CN104328381A - 一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法 - Google Patents

一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法 Download PDF

Info

Publication number
CN104328381A
CN104328381A CN201410486603.7A CN201410486603A CN104328381A CN 104328381 A CN104328381 A CN 104328381A CN 201410486603 A CN201410486603 A CN 201410486603A CN 104328381 A CN104328381 A CN 104328381A
Authority
CN
China
Prior art keywords
cdzno
film
nanoporous
preparation
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410486603.7A
Other languages
English (en)
Other versions
CN104328381B (zh
Inventor
田野
刘大博
罗飞
成波
刘勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Original Assignee
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp filed Critical BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority to CN201410486603.7A priority Critical patent/CN104328381B/zh
Priority claimed from CN201410486603.7A external-priority patent/CN104328381B/zh
Publication of CN104328381A publication Critical patent/CN104328381A/zh
Application granted granted Critical
Publication of CN104328381B publication Critical patent/CN104328381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及半导体纳米能源材料、催化材料、传感材料、光电转换材料等领域,具体涉及一种可应用于染料敏化太阳电池光阳极、反应催化载体、传感探测器件敏感介质、可见电致发光器件活性层等领域的一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法。本发明利用CdZnO陶瓷靶材在衬底上溅射沉积成膜,之后将沉积的薄膜进行高温退火处理,制备出了具有不同表面结构的纳米多孔CdZnO薄膜。通过调节靶材中的Cd掺杂量,实现了薄膜的表面多孔形貌的可调控,其孔洞平均宽度从几十纳米到微米级可调节。其方法无需模板的辅助,操作简单可控,对衬底的形状以及材料无特殊要求,为CdZnO纳米多孔薄膜材料提供了一种低成本、短周期、可工业化实施的新技术。

