的总的流体动力学的反作用力,且从而提供使喷嘴旋转并抵靠过滤器壁按压喷嘴所需的扭矩。如果需要的话,可对这些参数进行优化以使从给定的流体流提取的动力最大化或限制从给定的流体流提取的动力。下组等式考虑了所生成的流体动力学的反作用力和扭矩。
m &CenterDot; in = m &CenterDot; out = m &CenterDot; - - - 1
F x = m &CenterDot; ( u 2 - u 1 ) - - - [ 2.1 ]
F y = m &CenterDot; ( v 2 - v 1 ) - - - [ 2.2 ]
F z = m &CenterDot; ( w 2 - w 1 ) - - - [ 2.3 ]
Tx=Fz×y-Fy×z   [3.1]
Ty=Fx×z-Fz×x   [3.2]
Tz=Fy×x-Fx×y[3.3]
如在等式1中所述的,至转子中的质量流为恒定的。由于连续减少的螺旋节距,或换句话说,由于流体流方向的连续变化且从而为在转子中位于沿转子长度的不同距离处的第一和第二任意横截面的速度分量之间的流体的速度分量u、v和w的变化,必然会产生流体动力学的反作用力Fx、Fy和Fz。这产生动量变化率和流体动力学的反作用力,如等式[2.1]至[2.3]所表示的。遵守右手法则,在转子的x、y和z轴线周围的扭矩Tx、Ty和Tz是通过流体动力分量和其所作用的距纵轴线的相关距离x、y和z的失衡交叉乘积而产生的,如等式[3.1]-[3.3]所示。
根据该组等式,可以理解的是螺旋节距的减少速率将导致扭转力和动力输出增加或减少。扭转力的减少是通过更慢的螺旋节距的减少速率而实现的,且扭转力的增加是通过更快的螺旋节距的减少速率而实现的。
流体动力学的反作用力起作用的距纵轴线的距离是通过该对圆锥螺旋的半径变化而连续增加或减少的。对于每个复杂的流道而言,产生一组单独的扭转力,在转子的纵轴线周围的总扭转力为在转子纵轴线周围作用的所有扭转力的总和。
在该对圆锥螺旋增加的半径按相同的速率增加以形成一对平行的圆锥螺旋的情况下,这导致流体动力学的反作用力起作用的距纵轴线的距离的增加量相等且从而导致扭转力和动力输出的放大,如等式[3.1]至[3.3]所确定的。在这种情况下,在转子内的第一和第二任意横截面处的横截面面积按恒定的速率增加,且由于质量流为恒定的,速度差且从而使所产生的流体动力学的反作用力为恒定的。扭转力和动力输出的放大仅取决于该对圆锥螺旋的半径增加速率。
在该对圆锥螺旋的半径以更高或更低的速率增加以形成一对非平行的圆锥螺旋的情况下,这具有改变在转子内的第一和第二任意横截面的横截面面积的增加速率的效果。当内圆锥螺旋半径的增加速率低于外圆锥螺旋的半径的增加速率时,任意横截面面积以更快的速率增加。这具有减少速度分量的变化的效果且由于质量流为恒定的,所产生的流体动力学的反作用力较低。当内圆锥螺旋半径的增加速率快于外圆锥螺旋的半径的增加速率时,任意横截面面积以更慢的速率增加。这具有增加速度分量的变化的效果且由于质量流为恒定的,所产生的流体动力学的反作用力较大。因此,按需要可通过操纵转子的参数操纵所提取的动力输出并进行优化或限制。
此外,在该对圆锥螺旋之间的连接不仅限于直的连接。连接可以是弯曲的,例如,凹面可用于沿具有特殊形状的转子叶片的表面增加表面积,从而使所产生的流体动力学的反作用力遍布在更大的区域上并减少内部应力。同样地,为简单起见,该对圆锥螺旋通常是轴向对准的,但也可稍微错开以通过有利的方式改变圆锥螺旋的表面特征。
