CN104330147A - 微悬臂梁热振动信号测量装置 - Google Patents

微悬臂梁热振动信号测量装置 Download PDF

Info

Publication number
CN104330147A
CN104330147A CN201410493468.9A CN201410493468A CN104330147A CN 104330147 A CN104330147 A CN 104330147A CN 201410493468 A CN201410493468 A CN 201410493468A CN 104330147 A CN104330147 A CN 104330147A
Authority
CN
China
Prior art keywords
polarized light
micro
spectroscope
incident
cantilever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410493468.9A
Other languages
English (en)
Inventor
李天军
方泽波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201410493468.9A priority Critical patent/CN104330147A/zh
Publication of CN104330147A publication Critical patent/CN104330147A/zh
Priority to CN201510187246.9A priority patent/CN104819767A/zh
Priority to CN201510188879.1A priority patent/CN104833411A/zh
Priority to CN201520237515.3U priority patent/CN204666496U/zh
Priority to CN201520238841.6U priority patent/CN204556093U/zh
Priority to CN201510187250.5A priority patent/CN104819935A/zh
Priority to CN201520239723.7U priority patent/CN204556094U/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种微悬臂梁热振动信号测量装置,包括入射光路组件和两路检测光路组件。入射光路组件包括依次沿光传播方向设置的线偏振器、第一分光镜、沃拉斯顿棱镜、第一会聚透镜以及第二分光镜;偏振激光经线偏振器、第一分光镜以及沃拉斯顿棱镜形成两束偏振方向相互垂直的入射线偏振光,经汇聚后分别垂直入射至微悬梁臂的尖端和基片上,分别反射后形成两束偏振方向相互垂直的反射偏振光,并经沃拉斯顿棱镜汇聚在一起并入射至第二分光镜,形成两束检测偏振光。每一检测光路组件均包括光电检测电路,两束检测偏振光分别入射至两路光电检测电路,光电检测电路将光信号转换为电信号后,通过计算两路电信号来得到两束反射线偏振光的相位差。