Description

一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法
技术领域
本发明涉及半导体纳米能源材料、催化材料、传感材料、光电转换材料等领域,具体涉及一种可应用于染料敏化太阳电池光阳极、反应催化载体、传感探测器件敏感介质、可见电致发光器件活性层等领域的一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法。
背景技术
ZnO系薄膜材料是一种重要的直接宽禁带半导体材料。由于其原料丰富、成本低廉,具有较高的室温激子束缚能,被认为是有可能取代氮化镓(GaN)的新一代光电转换材料。同时,ZnO系薄膜材料又具有优异的压电、气敏、光敏等特性,在压电换能器、光催化、气体传感器以及染料敏化光电池等领域也有着诱人的应用前景。在ZnO基薄膜体系中,CdZnO薄膜通过调节Cd的含量,一方面可以有效地降低ZnO基薄膜的禁带宽度;另一方面也可以大幅改善ZnO的载流子输运特性,是一种重要的带系可调的ZnO基薄膜材料。
目前,研究者已经对新型CdZnO薄膜材料的合成和制备开展了大量工作。其中纳米多孔CdZnO薄膜材料由于具有孔洞率高、比表面积大、密度低、量子尺寸效应等有别于常规薄膜材料的新属性,一直是该领域内的研究热点,在催化、传感、光电等领域有着十分诱人的应用前景(C.Karunakaran,et al.,"Photocatalyticand bactericidal activities of hydrothermally synthesized nanocrystalline Cd-dopedZnO",Superlattices and Microstructures,2012,51:443-453)。在纳米多孔CdZnO薄膜材料的制备手段中,溶胶凝胶法、电化学沉积法、溅射沉积法等是较为常用的合成方法。相对于溶胶凝胶法和电化学沉积法,利用溅射沉积法制备的多孔CdZnO系薄膜的致密度更高,均匀性更好,过程参数控制更精确,可重复率更高。但是,该方法往往需要引入价格昂贵,制备工艺复杂的模板进行辅助,这样一方面增加了材料的制备成本,另一方面也容易引入其它杂质带来沾污。因此,如何采用无需模板辅助的溅射沉积方法来制备表面形貌可调的纳米多孔CdZnO系薄膜无疑是值得研究的问题。
发明内容
本发明的目的是为解决上述技术问题的不足,提出一种无需模板辅助的表面形貌可调的纳米多孔CdZnO薄膜及其制备方法。
本发明的技术解决方案是,
表面形貌可控的纳米多孔CdZnO薄膜的制备方法,具体包括:
(1)利用磁控溅射工艺,采用CdZnO陶瓷靶材作为溅射源,CdZnO陶瓷靶材中Cd的掺杂量以摩尔含量计为10%~30%,在清洗过的衬底片上沉积0.05~2μm厚的CdZnO薄膜;
(2)在空气下600--1100℃温度范围内为对沉积的CdZnO薄膜进行退火处理,热处理时间1小时,随后取出自然冷却,得到的CdZnO薄膜表面形貌为纳米多孔结构,孔洞呈“沟壑”状分布,并且相互贯通。
所述的CdZnO薄膜的表面形貌通过改变溅射工艺中CdZnO陶瓷靶材内Cd的含量进行调控,其孔洞平均宽度从几十纳米到微米级可调节。
本发明具有的优点和有益效果
本发明开发了一种无模板辅助的溅射沉积法制备表面形貌可调的纳米多孔CdZnO薄膜的工艺。利用CdZnO陶瓷靶材在衬底上溅射沉积成膜,之后将沉积的薄膜进行高温退火处理,制备出了具有不同表面结构的纳米多孔CdZnO薄膜。通过调节靶材中的Cd掺杂量,实现了薄膜的表面多孔形貌的可调控,其孔洞平均宽度从几十纳米到微米级可调节。其方法无需模板的辅助,操作简单可控,对衬底的形状以及材料无特殊要求,为CdZnO纳米多孔薄膜材料提供了一种低成本、短周期、可工业化实施的新技术。
利用本发明方法制备的CdZnO薄膜具有如下优点:
1.可以简单快捷地制备出纳米多孔CdZnO薄膜,其表面形貌以及孔径宽度随溅射靶材中Cd的掺杂量的不同可调控。
2.不需要昂贵的模板辅助,有效避免了杂质沾污以及模板移除工艺。
3.对衬底的形状以及材料无特殊要求,适用于柔性器件以及复杂形状器件的制备。
4.该方法成本低廉,有利于提高产量和成品率,可方便实现大面积制备及批量化生产。
附图说明
图1为实施例1中纳米多孔CdZnO薄膜的SEM图;
图2为实施例2中纳米多孔CdZnO薄膜的SEM图;
图3为实施例3中纳米多孔CdZnO薄膜的SEM图;
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
1)选用经标准的RCA工艺清洗后的硅片,将其放入射频反应磁控溅射装置的反应室中,反应室真空度抽至1×10-3Pa。
2)选用Cd摩尔掺杂量为10%的CdZnO陶瓷靶材作为溅射源,利用射频反应磁控溅射的方法沉积厚度约为50nm的CdZnO薄膜,衬底温度为300℃。
3)将沉积好的CdZnO薄膜在空气中进行600℃热处理1小时,随后取出自然冷却,即得到具有纳米多孔结构的CdZnO薄膜。
图1为经上述步骤所制的纳米多孔CdZnO薄膜的SEM图。从图中可以看到薄膜已经充分结晶,并且表面布满了“沟壑”状的孔洞,孔洞的平均宽度在几十纳米左右。经分析,孔洞的形成机理与薄膜高温热处理过程中Cd元素的不均匀析出或挥发有关。
实施例2
1)选用经标准的RCA工艺清洗后的硅片,将其放入射频反应磁控溅射装置的反应室中,反应室真空度抽至1×10-3Pa。
2)选用Cd摩尔掺杂量为20%的CdZnO陶瓷靶材作为溅射源,利用射频反应磁控溅射的方法沉积厚度约为500nm的CdZnO薄膜,衬底温度为300℃。
3)将沉积好的CdZnO薄膜在空气中进行800℃热处理1小时,随后取出自然冷却,即得到具有纳米多孔结构的CdZnO薄膜。
图2为经上述步骤所制的纳米多孔CdZnO薄膜的SEM图。从图中可以看到薄膜已经充分结晶,并且表面布满了“沟壑”状的孔洞,孔洞的平均宽度在几百纳米,并且相互贯通。其孔洞的形成机理同实施例1中所述。
实施例3
1)选用经标准的RCA工艺清洗后的硅片,将其放入射频反应磁控溅射装置的反应室中,反应室真空度抽至1×10-3Pa。
2)选用Cd摩尔掺杂量为30%的CdZnO陶瓷靶材作为溅射源,利用射频反应磁控溅射的方法沉积厚度约为2μm的CdZnO薄膜,衬底温度为300℃。
3)将沉积好的CdZnO薄膜在空气中进行1100℃热处理1小时,随后取出自然冷却,即得到具有纳米多孔结构的CdZnO薄膜。
图3为经上述步骤所制的纳米多孔CdZnO薄膜的SEM图。从图中可以看到薄膜已经充分结晶,并且表面布满了“沟壑”状的孔洞,孔洞的平均宽度在微米量级,并且相互贯通。其孔洞的形成机理同实施例1中所述。

Claims (2)