如上面所讨论的,转子的各种参数和叶片形状可根据转子的目的和其将被暴露于的操作条件,如流速等而进行变化。图13至15示出这些参数的变化是如何影响转子的性能的。
图13为示出改变转子的最大外直径Do与最小外直径do的比率的影响的图。在这种情况下,该对圆锥螺旋的半径以相同的速率增加以形成一对平行的圆锥螺旋。增加的直径导致流体动力学的反作用力起作用的距纵轴线的距离的增加,且从而提供了扭转力的放大。扭转力的放大取决于该对圆锥螺旋的半径增加速率。
作为基线,图13使用直径未发生变化的布置,即最大和最小半径[Do/do]的比率为1。这是一种其中的一对圆锥螺旋的半径不增加的转子,即这是基于圆筒形螺旋而非圆锥形螺旋的转子。本文所述的基于通过圆锥螺旋形成的叶片的转子具有大于1的比率且这提供了扭矩放大倍数以及效率的增加,如图所示。
在上面所讨论的变型中的一些中,在非平行的圆锥表面上形成有内和外圆锥螺旋。图14为示出增加或减少该对圆锥螺纹的相对半径以形成一对非平行的圆锥螺旋的影响的图。当内圆锥螺旋的半径增加速率低于外圆锥螺旋的半径增加速率时(即,[Δri/L]/[Δro/L]<1)时,沿转子的在第一和第二纵向距离上的任意横截面面积以更快的速率增加。这具有减少速度分量的变化的效果且由于质量流为恒定的,所产生的流体动力学的反作用力和扭转力较低。当内圆锥螺旋半径的增加速率快于外圆锥螺旋的半径的增加速率时(即,[Δri/L]/[Δro/L]>1时),转子内的任意横截面面积以更慢的速率增加。这具有增加速度分量的变化的效果且由于质量流为恒定的,所产生的流体动力学的反作用力和扭转力较大。[Δri/L]/[Δro/L]=1的点为其中的一对圆锥螺旋的半径以相同的速率增加以形成一对平等的圆锥螺旋的转子。
上面所讨论的其他变型涉及使用不同的节距变化以减少圆锥螺旋的节距。图15为示出导致螺旋频率Δf的速率变化的螺旋节距的减少速率中的变化的影响的图。如图所示,这种性质的变化将导致扭转力从而导致动力输出的增加或减少。扭转力的减少是通过更慢的螺旋节距的减少速率或更慢的螺旋频率的增加速率而实现的,且扭转力的增加是通过更快的螺旋节距的减少速率或更快的螺旋频率的增加速率而实现的。在图15中,标记为Δf=0.1的转子是基于图6a至8b中所示的转子。比较起来,标记为Δf=0.05的转子是基于图11a和11b中所示的转子,同时标记为Δf=0.25的转子是基于图12a和12b中所示的转子。
在图13至15中说明的关系能使转子设计根据过滤器的特征进行优化。对于低压过滤而言,压力差通常将是较低的且因此会产生低反冲洗流速。对于低反冲洗流速而言,转子应具有选自图13至15和图的右手侧的参数。具有这些参数的转子将产生用于给定流的较大的力。相反地,对于高压过滤而言,压力差通常会是较高的且会产生高反冲洗流速。用于高压力差的转子应具有选自图的接近左手侧的参数,这是因为这些转子将产生用于给定流的较小的力。转子设计和压力差应与为了与滤芯实现良好接触所需的密封力相匹配,且同时还确保了密封力不会过大以至损坏滤芯。
将理解的是上述清洗头可用于任何过滤器布置且不限于上述的圆筒形滤芯和旋转的反冲洗布置。在上面的优选实施例中,流体从圆筒形滤芯1的内部移至外部,但相反的方向也是容许的。替代的系统可用于跨过滤器壁遍历清洗头以适于过滤器壁的几何形状。清洗头可适于加装至任何适当的已知反冲洗机构,例如,通过设计管道2以按适当的方式与已知的反冲洗机构的流道相结合而实现。

