CN104332529B - 一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法 - Google Patents

一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法 Download PDF

Info

Publication number
CN104332529B
CN104332529B CN201410579880.2A CN201410579880A CN104332529B CN 104332529 B CN104332529 B CN 104332529B CN 201410579880 A CN201410579880 A CN 201410579880A CN 104332529 B CN104332529 B CN 104332529B
Authority
CN
China
Prior art keywords
silicon
aluminium
type
silicon chip
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410579880.2A
Other languages
English (en)
Other versions
CN104332529A (zh
Inventor
周浪
张范
肖志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201410579880.2A priority Critical patent/CN104332529B/zh
Publication of CN104332529A publication Critical patent/CN104332529A/zh
Application granted granted Critical
Publication of CN104332529B publication Critical patent/CN104332529B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法,其特征是首先将含硅12~40%wt、含硼0~5ppmw的铝‑硅‑硼混合原料熔融,然后将n型硅片水平放置于熔体表面,在硅片与熔体接触面外延生长p型掺杂硅晶体层,生长完毕后取出硅片,最后清洗除去硅片表面粘附铝层。本发明可在n型单晶硅片表面外延生长形成连续均匀的p型晶体硅层,其厚度可在0.5~20μm范围调节;其电阻率可在0.5~10Ω·cm范围调节。

Description

一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极 的方法
技术领域
本发明属于光伏技术领域,涉及一种制备n型晶体硅太阳电池的方法,特别是制备其发射极的方法。
背景技术
n型晶体硅太阳电池指以n型硅片为衬底,在其一面制作p型层形成pn结而制得的太阳电池。该p型层一般被称为发射极。相比于p型硅太阳电池,n型硅太阳电池有弱光响应强、温升衰减小、无光致衰减(LID)、无电势诱导衰减(PID)和对材料纯度要求相对较低的显著优点,但因其发射极(p型层)制备相对于p型硅电池的发射极(n型层)制备更为困难,成本更高,因此多年来光伏产业以p型硅太阳电池为主流,未能发挥n型硅太阳电池的优势。
发明内容
本发明的目的在于提供一种低成本制备n型晶体硅太阳电池发射极的方法,其设备和工艺成本将低于现行p型太阳电池发射极制备方法。
为实现上述目的,本发明采用了下述技术方案:一种在铝硅熔池中向n型硅片表面液相外延生长p型硅晶体层的方法。其原理在于,铝在硅晶体中呈+3价,是一种良好的p型掺杂组元。铝硅合金熔点可低至577℃,比硅的熔点(1420℃)低得多,将n型硅片置入铝硅合金熔体,并使之缓慢降温至其平衡液相线温度以下,熔体中的硅将在硅片底面凝结生长,即发生外延生长。生长中将会有微量铝进入外延硅晶体,其浓度由所在温度下的热力学平衡决定,处在适合于太阳电池p型掺杂浓度范围。因此外延生长的结果将在n型硅衬底表面自然形成p型掺杂硅晶体层,成为n型硅太阳电池的发射极。硼是一种更为有效的p型掺杂剂,在铝硅合金熔体中加入微量硼,则可实现铝、硼共掺杂p型硅晶体层的外延生长。
当前p型太阳电池以铝浆印刷烧结铝背场的制备也是基于同样的原理。但本方法与之有以下差异和优势:
1)使用铝锭而不需使用铝浆,成本要低得多;
2) 以铝硅合金熔池代替铝浆印刷、烧结设备,可进一步降低成本;
3) 外延生长保持在过量的铝硅合金熔体中,不依赖于局部铝硅合金的形成和熔融,更易于获得连续均匀外延层。
本方法适宜的铝硅熔体成份范围为:含硅 12~40%wt (1%wt = 重量百分之一),含硼0~5 ppmw (1 ppmw = 重量百万分之一),其余为铝以及不可避免的杂质,杂质总浓度低于10 ppmw;适宜的熔体温度范围为:570~940℃,具体与熔体硅含量相关。根据外延层结晶均匀性并结合工艺成本因素,优选的范围为:熔体含硅14~18%wt,含硼0.2~2 ppmw;熔体温度590~640℃,具体与熔体硅含量相关。
本发明可在n型单晶硅片表面外延生长形成连续均匀的p型晶体硅层,其厚度可在0.5~20 μm范围调节;其电阻率可在0.5~10 Ω·cm范围调节。这种外延层可作为n型硅片电池的发射极,满足较宽范围的各种发射极参数设计需要。表1列出采用本发明方法所得外延层厚度和电阻率数据。
具体实施方式
下面结合实施例对本发明作进一步详细说明。所采用的铝料均为纯度高于99.99%wt的铝锭;硅料均为纯度高于99.9999%wt的多晶硅块;铝硼合金料为含硼2.3%wt的预制中间合金,按各实施例所需熔体成份配料后置入刚玉坩埚,坩埚处于高纯氩气保护下,置于电阻炉内加热进行各实施例实验。
实施例1:
配制含硅12%wt的铝-硅混合原料,在660℃熔融后保温3小时后降温至580℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至570℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例2:
配制含硅14%wt的铝-硅混合原料,在690℃熔融后保温3小时后降温至610℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至600℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例3:
配制含硅16%wt的铝-硅混合原料,在730℃熔融后保温3小时后降温至650℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至640℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例4:
配制含硅16%wt的铝-硅混合原料,在730℃熔融后保温3小时后降温至650℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至647℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例5:
配制含硅16%wt的铝-硅混合原料,在730℃熔融后保温3小时后降温至650℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至630℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例6:
配制含硅18%wt的铝-硅混合原料,在745℃熔融后保温3小时后降温至665℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至655℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例7:
配制含硅30%wt的铝-硅混合原料,在900℃熔融后保温3小时后降温至815℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至805℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例8:
配制含硅40%wt的铝-硅混合原料,在1025℃熔融后保温3小时后降温至945℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至935℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例9:
配制含硅16%wt,含硼0.2ppmw的铝-硅-硼混合原料,在730℃熔融后保温3小时后降温至650℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至640℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例10:
配制含硅16%wt,含硼2ppmw的铝-硅-硼混合原料,在730℃熔融后保温3小时后降温至650℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至640℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
实施例11:
配制含硅16%wt,含硼5ppmw的铝-硅-硼混合原料,在730℃熔融后保温3小时后降温至650℃后保温1小时,然后将0.2 mm厚的n型硅片样品置入熔体,随即开始以每分钟0.3℃的速率降低熔体温度,降低至640℃时将样片取出,以30%浓度盐酸清洗除去样片表面粘附铝层,然后以光学显微镜观察其断面,测量硅外延层厚度,并以四探针测量仪测定其电阻率。结果列如表1。
表1 采用本发明方法在n型硅片外延生长形成的p型晶体硅层性能