Description

微悬臂梁热振动信号测量装置
技术领域
本发明涉及光学测量领域,且特别涉及一种微悬臂梁热振动信号测量装置。 
背景技术
原子力显微镜(Atomic Force Microscopy,AFM)是一种研究材料表面结构的高精密分析仪器,广泛应用于材料、化学、生物科技、纳米技术等领域,通过检测待测样品与微力敏元件之间极其微小的原子间作用力来研究物质表面结构和性质。它的主要结构之一为微悬臂梁,微悬臂梁针尖与样品的相互作用使得微悬臂梁发生形变,使原子力显微镜可以对极小的作用力进行测量。 
热噪声带来的微悬臂梁的振动—热振动,是影响原子力显微镜分辨率的一个重要因素,对热振动的测量和研究将有助于了解其振动规律,对提高原子力显微镜的分辨率,设计下一代新型高分辨原子力显微镜具有指导意义。 
在现有的原子力显微镜(如Veeco、Asylum)中,采用一束激光通过一定的角度聚焦在微悬臂梁尖端对其形变进行测量,并经过四象限光电探测器得到振动位移信号。在该技术中,设备的背景噪声(电子噪声、散射噪声等)远大于其热噪声。在这种情况下,大部分频率的热振动信号淹没于原子力显微镜的背景噪声中,很难在如此高的背景噪声中对热振动信号进行有效的测量和研究。 
发明内容
本发明为了克服现有技术的不足,提供一种微悬臂梁热振动信号测量装置。 
为了实现上述目的,本发明提供一种微悬臂梁热振动信号测量装置,包括入射光路组件和两路检测光路组件。入射光路组件包括依次沿光传播方向设置的线偏振器、第一分光镜、沃拉斯顿棱镜、第一会聚透镜以及第二分光镜;偏振激光经线偏振器后形成线偏振光并入射至第一分光镜,改变入射方向后经沃拉斯顿棱镜形成两束偏振方向相互垂直的入射线偏振光,经第一会聚透镜汇聚后分别垂直入射至微悬梁臂的尖端和基片上,分别反射后形成两束偏振方向相 互垂直的反射偏振光,并经沃拉斯顿棱镜汇聚在一起并入射至第二分光镜,形成两束检测偏振光。每一检测光路组件均包括光电检测电路,两束检测偏振光分别入射至两路光电检测电路,光电检测电路将光信号转换为电信号后,通过计算两路电信号来得到两束反射线偏振光的相位差。 
于本发明一实施例中,经沃拉斯顿棱镜后形成的两束偏振方向相互垂直的入射线偏振光间的出光角度为1度~3度,且第一会聚透镜的焦距为25毫米~35毫米。 
于本发明一实施例中,沃拉斯顿棱镜可活动式设置在第一分光镜和第一会聚透镜间,且活动的方向为沿线偏振光入射至沃拉斯顿棱镜所在的方向。 
于本发明一实施例中,线偏振器和第一分光镜间还设置有二分之一波片。 
于本发明一实施例中,每一检测光路组件均包括依次设置的第二会聚透镜和第三分光镜,且每一光电检测电路均包括两个光电二极管,检测偏振光经第二汇聚透镜会聚后经第三分光器分成两束偏振光,分别入射到同一检测光路组件内的两个光电二极管上。 
于本发明一实施例中,在每一检测光路组件中,第三分光镜的光轴与沃拉斯顿棱镜的光轴间的夹角呈45度,且沃拉斯顿棱镜的光轴与入射至沃拉斯顿棱镜上的线偏振光的偏振方向间的夹角呈45度,且在其中一检测光路组件中,检测偏振光入射至第二会聚透镜前还经过一四分之一波片。 
于本发明一实施例中,入射光路组件还包括设置在线偏振器前端的激光发生器和起偏器,激光发生器发出激光,经起偏器起偏后形成偏振光,再入射至线偏振器。 
于本发明一实施例中,激光发生器为He-Ne激光器。 
于本发明一实施例中,线偏振器为格兰泰勒棱镜。 
于本发明一实施例中,第一分光镜和第二分光镜均为立体分光镜,第三分光镜为方解石棱镜。 
经由上述技术方案,入射光路组件形成的两束偏振方向相互垂直的入射线偏振光垂直入射至微悬梁臂的尖端和基片上,经反射后形成两束偏振方向相互垂直的且具有相位差的反射线偏振光,并汇聚在一起经第二分光镜后形成两束检测偏振光。本发明采用激光正交相位差分干涉的方法将微悬臂梁因热噪声而产生的热振动振幅转换为两束相互干涉的反射线偏振光的相位差的方式来实现测量。且两束检测偏振光以差分输入的方式输入至光电检测电路转换为电信号。差分输入可将两束反射线偏振光内由于背景噪声所产生的信号相互抵消,降低背景噪声的干扰,实现高精度直接测量微悬臂梁的热振动信号。 
为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。 
附图说明
图1所示为本发明一实施例提供的微悬臂梁热振动信号测量装置的结构示意图。 
图2所示为采用图1所示的微悬臂梁热振动信号测量装置测得的原子力显微镜微悬臂梁的热振动功率谱、背景噪声功率谱以及采用现有的原子力显微镜测量得到的微悬臂梁背景噪声功率谱的对比图。 
具体实施方式