Claims (25)

1.一种用于过滤器反冲洗机构的清洗头,所述清洗头包括:用于与滤芯壁相接触并接收反冲洗流体流的喷嘴,其中所述喷嘴包括转子,所述转子用于当被暴露于所述反冲洗流体流时生成扭矩,且其中所述清洗头被布置成使得所述喷嘴的至少一部分将由于所述转子生成的所述扭矩而向所述滤芯壁移动和/或向所述滤芯壁施力。
2.根据权利要求1所述的清洗头,其中由所述转子生成的所述扭矩在使用中产生了所述喷嘴或所述喷嘴的一部分在朝向所述滤芯壁的方向上的线性移动,和/或在使用中导致了通过所述喷嘴或其一部分在朝向所述滤芯壁的方向上施加线性力。
3.根据权利要求1或2所述的清洗头,其中由所述转子生成的所述扭矩通过螺纹布置而被转换成线性力和/或移动。
4.根据权利要求1、2或3所述的清洗头,其中所述转子经螺纹布置被安装至所述清洗头且所述螺纹具有通常与所述滤芯壁的表面相垂直的旋转轴线。
5.根据权利要求4所述的清洗头,其中所述转子形成所述喷嘴的端部,从而使所述转子的入口形成旨在反冲洗期间与所述滤芯壁相接触的所述喷嘴的接触部。
6.根据权利要求1、2或3的清洗头,其中所述喷嘴包括所述转子和单独的接触部,所述接触部被布置成经所述转子旋转被驱动而实现线性移动,所述接触部在反冲洗期间与所述滤芯壁相接触。
7.根据权利要求6所述的清洗头,其中所述转子被安装至所述清洗头以仅进行旋转运动,且所述接触部为带螺纹的部件,该带螺纹部件关于所述喷嘴的主体滑动安装,且被连接至由所述转子旋转而被驱动旋转的螺纹部件。
8.根据前述任一权利要求所述的清洗头,其包括空心管道,用于反冲洗流体从所述喷嘴至所述反冲洗机构的下游部分的通行,其中所述空心管道支撑所述喷嘴和/或转子。
9.根据权利要求8所述的清洗头,其中所述空心管道包括用于装配至现有反冲洗机构的管道的接头或接口。
10.根据权利要求8所述的清洗头,其中所述空心管道包括用于所述反冲洗机构的主流路的一部分以及从所述主流路的所述一部分延伸出来用以支撑所述喷嘴的分支。
11.根据权利要求10所述的清洗头,其中所述主流路的所述一部分包括区段,其被布置成与类似的空心管道的另一个类似的区段相结合。
12.根据前述任一权利要求所述的清洗头,其中所述转子包括一个或多个其节距在反冲洗流体流的方向上减少的螺旋形转子叶片。
13.根据前述任一权利要求所述的清洗头,其中所述转子具有圆锥形,其具有在两个圆锥面之间形成的叶片。
14.根据前述任一权利要求所述的清洗头,其中所述喷嘴是通过所述转子以及随所述转子移动的所述转子的外壳或罩形成的。
15.根据前述任一权利要求所述的清洗头,其中所述转子包括:至少一个布置成绕旋转轴线旋转的叶片,所述叶片是通过在内圆锥螺旋和外圆锥螺旋之间延伸的表面所形成的;围绕所述叶片的内表面和外缘,所述内表面和外表面跟随与所述圆锥螺旋的路径相应的回转的通常为圆锥形的内和外表面,其中所述圆锥螺旋中的每一个具有随所述螺旋的半径增加而减少的节距,且其中所述叶片在所述外缘和所述内表面之间延伸且被安装至所述外缘和所述内表面中的至少一个,且其中所述转子是按使所述圆锥形的小直径端形成用于反冲洗流体流的入口的方式进行布置的。
16.根据权利要求15所述的清洗头,其中所述叶片被同时安装至所述外缘和内表面。
17.根据权利要求15或16所述的清洗头,其中所述转子在所述转子的所述小直径端处具有入口,其被布置成用于流体的轴向流动。
18.根据前述任一权利要求所述的清洗头,其包括在所述过滤器清洗头内的张力或扭力弹簧,其产生“可缩回的”力作用于所述接触部和/或所述转子上,从而使所述接触部从所述滤芯壁缩回和/或当移除正常的工作载荷时使所述转子反向旋转。
19.根据权利要求1至17中的任一项所述的清洗头,其中所述转子被布置成当施加反向流时反向旋转,由此反向流可用于使所述接触部的所述移动反向。
20.一种反冲洗机构,其包括根据前述任一权利要求所述的一个或多个清洗头,其中所述反冲洗机构用于安装在具有一个或多个滤芯的过滤器中,且所述滤芯包括半渗透的过滤壁。
21.一种清洗滤芯壁的方法,其包括使用根据前述任一权利要求所述的清洗头或反冲洗机构清洗滤芯壁。
22.根据权利要求21所述的方法,其包括下列步骤:
(A)在过滤网的外部和所述过滤器清洗头之间产生压力差以使流体反向流过所述滤芯壁;
(B)通过将所述流体流的动能转换成密封力而启动所述过滤器清洗头,所述密封力会使得所述过滤器清洗头与所述滤芯的内壁实现自调整密封,从而防止工艺流体的流失并提高清洗的有效性;以及
(C)相对于所述过滤壁移动所述过滤器清洗头以从100%的所述过滤壁上移除碎屑。
23.一种制造过滤器清洗头的方法,其包括提供根据权利要求1至19中任一项所述的喷嘴。
24.根据权利要求23所述的方法,其为制造反冲洗机构的方法,其包括将所述清洗头加装至现有的反冲洗机构。
25.一种基本上如前面参考附图所述的清洗头。
CN201380029638.1A 2012-04-04 2013-04-04 过滤器清洗 Active CN104334289B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1206003.4 2012-04-04
GB1206003.4A GB2500900B (en) 2012-04-04 2012-04-04 Filter Cleaning
PCT/EP2013/057136 WO2013150113A2 (en) 2012-04-04 2013-04-04 Filter cleaning