Claims (2)

1.一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法,其特征是按如下步骤:首先将含硅 12~40%wt 、含硼0~5 ppmw的铝-硅-硼混合原料在660~1025℃熔融,保温3小时,然后将熔体温度降低至580~945℃保温1小时,然后将n型硅片置入熔体中,并按每分钟0.3℃的速率降低熔体温度,待熔体温度降至570~935℃时取出硅片,生长完毕后取出硅片,最后清洗除去硅片表面粘附铝层。
2.根据权利要求1所述的一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法,其特征是以30%浓度盐酸清洗除去样片表面粘附铝层。
CN201410579880.2A 2014-10-27 2014-10-27 一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法 Expired - Fee Related CN104332529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410579880.2A CN104332529B (zh) 2014-10-27 2014-10-27 一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410579880.2A CN104332529B (zh) 2014-10-27 2014-10-27 一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法

Publications (2)

Publication Number Publication Date
CN104332529A CN104332529A (zh) 2015-02-04
CN104332529B true CN104332529B (zh) 2018-02-23

Family

ID=52407221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410579880.2A Expired - Fee Related CN104332529B (zh) 2014-10-27 2014-10-27 一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法

Country Status (1)

Country Link
CN (1) CN104332529B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214704A (zh) * 2006-03-20 2011-10-12 费罗公司 铝-硼太阳能电池接触层
CN102543253A (zh) * 2012-02-17 2012-07-04 杜国平 铝硅硼浆料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214704A (zh) * 2006-03-20 2011-10-12 费罗公司 铝-硼太阳能电池接触层
CN102543253A (zh) * 2012-02-17 2012-07-04 杜国平 铝硅硼浆料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Solution-Grown Silicon Solar Cells;Kentaro Ito et al;《Japanese Journal of Applied Physics》;19801231;第19卷;正文第37-41页及附图1-7 *

Also Published As

Publication number Publication date
CN104332529A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
EP1777753B1 (en) SiGe Solar-cell single-crystal silicon substrate, SiGe solar cell element, and method for producing the same
JP5511945B2 (ja) Umg−si材料精製のためのプロセス管理
CN105568362B (zh) SiC单晶的制造方法
CN105492667B (zh) n型SiC单晶及其制造方法
CN106222742B (zh) 一种晶体硅及其制备方法
CN105401218B (zh) SiC单晶及其制造方法
CN109097827A (zh) 一种双晶向多晶硅铸锭及其制备方法
CN102560646B (zh) 一种掺杂电阻率均匀的n型铸造硅单晶及其制备方法
Sorgenfrei et al. Synthesis and single crystal growth of SnS by the Bridgman‐Stockbarger technique
JP2005159312A (ja) 太陽電池用多結晶シリコン基板の母材および太陽電池用多結晶シリコン基板
CN107109692A (zh) 太阳能电池用区熔单晶硅的制造方法及太阳能电池
JP2007142370A (ja) 太陽電池用シリコン単結晶基板および太陽電池素子、並びにその製造方法
CN101876085A (zh) 一种多晶硅锭及其制备方法
CN101220507A (zh) 一种用于太阳能电池的硅晶片的制备方法
CN104332529B (zh) 一种在铝硅熔池中液相外延制备n型晶体硅太阳电池发射极的方法
CN106591942B (zh) 多晶硅铸锭用坩埚及其制备方法和多晶硅锭及其制备方法
CN106133186A (zh) 硼掺杂的n型硅靶材
CN104412361B (zh) 用于在异体基质上制造半导体薄层的方法
CN113061971A (zh) 温差定位诱导钙钛矿单晶的可控生长方法
JP2006210395A (ja) 太陽電池用多結晶シリコン基板の作製方法
TW201209232A (en) Silicon ribbon, spherical silicon, solar cell, solar cell module, method for producing silicon ribbon, and method for producing spherical silicon
JP2004140087A (ja) 太陽電池用多結晶シリコン基板とその製造法、及びこの基板を用いた太陽電池の製造法
CN103882519A (zh) 一种硅管及硅管太阳电池级多晶硅棒制备方法
JP5194165B1 (ja) 金属精製塊の検査方法およびそれを含む高純度金属の製造方法
JP4723079B2 (ja) 石英ルツボおよびこれを使用したシリコン結晶の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180223

Termination date: 20211027

CF01 Termination of patent right due to non-payment of annual fee