图1所示为本发明一实施例提供的微悬臂梁热振动信号测量装置的结构示意图。图2所示为采用图1所示的微悬臂梁热振动信号测量装置测得的原子力显微镜微悬臂梁的热振动功率谱、背景噪声功率谱以及采用现有的原子力显微镜测量得到的微悬臂梁背景噪声功率谱的对比图。请一并参阅图1和图2。 
如图1所示,本实施例提供的微悬臂梁热振动信号测量装置包括入射光路组件100和两路检测光路组件200。入射光路组件100包括依次沿光传播方向设置的线偏振器110、第一分光镜120、沃拉斯顿棱镜130、第一会聚透镜140以及第二分光镜150。 
偏振激光经线偏振器110后形成线偏振光并入射至第一分光镜120。第一分光镜120改变线偏振光的入射方向。于本实施例中,经第一分光镜120后线偏振光的出射方向与入射方向垂直。经沃拉斯顿棱镜130形成两束偏振方向相互垂直的第一入射线偏振光K1和和第二入射线偏振光K2,经第一会聚透镜140汇聚后分别垂直入射至微悬梁臂的尖端和基片上。分别经反射后形成第一反射线偏振光K1a和第二反射线偏振光K2a经沃拉斯顿棱镜130汇聚在一起并入射至第二分光镜150,形成第一检测偏振光W1和第二检测偏振光W2。 
第一检测偏振光W1和第二检测偏振光W2分别入射至包括有光电检测电路210的两路检测光路组件200上。光电检测电路210将光信号转换为电信号后,通过计算两路电信号来得到第一反射偏振光K1a和第二反射偏振光K2a的相位差。相位差的计算可采用快速傅里叶变换的方法在MATLAB等仿真软件中计算得到。并根据公式得到微悬臂梁的热振动振幅,从而得到其热振动功率谱。其中为第一反射偏振光K1a和第二反射偏振光K2a的相位差,λ为激光的波长,d为微悬臂梁热振动的振幅。 
在本实施例提供的微悬臂梁热振动信号测量装置中,第一检测偏振光W1和第二检测偏振光W2差分输入可有效地抵消每一路信号内所携带的背景噪声,从而将背景噪声降低至一个较低的数量级内,从而实现高精度测量微悬臂梁热振动信号的目的。且与传统的采用四象限光电信号到振动位移信号的转换相比,本测量方法直接测量表征热振动振幅的相位差,无需任何转换,测量更为直接、方便,且具有更高的测量精度。 
为更好的、更便捷的实现相位差的计算,于本实施例中,通过调整入射光路组件100以及两路检测光路组件200的结构来使得两路检测光路组件200检测到的光强对比度为一个模为2π的单元圆,而单位圆的极角即为第一反射线偏振光K1a和第二反射线偏振光K2a的相位差。 
具体的调整如下: 
每一所述检测光路组件200均包括依次设置的第二会聚透镜220和第三分光镜230,且每一光电检测电路210均包括两个光电二极管D。第一检测偏振光W1和第二检测偏振光W2分别经第二汇聚透镜220会聚后经第三分光镜230分成两束偏振光,分别入射到同一检测光路组件200内的两个光电二极管D上。且在每一检测光路组件200中,设置第三分光镜230的光轴与沃拉斯顿棱镜130的光轴间的夹角呈45度,且沃拉斯顿棱镜130的光轴与入射至沃拉斯顿棱镜130上的线偏振光的偏振方向间的夹角呈45度。且在其中一检测光路组件200中,第二检测偏振光W2入射至第二会聚透镜220前还经过一四分之一波片240,该设置人为的为第二检测偏振光W2的相位附加π/2。 
如图1所示,包含有偏振方向为方向和方向的入射线偏振光的光强为 经第一分光镜120改变入射方向后变为并经沃拉斯顿棱镜130后形成振动方向沿方向的第一入射线偏振光K1和振动方向沿方向的第二入射线偏振光K2。其中,第一入射线偏振光K1入射到微悬臂梁的尖端上,而第二入射线偏振光K2入射到微悬臂梁的基片上。微悬臂梁的尖端因热振动使得第一入射线偏振光K1的反射光第一反射线偏振光K1a较第二入射线偏振光K2的反射光第一反射线偏振光K2a产生相位差。第一反射线偏振光K1a和第二反射线偏振光K2a的汇聚在一起后的光强为经第二分光镜150后,第一检测偏振光W1和第一检测偏振光W2的光强为
而经第三分光镜230后入射到每一光电检测电路210上的两个光电二极管D的光强可表示为An和Bn,n=1,2。其中A1和B1表示的其中一光电检测电路210上两个发光二极管D的光强,而A2和B2表示的是另一二光电检测电路210上两个发光二极管D的光强。 
A n = I 0 4 ( 1 + cos ( φ + ψ n ) )     公式一 
B n = I 0 4 ( 1 - cos ( φ + ψ n ) )     公式二 
在每一光电检测电路210上两个发光二极管D的光强对比度为: 
C n = A n - B n A n + B n ( φ + ψ n )     公式三 
于本实施例中,ψ1=0。 
而与设置有四分之一波片240位于相同光电检测组件200内的光电检测电路中,ψ2=-π/2,且
将ψ1和ψ2代入公式一和公式二,得到C=C1+iC2=cosφ+isinφ=e,形成一个模为2π的单位圆,该单位圆的极角即为第一反射线偏振光K1a和第二反射线偏振光K2a的相位差,测量更加方便。 
由于微悬臂梁的尺寸非常小,只有约450微米,相应的微悬臂梁的尖端和基片间的距离也非常小,为使得第一入射线偏振光K1和第二入射线偏振光K2能准确的垂直入射至微悬臂梁的尖端和基片上,设置经沃拉斯顿棱镜130后形成的第一入射线偏振光K1和第二入射线偏振光K2间的出光角度为1度~3度。于本实施例中,经沃拉斯顿棱镜130后第一入射线偏振光K1和第二入射线偏振光K2间的出光角度为2度。且为增加入射至微悬臂梁的尖端和基片上的光强,设置第一会聚透镜140的焦距为25毫米~35毫米。于本实施例中,第一会聚透镜140的焦距为30毫米。然而,本发明对此不作任何限定。 
此外,在理想状态下,未处于工作状态的微悬臂梁处于水平位置,然而,为了实现光的发射,微悬臂梁的表面为镀上金属膜。在金属膜的不对称张力作用下微悬臂梁将会产生微小的曲率偏移,此时第一入射线偏振光K1和第二入射线偏振光K2将不再垂直入射到微悬臂梁的尖端和基片上,相应的两者的反射光将无法经沃拉斯顿棱镜130汇聚在一起并入射至第二分光镜150,对测量精度将会造成一定的影响。 
于本实施例中,设置沃拉斯顿棱镜130可活动式设置在第一分光镜120和第一会聚透镜140间,且活动的方向为沿线偏振光入射至沃拉斯顿棱镜130所在的方向。沿线偏振光的入射方向调节沃拉斯顿棱镜130,可对第一入射线偏振 光K1和第二入射线偏振光K2的入射方向进行细微调整,使得第一入射线偏振光K1和第二入射线偏振光K2垂直入射到微悬臂梁的尖端和基片上。 
为更大程度的提高两干涉光路的对比度,方便相位差的计算,在本测量装置中应尽可能的设置第一入射线偏振光K1和第二入射线偏振光K2具有相同光强。于本实施例中,设置线偏振器110和第一分光镜120间还设置有二分之一波片160。通过该二分之一波片160调节入射激光的偏振方向来达到调节第一入射线偏振光K1和第二入射线偏振光K2的光强,使得两者的光照强度最大程度上相等。 
于本实施例中,入射光路组件100还包括设置在线偏振器110前端的激光发生器170和起偏器180,激光发生器170发出激光,经起偏器180后形成偏振光,再入射至线偏振器110。 
于本实施例中,激光发生器为He-Ne激光器,发出的激光的长度为630纳米,且线偏振器110为格兰泰勒棱镜,第一分光镜120和第二分光镜150均为立体分光镜,第三分光镜230为方解石棱镜。 
经由上述技术方案,入射光路组件100形成的两束偏振方向相互垂直的入射线偏振光垂直入射至微悬梁臂的尖端和基片上,经反射后形成两束偏振方向相互垂直的反射偏振光,并汇聚在一起经第二分光镜150后形成两束检测偏振光。采用激光正交相位差分干涉的方法将微悬臂梁因热噪声而产生的热振动振幅转换为两束相互干涉的反射线偏振光的相位差的方式来实现测量。且两束检测偏振光以差分输入的方式输入至光电检测电路转换为电信号。差分输入可将两束反射线偏振光内由于背景噪声所产生的信号相互抵消,降低背景噪声的干扰,实现高精度直接测量微悬臂梁的热振动信号。 
如图2所示,其中曲线1是利用本测量装置测量得到的微悬臂梁的热振动功率谱,曲线2是采用本测量装置测量得到的微悬臂梁背景噪声功率谱、曲线3是采用型号为VeecoMut imode的原子力显微镜测得的微悬臂梁的背景噪声功率谱、曲线4是采用型号为Veeco DI-300的原子力显微镜测得的微悬臂梁的背景 噪声功率谱、曲线5是采用型号为Asylum的原子力显微镜测得的微悬臂梁的的背景噪声功率谱。 
从图2中曲线1、3、4、5可以看出,在较广频率范围内(1Hz~106Hz)微悬臂梁的热振动功率谱振幅远小于其背景噪声的功率值,即除共振频率附近,大部分热振动信号淹没在背景噪声中,导致难以对热振动信号进行测量和分析。从曲线2中可以看到,在频率为104Hz时,本发明获得的微悬臂梁的背景噪声功率可低至10-28m2/Hz,而此时曲线3、4、5的功率均在10-26m2/Hz,两者相差两个数量级。即曲线2更低的背景噪声保证了1Hz~106Hz范围内的热振动信号处于可测量的范围之内。 
虽然本发明已由较佳实施例揭露如上,然而并非用以限定本发明,任何熟知此技艺者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所要求保护的范围为准。 

Claims (10)

1.一种微悬臂梁热振动信号测量装置,其特征在于,包括:
入射光路组件,包括依次沿光传播方向设置的线偏振器、第一分光镜、沃拉斯顿棱镜、第一会聚透镜以及第二分光镜;偏振激光经线偏振器后形成线偏振光并入射至第一分光镜,改变入射方向后经沃拉斯顿棱镜形成两束偏振方向相互垂直的入射线偏振光,经第一会聚透镜汇聚后分别垂直入射至微悬梁臂的尖端和基片上,分别反射后形成两束偏振方向相互垂直的反射偏振光,并经沃拉斯顿棱镜汇聚在一起并入射至第二分光镜,形成两束检测偏振光;
两路检测光路组件,每一所述检测光路组件均包括光电检测电路,两束检测偏振光分别入射至两路光电检测电路,光电检测电路将光信号转换为电信号后,通过计算两路电信号来得到两束反射线偏振光的相位差。
2.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,经沃拉斯顿棱镜后形成的两束偏振方向相互垂直的入射线偏振光间的出光角度为1度~3度,且所述第一会聚透镜的焦距为25毫米~35毫米。
3.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,所述沃拉斯顿棱镜可活动式设置在第一分光镜和第一会聚透镜间,且活动的方向为沿线偏振光入射至沃拉斯顿棱镜所在的方向。
4.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,所述线偏振器和第一分光镜间还设置有二分之一波片。
5.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,每一所述检测光路组件均包括依次设置的第二会聚透镜和第三分光镜,且每一所述光电检测电路均包括两个光电二极管,检测偏振光经第二汇聚透镜会聚后经第三分光器分成两束偏振光,分别入射到同一检测光路组件内的两个光电二极管上。
6.根据权利要求5所述的微悬臂梁热振动信号测量装置,其特征在于,在每一检测光路组件中,第三分光镜的光轴与沃拉斯顿棱镜的光轴间的夹角呈45度,且沃拉斯顿棱镜的光轴与入射至沃拉斯顿棱镜上的线偏振光的偏振方向间的夹角呈45度,且在其中一检测光路组件中,检测偏振光入射至第二会聚透镜前还经过一四分之一波片。
7.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,入射光路组件还包括设置在线偏振器前端的激光发生器和起偏器,激光发生器发出激光,经起偏器起偏后形成偏振光,再入射至线偏振器。
8.根据权利要求7所述的微悬臂梁热振动信号测量装置,其特征在于,所述激光发生器为He-Ne激光器。
9.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,所述线偏振器为格兰泰勒棱镜。
10.根据权利要求1所述的微悬臂梁热振动信号测量装置,其特征在于,所述第一分光镜和第二分光镜均为立体分光镜,所述第三分光镜为方解石棱镜。
CN201410493468.9A 2014-09-24 2014-09-24 微悬臂梁热振动信号测量装置 Pending CN104330147A (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201410493468.9A CN104330147A (zh) 2014-09-24 2014-09-24 微悬臂梁热振动信号测量装置
CN201510187246.9A CN104819767A (zh) 2014-09-24 2015-04-20 一种低噪声微悬臂梁热振动信号测量装置
CN201510188879.1A CN104833411A (zh) 2014-09-24 2015-04-20 一种高精度微悬臂梁热振动信号测量装置
CN201520237515.3U CN204666496U (zh) 2014-09-24 2015-04-20 微悬臂梁热振动信号测量装置
CN201520238841.6U CN204556093U (zh) 2014-09-24 2015-04-20 一种低噪声微悬臂梁热振动信号测量装置
CN201510187250.5A CN104819935A (zh) 2014-09-24 2015-04-20 微悬臂梁热振动信号测量装置
CN201520239723.7U CN204556094U (zh) 2014-09-24 2015-04-20 一种高精度微悬臂梁热振动信号测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410493468.9A CN104330147A (zh) 2014-09-24 2014-09-24 微悬臂梁热振动信号测量装置

Publications (1)

Publication Number Publication Date
CN104330147A true CN104330147A (zh) 2015-02-04

Family

ID=52404917

Family Applications (7)

Application Number Title Priority Date Filing Date
CN201410493468.9A Pending CN104330147A (zh) 2014-09-24 2014-09-24 微悬臂梁热振动信号测量装置
CN201510188879.1A Pending CN104833411A (zh) 2014-09-24 2015-04-20 一种高精度微悬臂梁热振动信号测量装置
CN201520237515.3U Expired - Fee Related CN204666496U (zh) 2014-09-24 2015-04-20 微悬臂梁热振动信号测量装置
CN201510187246.9A Pending CN104819767A (zh) 2014-09-24 2015-04-20 一种低噪声微悬臂梁热振动信号测量装置
CN201520239723.7U Expired - Fee Related CN204556094U (zh) 2014-09-24 2015-04-20 一种高精度微悬臂梁热振动信号测量装置
CN201510187250.5A Pending CN104819935A (zh) 2014-09-24 2015-04-20 微悬臂梁热振动信号测量装置
CN201520238841.6U Expired - Fee Related CN204556093U (zh) 2014-09-24 2015-04-20 一种低噪声微悬臂梁热振动信号测量装置

Family Applications After (6)

Application Number Title Priority Date Filing Date
CN201510188879.1A Pending CN104833411A (zh) 2014-09-24 2015-04-20 一种高精度微悬臂梁热振动信号测量装置
CN201520237515.3U Expired - Fee Related CN204666496U (zh) 2014-09-24 2015-04-20 微悬臂梁热振动信号测量装置
CN201510187246.9A Pending CN104819767A (zh) 2014-09-24 2015-04-20 一种低噪声微悬臂梁热振动信号测量装置
CN201520239723.7U Expired - Fee Related CN204556094U (zh) 2014-09-24 2015-04-20 一种高精度微悬臂梁热振动信号测量装置
CN201510187250.5A Pending CN104819935A (zh) 2014-09-24 2015-04-20 微悬臂梁热振动信号测量装置
CN201520238841.6U Expired - Fee Related CN204556093U (zh) 2014-09-24 2015-04-20 一种低噪声微悬臂梁热振动信号测量装置

Country Status (1)

Country Link
CN (7) CN104330147A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776641A (zh) * 2021-07-01 2021-12-10 江汉大学 一种液滴靶发生器振动监测装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330147A (zh) * 2014-09-24 2015-02-04 绍兴文理学院 微悬臂梁热振动信号测量装置
WO2017108411A1 (en) * 2015-12-23 2017-06-29 Asml Netherlands B.V. Metrology method and apparatus
CN106052840B (zh) * 2016-05-25 2018-10-23 清华大学深圳研究生院 一种基于量子弱测量的声检测装置及声检测方法
CN105928605B (zh) * 2016-05-30 2018-10-23 清华大学深圳研究生院 一种检测水中声场信息的方法、装置及水下声传感器
JP6465097B2 (ja) * 2016-11-21 2019-02-06 横河電機株式会社 振動式トランスデューサ
CN107942529B (zh) * 2017-12-21 2024-05-21 北京镭宝光电技术有限公司 脉宽切换同轴同偏振激光器以及同轴同偏振激光输出方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2419594Y (zh) * 2000-03-30 2001-02-14 中国科学院上海光学精密机械研究所 物体振动振幅的光学测量仪
CN101261139B (zh) * 2008-03-26 2010-07-21 中国科学院光电技术研究所 一种阵列微梁单元偏角测量系统
JP5336921B2 (ja) * 2009-05-11 2013-11-06 株式会社 光コム 振動計測装置及び振動計測方法
CN103323094B (zh) * 2013-06-24 2014-12-03 中国航空工业集团公司北京长城计量测试技术研究所 一种外差式激光干涉角振动测量方法
CN103383247B (zh) * 2013-07-30 2016-08-10 中国计量科学研究院 一种光学检测系统及装置
CN104330147A (zh) * 2014-09-24 2015-02-04 绍兴文理学院 微悬臂梁热振动信号测量装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113776641A (zh) * 2021-07-01 2021-12-10 江汉大学 一种液滴靶发生器振动监测装置及方法

Also Published As

Publication number Publication date
CN204556094U (zh) 2015-08-12
CN204666496U (zh) 2015-09-23
CN104819935A (zh) 2015-08-05
CN104819767A (zh) 2015-08-05
CN204556093U (zh) 2015-08-12
CN104833411A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
CN204666496U (zh) 微悬臂梁热振动信号测量装置
CN102679882B (zh) 一种相位调制光栅传感器及实现测量的方法
CN103673891B (zh) 一种光栅外差干涉自准直测量装置
CN104655025B (zh) 激光干涉波长杠杆式绝对距离测量方法与装置
CN106338333B (zh) 基于波片偏航的高鲁棒性零差激光测振仪及四步调整法
CN103673892A (zh) 一种对称式光栅外差干涉二次衍射测量装置
CN113566714B (zh) 一种自溯源型光栅干涉精密位移测量系统
CN102175647A (zh) 多光束激光外差法测量电致伸缩系数的装置及方法
CN102353916B (zh) 多光束激光外差二次谐波测量磁致伸缩系数的方法
CN102305682B (zh) 多普勒振镜正弦调制多光束激光外差的扭摆法测量微冲量的装置及方法
CN102338680B (zh) 基于多光束激光外差二次谐波法与扭摆法测量微冲量的方法
CN102323555A (zh) 多光束激光外差测量磁致伸缩系数的方法
CN102353856A (zh) 多光束激光外差二次谐波法测量电致伸缩系数的方法
CN102252794A (zh) 基于多光束激光外差法和扭摆法测量微冲量的方法
CN102252622B (zh) 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的装置及方法
CN102353490B (zh) 多普勒振镜正弦调制多光束激光外差的扭摆法测量微冲量的装置及方法
CN102331235A (zh) 多光束激光外差二次谐波法测量玻璃厚度的装置及方法
CN108387333A (zh) 一种硅薄膜材料应力检测系统
CN102221356B (zh) 多普勒振镜正弦调制多光束激光外差二次谐波测量激光入射角度的装置及方法
CN101629804B (zh) 共路激光干涉仪
CN108680879B (zh) 一种纳米结构磁性测量方法
CN201138196Y (zh) 一种微纳深沟槽结构测量装置
CN102221502A (zh) 多光束激光外差二次谐波测量杨氏模量的方法
CN106908004B (zh) 一种基于矢量光场的距离探测系统及其应用
CN102253075B (zh) 基于多光束激光外差二次谐波的金属线膨胀系数的测量装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150204