Publications (2)

Publication Number Publication Date
CN104334289A true CN104334289A (zh) 2015-02-04
CN104334289B CN104334289B (zh) 2017-03-08

Family

ID=46160295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380029638.1A Active CN104334289B (zh) 2012-04-04 2013-04-04 过滤器清洗

Country Status (8)

Country Link
US (1) US20150053628A1 (zh)
EP (1) EP2834017B1 (zh)
CN (1) CN104334289B (zh)
DK (1) DK2834017T3 (zh)
GB (1) GB2500900B (zh)
HK (1) HK1206679A1 (zh)
IL (1) IL234946B (zh)
WO (1) WO2013150113A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106110737A (zh) * 2015-05-06 2016-11-16 汉斯琥珀欧洲公司 一种从液体中去除杂质的装置以及清洗相应装置的方法
CN109715263A (zh) * 2016-10-12 2019-05-03 Hydac处理技术有限公司 过滤设备
CN109985438A (zh) * 2017-12-29 2019-07-09 福建金源泉科技发展有限公司 脉冲式反冲洗结构
CN112317469A (zh) * 2020-10-16 2021-02-05 中国航发四川燃气涡轮研究院 一种冲压燃烧室整体式喷油总管反向清洗装置
CN115153368A (zh) * 2022-06-13 2022-10-11 深圳市无限动力发展有限公司 集尘基站
CN115444334A (zh) * 2022-09-28 2022-12-09 苏州爱普电器有限公司 用于湿式表面清洁设备的污液回收装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2498924A2 (en) * 2009-11-12 2012-09-19 Filter Safe Ltd. Filter proximity nozzle
US8647516B2 (en) * 2010-09-03 2014-02-11 Johnny Leon LOVE Filtration method with self-cleaning filter assembly
CN104667650B (zh) * 2015-02-28 2016-08-24 成都易态科技有限公司 滤芯清洁处理方法
CN105436148B (zh) * 2015-11-18 2017-12-08 威海御膳坊生物科技有限公司 一种包衣造粒机过滤器用吹扫装置
CN109279683B (zh) * 2018-10-25 2021-09-14 西北大学 基于连续反冲洗的油水混合液过滤分离方法及装置
US11071931B1 (en) 2018-12-28 2021-07-27 United Launch Alliance, L.L.C. Self-cleaning inline filter
GB2585918B (en) * 2019-07-24 2022-03-30 Peter Hosford James Filter assembly
CN112426767B (zh) * 2020-10-30 2021-09-28 南京嘉源润新环保科技有限公司 针对印染废水的处理装置及其控制方法
CN114670355A (zh) * 2022-03-25 2022-06-28 吴年贵 一种塑胶原料搅拌加工设备
CN118125687A (zh) * 2024-03-05 2024-06-04 青岛华浩建设工程有限公司 一种桥梁施工的泥浆压滤设备及压滤方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526321A (en) * 1981-05-12 1985-07-02 Gerni A/S Apparatus for cleaning surfaces
CN1107379A (zh) * 1993-11-26 1995-08-30 博尔-基希过滤器制造有限公司 反流冲洗过滤器
JPH09224885A (ja) * 1996-02-23 1997-09-02 Eiichi Ikeda 打部を有する真空掃除機の先端ノズル
CN2640574Y (zh) * 2003-03-25 2004-09-15 卢普伦 自动调压反冲洗过滤器
CN1583215A (zh) * 2003-08-19 2005-02-23 汉斯萨塞拉思有限责任公司 带有反向漂洗装置的过滤器装置
CN101474770A (zh) * 2009-01-17 2009-07-08 杨君德 反推式对转刷水下除污装置
CN201357010Y (zh) * 2009-02-05 2009-12-09 上海松岩机电设备成套有限公司 全自动清洗过滤器
CN201823375U (zh) * 2010-09-11 2011-05-11 福建新大陆环保科技有限公司 一种无动力自动清洗的叠片式过滤器
CN201855616U (zh) * 2010-10-29 2011-06-08 宁波埃美柯铜阀门有限公司 带减压反冲洗过滤器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1518502A (en) * 1923-07-25 1924-12-09 Gill Propeller Company Ltd Screw propeller or the like
US1945839A (en) * 1932-04-25 1934-02-06 Maltitz Edmund Von Filtering apparatus
US2134347A (en) * 1937-08-28 1938-10-25 Spray Engineering Co Play pipe construction
US3804336A (en) * 1972-12-22 1974-04-16 D Koeppe Stabilized fire hose nozzle
US3934823A (en) * 1973-11-12 1976-01-27 Delavan Manufacturing Corporation Low drift spray nozzle
US5464321A (en) * 1978-11-24 1995-11-07 The United States Of America As Represented By The Secretary Of The Navy Marine propeller
US4297209A (en) * 1980-04-04 1981-10-27 Dover Corporation High solids filter
US4826512A (en) * 1988-10-19 1989-05-02 Fuller Carmel U Self-cleaning air filter
US5228993A (en) * 1990-02-09 1993-07-20 Mordeki Drori Cleanable filter system with longitudinally movable and rotatable cleaning member
DE59406124D1 (de) * 1993-10-30 1998-07-09 Honeywell Ag Rückspülbare Filtereinrichtung
IT1298008B1 (it) * 1997-12-19 1999-12-20 Annovi E Reverberi S R L Lancia di lavaggio ad ugello rotante
DE19828171A1 (de) * 1998-06-24 1999-12-30 Mecana Umwelttechnik Ag Reiche Verfahren und Vorrichtung zum Filtrieren von Flüssigkeit
GB0008763D0 (en) * 2000-04-10 2000-05-31 Lewmar Ltd Thruster
US20040112846A1 (en) * 2001-01-18 2004-06-17 Nicholas Jackson Filter
US7083735B2 (en) * 2003-09-03 2006-08-01 Laing David A High debris content strainer
CN101014397A (zh) * 2004-07-21 2007-08-08 阿米阿得过滤系统(1997)有限公司 过滤器清洁头
US7055699B2 (en) * 2004-09-01 2006-06-06 Amiad Japan Inc. Self-cleaning mechanical filter
US20070199885A1 (en) * 2005-11-14 2007-08-30 Gil Shmuel Method for cleaning a filtering system and a filtering system having cleaning capabilities
US20090050582A1 (en) * 2007-08-23 2009-02-26 Shmuel Gil Self-Cleaning System For Filter
EP2498924A2 (en) 2009-11-12 2012-09-19 Filter Safe Ltd. Filter proximity nozzle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526321A (en) * 1981-05-12 1985-07-02 Gerni A/S Apparatus for cleaning surfaces
CN1107379A (zh) * 1993-11-26 1995-08-30 博尔-基希过滤器制造有限公司 反流冲洗过滤器
JPH09224885A (ja) * 1996-02-23 1997-09-02 Eiichi Ikeda 打部を有する真空掃除機の先端ノズル
CN2640574Y (zh) * 2003-03-25 2004-09-15 卢普伦 自动调压反冲洗过滤器
CN1583215A (zh) * 2003-08-19 2005-02-23 汉斯萨塞拉思有限责任公司 带有反向漂洗装置的过滤器装置
CN101474770A (zh) * 2009-01-17 2009-07-08 杨君德 反推式对转刷水下除污装置
CN201357010Y (zh) * 2009-02-05 2009-12-09 上海松岩机电设备成套有限公司 全自动清洗过滤器
CN201823375U (zh) * 2010-09-11 2011-05-11 福建新大陆环保科技有限公司 一种无动力自动清洗的叠片式过滤器
CN201855616U (zh) * 2010-10-29 2011-06-08 宁波埃美柯铜阀门有限公司 带减压反冲洗过滤器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106110737A (zh) * 2015-05-06 2016-11-16 汉斯琥珀欧洲公司 一种从液体中去除杂质的装置以及清洗相应装置的方法
CN109715263A (zh) * 2016-10-12 2019-05-03 Hydac处理技术有限公司 过滤设备
CN109715263B (zh) * 2016-10-12 2021-11-05 Hydac处理技术有限公司 过滤设备
CN109985438A (zh) * 2017-12-29 2019-07-09 福建金源泉科技发展有限公司 脉冲式反冲洗结构
CN109985438B (zh) * 2017-12-29 2024-01-12 福建金源泉科技发展有限公司 脉冲式反冲洗结构
CN112317469A (zh) * 2020-10-16 2021-02-05 中国航发四川燃气涡轮研究院 一种冲压燃烧室整体式喷油总管反向清洗装置
CN115153368A (zh) * 2022-06-13 2022-10-11 深圳市无限动力发展有限公司 集尘基站
CN115153368B (zh) * 2022-06-13 2024-02-23 深圳市无限动力发展有限公司 集尘基站
CN115444334A (zh) * 2022-09-28 2022-12-09 苏州爱普电器有限公司 用于湿式表面清洁设备的污液回收装置
CN115444334B (zh) * 2022-09-28 2023-07-07 苏州爱普电器有限公司 用于湿式表面清洁设备的污液回收装置

Also Published As

Publication number Publication date
GB2500900A (en) 2013-10-09
HK1206679A1 (zh) 2016-01-15
IL234946B (en) 2018-08-30
EP2834017A2 (en) 2015-02-11
EP2834017B1 (en) 2021-11-10
GB2500900B (en) 2019-10-16
US20150053628A1 (en) 2015-02-26
DK2834017T3 (da) 2022-01-24
GB201206003D0 (en) 2012-05-16
WO2013150113A2 (en) 2013-10-10
WO2013150113A3 (en) 2013-11-28
CN104334289B (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
CN104334289A (zh) 过滤器清洗
KR101991116B1 (ko) 필터 장치
EP1818089B1 (en) Helical internal support structure for intake screens
CN111185097A (zh) 一种卷式膜组件、复合滤芯组件和净水系统
EP1830941B1 (en) Cross flow filter device with concentric filter elements
CN107854890B (zh) 一种滚筒式滤芯防堵塞过滤器
EP2010303B1 (en) Fine filtering apparatus using flexible fiber filter module
CN105960286A (zh) 具有改进的清洁组合件的水力旋流器
CN106422783A (zh) 高效开放式网管流道反渗透膜组件
CN102784504A (zh) 多滤筒过滤装置中的自动反冲洗系统
CN101648760A (zh) 船用油污水分离处理装置
CN102120651A (zh) 用于污水净化的滤芯及含有该滤芯的污水净化装置
CN102794044A (zh) 多滤筒自动反冲洗过滤装置
CN106731105A (zh) 一种开放式自清洗泵前过滤器及杂质过滤方法
CN202438208U (zh) 一种自清洗过滤器
CN101072616A (zh) 污染液体净化用的过滤装置及方法
WO2012019559A1 (en) Hollow filter disc and laminated filter comprising the same
CN201567276U (zh) 船用油污水分离处理装置
WO2012153115A1 (en) Filter arrangement
CN105143626A (zh) 用于从储箱提取液体添加剂的方法
CN205461158U (zh) 用于带压条件下的三相分离装置
CN204735009U (zh) 自动清洗装置
CN211025262U (zh) 一种浅层砂过滤器
CN210313771U (zh) 一种有机管式膜电机污水净化装置
CN103953539A (zh) 具有分层结构密封条和液体储蓄罐的抽水装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1206679

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1206679

Country of ref document: HK

TR01 Transfer of patent right

Effective date of registration: 20210409

Address after: Norway Drammen

Patentee after: MOSSHYDRO A/S

Address before: Relingen, Norway

Patentee before: SEA-LIX A/S

TR01 Transfer of patent right