1.一种表面形貌可调的纳米多孔CdZnO薄膜的制备方法,其特征在于:
(1)利用磁控溅射工艺,采用CdZnO陶瓷靶材作为溅射源,CdZnO陶瓷靶材中Cd的掺杂量以摩尔含量计为10%~30%,在清洗过的衬底片上沉积0.05~2μm厚的CdZnO薄膜;
(2)在空气下600--1100℃温度范围内为对沉积的CdZnO薄膜进行退火处理,热处理时间1小时,随后取出自然冷却,得到的CdZnO薄膜表面形貌为纳米多孔结构,孔洞呈“沟壑”状分布,并且相互贯通。
2.按照权利要求1所述的一种表面形貌可调的纳米多孔CdZnO薄膜的制备方法,其特征在于,所述的CdZnO薄膜的表面形貌通过改变溅射工艺中CdZnO陶瓷靶材内Cd的含量进行调控,其孔洞平均宽度从几十纳米到微米级可调节。
CN201410486603.7A 2014-09-22 一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法 Active CN104328381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410486603.7A CN104328381B (zh) 2014-09-22 一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410486603.7A CN104328381B (zh) 2014-09-22 一种表面形貌可调的纳米多孔CdZnO薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN104328381A true CN104328381A (zh) 2015-02-04
CN104328381B CN104328381B (zh) 2017-01-04

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014784A (zh) * 2017-11-02 2018-05-11 五邑大学 一种金属纳米粒子增强多孔ZnO光催化降解薄膜及其制备方法
CN109306451A (zh) * 2018-09-14 2019-02-05 五邑大学 一种多孔氧化物薄膜的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361480A (en) * 2000-04-19 2001-10-24 Murata Manufacturing Co Forming p-type semiconductor film and light emitting device using the same
CN102545053A (zh) * 2011-12-30 2012-07-04 浙江大学 波长可调的可见电抽运随机激射器件及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361480A (en) * 2000-04-19 2001-10-24 Murata Manufacturing Co Forming p-type semiconductor film and light emitting device using the same
CN102545053A (zh) * 2011-12-30 2012-07-04 浙江大学 波长可调的可见电抽运随机激射器件及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭建成等: "磁控溅射生长CdxZn1-xO薄膜的表面形貌、结晶特性和光学性能研究", 《电子显微学报》 *
马德伟: "带隙可调的Zn1-xCdxO合金半导体薄膜的研究", 《中国优秀博硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108014784A (zh) * 2017-11-02 2018-05-11 五邑大学 一种金属纳米粒子增强多孔ZnO光催化降解薄膜及其制备方法
CN109306451A (zh) * 2018-09-14 2019-02-05 五邑大学 一种多孔氧化物薄膜的制备方法

Similar Documents

Publication Publication Date Title
Prabhu et al. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique
de Melo et al. Semi-transparent p-Cu2O/n-ZnO nanoscale-film heterojunctions for photodetection and photovoltaic applications
Wen et al. High-crystallinity epitaxial Sb2Se3 thin films on mica for flexible near-infrared photodetectors
KR102019563B1 (ko) 전구체 기화 농도 조절을 통한 대면적 단분자층 전이금속 디칼코제나이드 이종접합 구조체 제조방법
Bu Rapid synthesis of ZnO nanostructures through microwave heating process
KR20130023608A (ko) 벌크 헤테로 접합 무기 박막 태양전지 및 이의 제조 방법
CN108023017A (zh) 一种有机无机复合钙钛矿材料的单晶薄膜及其制备方法和应用
CN103882514A (zh) 一种半导体CdS/CdSSe异质结纳米线及其制备方法
CN103700576B (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
Li et al. Effect of selenization temperature on the properties of Sb 2 Se 3 thin films and solar cells by two-step method
CN109881150A (zh) 一种快速物理气相沉积生长二维纳米结构的方法
CN108122999A (zh) 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法
Xu et al. Solution growth of crystalline ZnO thin film and its photodetector application
CN108511324B (zh) 一种γ相硒化铟纳米片的外延生长方法
CN101325227A (zh) ZnO/纳米金刚石共面栅紫外光探测器的制备方法
Labis et al. Pulsed laser deposition growth of 3D ZnO nanowall network in nest-like structures by two-step approach
Chen et al. High-performance UV detectors based on 2D CVD bismuth oxybromide single-crystal nanosheets
Del Gobbo et al. In-suspension growth of ZnO nanorods with tunable length and diameter using polymorphic seeds
Fallah Azad et al. The effect of seed layer on optical and structural characteristics of ZnO nanorod arrays deposited by CBD method
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
CN105800566A (zh) 交替注入反应物生长单层和多层过渡金属硫化物的方法
CN103818960B (zh) 一种热丝化学气相沉积技术制备氧化钼纳米带的方法
CN101435067B (zh) 基于物理气相沉积的碲纳米线阵列的制备方法
CN105002555B (zh) 一种ZnO单晶纳米片的生长方法
Zhang et al. Controlled growth of vertically stacked In2Se3/WSe2 heterostructures for ultrahigh responsivity photodetector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant