CN104321964A - 用于动态误差向量大小加强的集成启动偏置增强 - Google Patents

用于动态误差向量大小加强的集成启动偏置增强 Download PDF

Info

Publication number
CN104321964A
CN104321964A CN201380025313.6A CN201380025313A CN104321964A CN 104321964 A CN104321964 A CN 104321964A CN 201380025313 A CN201380025313 A CN 201380025313A CN 104321964 A CN104321964 A CN 104321964A
Authority
CN
China
Prior art keywords
electric current
power
power amplifier
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380025313.6A
Other languages
English (en)
Other versions
CN104321964B (zh
Inventor
K·赫什伯格
B·艾普莱特
M·圣蒂尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsemi Corp
Original Assignee
Microsemi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsemi Corp filed Critical Microsemi Corp
Publication of CN104321964A publication Critical patent/CN104321964A/zh
Application granted granted Critical
Publication of CN104321964B publication Critical patent/CN104321964B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0266Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/305Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in case of switching on or off of a power supply
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • H03G3/3047Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers for intermittent signals, e.g. burst signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/321Use of a microprocessor in an amplifier circuit or its control circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/507A switch being used for switching on or off a supply or supplying circuit in an IC-block amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated

Abstract

公开了用于校正集成功率放大器中的启动瞬变的设备和方法。延迟元件(116)被安排成产生响应于输入电压信号的延迟波形信号。跨导元件(118)具有接收延迟波形信号的输入,并且被安排成提供基于该延迟波形信号和跨导元件的增益的输出增强电流(102)。参考元件(104)提供响应于静态参考电流(106)和增强电流(102)的输出偏置电流(108)。偏置元件(110)具有接收偏置电流(108)的输入并被安排成提供偏置控制输出(112)。功率放大器(114)对偏置控制输出(112)进行响应并被安排成提供经放大的功率输出(RFOUT)。

Description

用于动态误差向量大小加强的集成启动偏置增强
发明领域
本公开涉及增强功率放大器性能,尤其涉及增强集成电路中功率放大器的上电性能。
发明背景
在诸如无线LAN之类的许多通信标准中,功率放大器可与接收或其他类型的放大器集成在同一管芯上。取决于通信电路的需求,开关准许通过天线向/从功率放大器电路或是接收或其他放大器传输信号。当功率放大器正在传输信号时,功率被提供给功率放大器。当功率放大器没有在主动地传输信号时,功率不被提供给功率放大器。在上电之际,功率放大器经历一段时间,在该段时间内所传送的信号正在变化并且功率放大器的传输特性也在变化,而耦合至功率放大器电路的其他电路组件或其他电路难以对此进行训练或表征。在诸如无线LAN之类的一些情况下,接收从功率放大器传送的信号的接收电路被安排成确定有限时间段内自功率放大器传入的信号的特性,在此时间段后接收电路假设在随时间进一步接收该信号时信号变化保持一致。
与在其间功率放大器正上电并且功率放大器信号的传输特性正在变化以及它们变化的方式也正在变化的时间段相比,接收电路在其间确定自功率放大器传入的信号的特性的时间段相对较短,在一些无线LAN示例中约为4μs。信号变化的方式不再发生变化的这种假设导致接收电路假设功率放大器信号不再继续以相同方式变化,然而事实上功率放大器信号的特性正在继续变化,这可能导致接收电路正如何处理信号的不准确性。
为了容适功率放大器的上电时段期间变化的传输特性,参考电路已被耦合至功率放大器以向流过功率放大器的电流生成互补参考电流。参考电路产生的互补参考电流具有来自控制源的电压输入,后者随后被参考电路转换成参考电流。参考电路电阻器设置稳定状态电流值和时间常数或延迟两者。作为参考电路电阻器的固定值的结果,参考电路电容器值变为固定。稳定状态电流值要求电容器值相对较大并且该值在一些示例中可以高达100nF。要让这么大的电容器物理地存在于管芯上是不实际的,因此电容器必须位于管芯之外。
因此,对功率放大器固有经历的上电或启动瞬变进行校正从而达到尺寸和成本两方面有效的改进是本领域中所希望的。
发明概要
本发明的目的是提供适于校正功率放大器中的启动瞬变的方法和设备结构。
校正功率放大器中的启动瞬变的示例电路包括增强发生器、参考元件、偏置元件、以及功率放大器。增强发生器可包括延迟元件、跨导元件或者这两者。延迟元件被安排成产生响应于输入电压信号的延迟波形信号。跨导元件具有接收来自延迟元件的延迟波形信号的输入,并且被安排成提供基于该延迟波形信号和跨导元件的增益的输出增强电流。参考元件提供响应于静态参考电流和增强电流的输出偏置电流。偏置元件具有接收偏置电流的输入并被安排成提供偏置控制输出。功率放大器对偏置控制输出进行响应并被安排成提供经放大的功率输出。功率放大器在功率放大器上电后的第一时段期间提供第一功率增益量以及在功率放大器上电后接着第一时段的第二时段期间提供第二功率增益量。第一功率增益量响应于增强电流与静态参考电流之和。第二功率增益量由输出偏置电流朝静态参考电流的值的衰减所决定。
用于校正功率放大器中的启动瞬变的方法包括产生具有衰减特性的增强电流,产生静态参考电流,累加增强电流和静态参考电流,以及应用经累加的增强电流与静态参考电流以偏置功率放大器。用于校正功率放大器中的启动瞬变的方法还包括基于功率放大器的供电电压和功率放大器的输入功率来调节该增强电流。
根据参照附图的以下详细描述,本发明的上述和其他目标、特征、和优点将变得显而易见。
附图简述
图1是根据本发明的诸方面对应功率放大器的集成启动偏置增强电路的各元件的框图。
图2是示出图1中所示的功率放大器的集成启动偏置增强电路的各元件的另一框图。
图3A是根据本公开的诸方面的功率放大器的集成启动偏置增强电路的示例延迟元件、跨导元件和任选的极性转换器的示意图。
图3B是根据本公开的诸方面的功率放大器的集成启动偏置增强电路的示例偏置参考元件的示意图。
图3C是根据本公开的诸方面的功率放大器的集成启动偏置增强电路的示例偏置电路和功率放大器的示意图。
图4是根据本公开的诸方面随时间的偏置电流的图形表示。
图5示出了根据本公开的诸方面对功率放大器中的启动瞬变进行校正的方法的步骤。
图6是对应功率放大器的集成启动偏置增强电路的另一实施例的框图。
图7是对应图6的增强发生器的一些元件的另一框图。
图8是对应图6所示的集成启动偏置增强电路的一些附加和任选元件的又一框图。
图9是图8所示的集成启动偏置增强电路的示例示意图。
图10是图8所示的集成启动偏置增强电路的另一示例示意图。
详细描述
在不一定按比例的附图中,所公开系统和方法的类似或对应元素由相同附图标记来标示。
为了校正功率放大器(诸如Microsemi生产的LX5585和LX5590功率放大器)中固有的启动瞬变,本文公开的电路和方法提供将用于设置延迟的电路元件与用于设置偏置电流的输出大小和功率放大器的输出信号的特性的那些电路元件分离开。通过将延迟与偏置电流的输出大小分离开,功率放大器的输出信号对许多环境中例如特别是单片电路方案中功率放大器中固有的启动瞬变进行补偿。此安排能够提供可调的控制机制以及控制任何标准CMOS/BiCMOS工艺中的电路行为的能力。
现在参照图1,以框图形式解说了校正功率放大器100中的启动瞬变的电路。电路100包括提供增强电流102的增强发生器101,提供参考电流(I参考)106的参考元件104,提供偏置控制输出112的偏置元件或偏置电路110、以及功率放大器114。电流I增强102和I参考被累加以产生输出偏置电流I偏置108,后者被接收作为偏置电路110的输入。偏置电路110基于I偏置108产生偏置控制输出112。功率放大器114对偏置控制输出112进行响应并被安排成提供经放大的功率输出(RF输出)。
图2示出了对应图1所示的电路元件并带有增强发生器的附加元件的框图。具体而言,图2中所示的示例增强发生器101包括延迟元件116和跨导元件118。
任选地,校正电路100还可包括极性转换电路120。延迟元件116被安排成产生响应于输入信号的延迟波形信号。在其他示例中,任何种类的开关可生成在跨导元件118的输入处被接收的输入电压信号。跨导元件118具有接收来自延迟元件116的延迟波形信号的输入,并且被安排成提供基于该延迟波形信号和跨导元件118的增益的输出增强电流(I增强)102。参考元件104可以是提供静态参考电流(I参考)106的偏置参考元件。电流I增强102和I参考106被累加以产生输出偏置电流(I偏置)108,后者被接收作为偏置电路110的输入。偏置电路110基于I偏置108产生偏置控制输出112。如上讨论地,功率放大器114对偏置控制输出进行响应并被安排成提供经放大的功率输出。
图1和2所示的功率放大器114在该功率放大器被上电后的第一时段期间提供第一功率增益量以及在该功率放大器被上电后的第二时段期间提供第二功率增益量。在此示例中,该第二时段在该第一时段之后。该第一功率增益量响应于I增强和I参考之和。第二功率增益量由输出控制偏置中的输出偏置电流I 部分随时间朝着静态参考电流I参考的值的衰减来决定。例如,第一时段和第二时段在功率放大器上电后延续约100μs。第一时段可在启用控制信号121被提供给功率放大器之时开始,在一些示例中,这可以与功率放大器上电同时、或者稍前或稍后。在第一时段结束,偏置控制输出的输出偏置电流I偏置值具有峰值,并且朝着静态参考电流I参考的值衰减。
图2所解说的启动偏置增强电路100的框图的跨导元件118将在其输入处收到的延迟波形信号转换成具有输出增益的输出电流。在一些示例中,延迟波形信号包括被跨导元件118转换成输出电流的延迟波形电压。任选地,跨导元件118的输出电流被接收作为极性转换电路120的输入。极性转换电路120可将电流阱(current sink)转为电流源。例如,当跨导元件118输出需要放大的电流时,该电流随后被传送通过极性转换电路120或电流反射镜电路以将电流放大至其最大值。当跨导元件118的输出电流正确时,诸如等于其最大值时,则极性转换电路120可被旁路。不管是否经过极性转换电路120,跨导元件118的输出电流产生输出增强电流I增强102。在跨导元件118的输出电流经过极性转换电路120传输的示例中,极性转换电路120从跨导元件118的输出接收该增强电流,并且被安排成提供作为镜像增强电流的输出电流。镜像增强电流或简单而言该增强电流在图2中被描绘为I增强
取决于电流是否经过极性转换电路120传输,输出偏置电流I偏置响应于I增强或镜像增强电流。在电流经过极性转换电路120传输的示例中,输出偏置电流I偏置是静态参考电流I参考与镜像增强电流之和。在电流旁路极性转换电路120的示例中,输出偏置电流I偏置是静态参考电流I参考与输出自跨导元件118的增强电流之和。
图3A-3C示出了图1和2所讨论的启动偏置增强电路100的一些元件的示例示意图。这些是示例,而根据本公开可实现校正电路的其他实施例。图3A是延迟元件116、跨导元件118和极性转换电路120的示例示意图。延迟元件116在一些示例中可以是电阻器-电容器(RC)充电电路,其中电容器122在触发电压输入130从低(0V)转换为高时开始充电。延迟开关124、126、128的组合被闭合以选择延迟d<0>、d<1>、或d<2>之一。例如,至延迟元件116的电压输入130范围从0V到约3.3V,0V时未向延迟元件116提供电压,3.3V时电压被提供给延迟元件116并且电容器122开始对RC充电电路充电。在替换示例中,延迟元件可包括一个或更多个简单开关或者向启动偏置增强电路提供功率的其他电路元件。
在图3A所示的示例中,延迟元件116包括串联地电耦合在一起的电容器122和一系列可数控的电阻器132、134、136。然而,在替换示例中,电容器可电耦合至单个电阻器或任何其他合适数目的电阻器。另外,开关元件可与多个电容器组合使用以提供可调的延迟。再次参照图3A,该系列的电阻器132、134、136可通过其相应的开关124、126、128来数字地选择,这些开关诸如是例如场效应晶体管(FET)或任何其他合适的开关。在此示例中,当FET 124、126闭合(导通)而FET 128断开(非导通)时,延迟元件116的电阻变为值R1。在此示例中,当FET 124、128闭合而FET 126断开时,电阻变为值2*R1。在此示例中,当FET 126、128闭合而FET 124断开时,延迟元件116的电阻变为值4*R1。通过改变被断开和闭合的FET 124、126、128,可控制延迟元件116的电阻值。通过控制延迟元件116的电阻值,还可控制延迟波形信号对延迟元件116所接收的输入电压信号的响应。
延迟元件116的输出电压信号在跨导元件118的输入处被接收,跨导元件118产生输出增强电流。跨导元件118包括串联地电耦合在一起的放大器件138或晶体管和一系列电阻器140、142、144。在图3A所示的示例跨导元件118中,放大器件138是例如FET,或者可以是任何其他合适类型的放大器件。在其他示例中,电阻器140、142、144可以是一个大电阻器。然而,在图3A中,电阻器140、142、144是串联地电耦合在一起的一系列三个可数字选择的电阻器。这些电阻器140、142、144通过两个开关146、148进行数控,它们改变电阻并且因此改变从跨导元件118输出的输出增强电流。跨导元件118具有最小电阻R2,其可取决于开关146、148中的一者或两者是断开还是闭合而增加。
跨导元件118的输出增强电流被接收作为极性转换电路120的输入,如图3A所示。极性转换电路120包括在此示例中彼此串联地电耦合在一起的两个金属氧化物半导体场效应晶体管150、152(MOSFET)。极性转换电路120生成镜像的输出增强电流,后者大于跨导元件118输出的增强电流但是与其成正比例。
图3B是示例参考元件104。参考元件104可以是静态参考元件,其被安排成提供设置功率放大器的工作参数的静态参考电流,即流经功率放大器的双极性晶体管的电流。
现在转到图3C,示出了偏置电路110和功率放大器114的示例示意图。偏置电路110接收输出增强电流(来自图3A的输出电流)与静态参考电流(来自图3B的输出电流)的累加偏置电流。图3C所示的偏置电路110包括彼此串联地电耦合在一起的双极性晶体管156和电感器158。旁路路径160将栅极耦合至双极性晶体管156的集电极,由此实际上将该双极性晶体管156转为了二极管。偏置电路110在功率放大器114上电时向功率放大器114提供提升的偏置电压,这有助于校正上电时段期间功率放大器114的性能特性的变化。
图3C还示出具有电容器162、双极性晶体管164以及电感器166的功率放大器114的示例示意图。功率放大器114的输入信号是射频(RF)输入,而功率放大器114的输出是根据功率放大器114所定义的增益被放大了的RF输出信号。当功率放大器114被断电时,通过功率放大器114的双极性晶体管164的电流基本为零。当功率放大器114被上电时,通过双极性晶体管164的电流迅速变化,并且随后逐步达到其稳定状态值。在通过双极性晶体管164的电流正在变化的时段期间,功率放大器114的RF特性也正在变化。通过功率放大器114的双极性晶体管164的电流的稳定状态值与静态参考电流106的值成比例。偏置控制电流是在与静态参考电流累加并被输入到功率放大器114中时有助于校正功率放大器114在其上电时或在其“瞬变”时段期间的RF特性变化的电流增强,否则会对总体系统性能具有负面影响。
偏置电路110生成用于功率放大器114的双极性晶体管164的偏置电压。功率放大器114的双极性晶体管164的工作点由流过偏置电路110的参考器件156的静态参考电流来设置。如上讨论地,至偏置电路110的输入电流是通过累加静态参考电流和输出电流增强所产生的。当功率放大器114断电时,启动偏置增强电路100的控制电压130(V触发)被接地,这对图1-3C所示的示例中的电路100进行重置。在替换实施例中,电路100可具有恒定的供电电压(尽管供电电压的值可以变化),并且电路可通过其他方式(诸如FET开关)来重置。
在图3A-3C所示的示例中,启动偏置增强电路100具有两个设计等式:
t延迟=(R1*C1)秒
I增强,最大=(VCC–VM1)/R2安培
启动偏置增强电路设计等式具有三个自由度——C1、R1和R2。C1是启动偏置增强电路100的延迟元件116中包括的电容器122,一般根据布局约束所固定并且可选择成常规尽可能地大。为了达成所期望的延迟(在100μs的范围内),对应延迟元件116的电阻值132、134、136的R1也往往趋于相对较大,诸如2MΩ。为了达成输出增强电流的所期望的大小,对应跨导元件118的电阻值140、142、144的R2的值可独立于R1和C1来选取。所有三个自由度C1、R1、和R2是可控的,以改变所期望的延迟的值和输出增强电流。
如上讨论地,在功率放大器114上电之前,给延迟元件116的控制电压130为零,这意味着所有节点电压也为零以及静态参考电流为零。偏置电路110中的二极管156和功率放大器114中的双极性晶体管164是关断的,并且跨延迟元件116的C1122的电压为零。当功率放大器114上电时,静态参考电流导通,在一些示例中达到值100μA。给增强电路100的控制电压130也被提高至期望值,在一些示例中至3.3V。控制电压130的转换可以与静态参考电流导通同时发生、稍前、或者稍后。跨C1122的电压仍然为零,这将跨导元件118中的晶体管138的栅极电压上拉到控制电压130,这导致晶体管138导通。R2140、142、144提供的源极退化限制了漏极电流,这允许通过晶体管138的电流近似为如上讨论的I增强,最大=(VCC–VM1)/R2
随着时间的增加,跨C1122的电压以反指数特性增加。跨C1122的电压增加的速率由R1132、134、136的值控制。随着C1122充电,跨导元件118中的晶体管138的栅极电压呈指数地降低,这导致流过晶体管138的电流也呈指数地降低。流过晶体管138的电流的降低生成了输出增强电流的指数衰减。当随时间发生跨C1122的电压变成等于VCC–VM1的阈值电压时,晶体管138截止并且通过晶体管138的电流变为零。此变化导致输出增强电流衰减为零,并且偏置电流变为等于静态参考电流,这是所期望的稳定状态条件。
图4是偏置电流随时间从峰值为输出增强电流与静态参考电流之和的值402然后衰减到静态参考电流的值404的图形表示400。再次参考功率放大器的功率增益,在功率放大器上电后的第二时段期间功率放大器所提供的第二功率增益量由第二时段期间输出偏置电流朝静态参考电流的值的指数衰减所决定。在一些示例中,第二时段在第二功率增益量已经降到可接受地接近功率增益的稳定状态量的值时开始。功率放大器的第一功率增益量自第一时段开始起测量。时间常数可被定义为功率放大器的初始上电(由此开始第一时段)与当功率放大器的功率增益的量足够接近其稳定状态以在输出信号中引起可接受的小误差时之间的时间量。功率放大器的功率增益与输出偏置电流的指数衰减成比例,如图4所描绘的。
现在参照图5,示出了用于校正功率放大器中的启动瞬变的方法500中的步骤。步骤包括产生具有衰减特性的增强电流502、产生静态参考电流504、累加增强电流和静态参考电流506、以及应用累加的增强电流和静态参考电流以偏置功率放大器508。如上讨论地,功率放大器在功率放大器上电后的第一时段期间提供第一功率增益量以及在功率放大器上电后接着第一时段的第二时段期间提供第二功率增益量。第一功率增益量响应于增强电流与静态参考电流之和,以及第二功率增益量由累加增强电流朝静态参考电流值的衰减所决定。
图6-10示出校正电路600的另一示例集成启动偏置增强电路。类似于在图1-5所示并且在上文讨论的校正电路100,校正电路600通过将用于设置延迟的电路元件与用于设置偏置电流的输出大小和功率放大器的输出信号的特性的那些电路元件分离开来校正功率放大器中固有的启动瞬变。然而,图6-10所示的校正电路600还可包括两个缩放操作。功率放大器的供电电压以及功率放大器的RF输出或功率水平输出两者皆影响功率放大器开启时发生的热事件的大小。由于热事件的大小受到影响,所需要的增强电流的量也改变。
由于功率放大器上的供电电压的影响所需要的变化的增强电流水平可通过根据缩放因子对原始增强电流进行缩放来校正。缩放因子与功率放大器的供电电压(VPA)成比例。由于功率放大器上的RF驱动的影响所需要的变化的增强电流水平是通过根据与RF信号RF输出的大小成比例的缩放因子对原始增强电流进一步缩放来处理的。
通过根据基于RF输出和VPA的缩放因子来调节I增强的大小,校正电路600实现对I增强的动态缩放。图6是示例校正电路600的框图,该校正电路包括基于RF输出和VPA的I增强缩放。校正电路600包括增强发生器602、参考元件606、偏置元件或偏置电路610、以及功率放大器616。增强发生器包括三个输入:时间常数618、VPA 620和RF输出622,它们组合在一起基于与功率放大器616相关联的值来调节增强发生器602输出的I增强604。由于与功率放大器616相关联的值在功率放大器被开启的瞬变时段期间变化,增强发生器通过缩放I增强以基于功率放大器的变化的供电电压和输入功率值进行调节来校正该开启的热事件。
类似于上述校正电路100,图6所示的校正电路600具有提供参考电流(I参考)608的参考元件606。电流I增强和I参考被累加以产生输出偏置电流I偏置609,后者被接收作为偏置电路610的输入。偏置电路610产生基于I偏置609的偏置控制输出612。功率放大器616对偏置控制输出612进行响应并被安排成提供经放大的功率输出。
图7示出了带有对缩放电流I增强的更详细解说的校正电路600的另一框图。增强发生器602包括被提供作为增强波形发生器624的输入的触发电压(V触发)输入618。增强波形发生器624的输出是放大器627的输入,放大器627具有VPA 620作为其增益控制输入。具有VPA 620作为其输入的放大器627根据基于VPA的缩放因子对输出的I增强进行调节。放大器627的输出是第二放大器628的输入,第二放大器628具有功率放大器616的RF输出作为其增益控制输入。功率放大器627根据基于功率放大器627的RF输出622的缩放因子进一步调节来自增强发生器602的输出I增强604。基于VPA和RF输出缩放的I增强的输出随后与I参考进行累加,如上所述。
图8示出了根据基于VPA和RF输出的缩放因子来调节I增强的校正电路600的又一框图。如上所讨论的,增强发生器602可包括延迟元件626和跨导元件628。然而,与上文讨论的示例校正电路100不同,缩放I增强的校正电路600包括跨导元件628,其中输出电流基于延迟波形信号,并且延迟元件626的输出电压的大小与VPA成比例。
增强发生器的输出电流I增强是任选的极性转换器630的输入,这与上文在图2中讨论的极性转换器的方式相类似。极性转换器630的输出是功率缩放元件624的电流输入。功率缩放元件624的输出电流是经缩放的I增强,后者经过与功率放大器的输出功率成比例的缩放因子进行了调节。如上文讨论的,I增强与I参考相累加以产生作为偏置电流610的输入的I偏置609。该偏置电路的输出是作为功率放大器616的输入的偏置控制612。
图9是示出了延迟元件626、跨导元件628、极性转换电路630、功率缩放元件622、和极性与增益元件632的示例示意图。类似于图3A中描述的校正电路100,延迟元件626可以是电阻器-电容器(RC)充电电路,其中电容器636在触发电压输入(V触发)633从低(0V)转换为高时开始充电。V触发633是功率放大器634的输入,功率放大器634还接收来自VPA的输入,由此基于VPA调节最终的I增强。延迟开关638、640、642的组合被闭合以选择延迟d0、d1、d2、d3、d4、d5、d6、和d7中的一者。也可以使用简单开关或其他电路元件。延迟元件626包括彼此串联地电耦合在一起的电容器636和一系列可数控的电阻器644、646、648。可使用任何合适的可调延迟。通过控制延迟元件626的电阻值,还可控制延迟波形信号对延迟元件626所接收的输入电压信号的响应。
延迟元件626的输出电压信号在跨导元件628的输入处被接收。跨导元件628包括串联地电耦合在一起的放大器件650或晶体管和一系列电阻器652、654、656。在图9所示的示例跨导元件中,放大器件650是例如FET,或者可以是任何其他合适类型的放大器件。电阻器652、654、656是串联地电耦合在一起的一系列三个可数字选择的电阻器。电阻器652、654、656通过两个开关658、660进行数控,它们改变电阻并且因此改变从跨导元件628输出的输出增强电流。
跨导元件628的输出增强电流被接收作为图9所示的极性转换电路630的输入。极性转换电路630包括两个MOSFETs 662、664,在此示例中它们彼此串联地电耦合在一起。极性转换电路630生成镜像的输出增强电流,后者大于跨导元件628输出的增强电流但是与其成正比例。
极性转换电路630的输出增强电流被接收作为功率缩放元件622的输入。功率缩放元件622包括两个并联的MOSFETs 668、670。MOSFET 668具有参考电压输入(V参考),以及MOSFET 670具有参考电压(V参考)以及与功率放大器的RF功率水平成比例的电压(VRF)。V参考和VRF两者皆由功率检测器(未示出)提供,功率检测器位于管芯上与本文描述的功率放大器和校正电路分开的其他位置。V参考是来自功率检测器的参考电压,以及VRF是使得VRF-V参考与所公开的功率放大器的RF功率水平成比例的信号。功率缩放电路622的输出可以取自设备668或者670,这取决于所期望的缩放的极性。
功率缩放元件622的输出被接收作为任选的极性与增益元件632的输入。极性与增益元件632包括增益部分,该部分包括彼此串联地电耦合在一起的两个MOSFET 672、674。极性与增益元件632还包括与增益部分串联的极性转换电路部分。极性转换电路部分包括彼此串联地电耦合在一起的两个MOSFET676、678。极性与增益元件632的输出是I增强,其经过调整以针对RF输出和VPA进行缩放。
图10是基于VPA和RF输出来缩放I增强的另一校正电路。取代图9中所示的包括延迟开关638、640、642和电阻器644、646、648的可选延迟626,图10中所示的校正电路600包括具有单个电阻器680的延迟626A。替换地,该延迟元件可以是一系列电阻或者任何其他合适的电阻元件。
已经在本发明的优选实施例中描述和说明了本发明的原理,但应当显而易见的是,能在安排和细节方面修改本发明而不背离这样的原理。申请人要求保护落在所附权利要求的精神和范围内的所有修改和变化。

Claims (36)

1.一种校正功率放大器中的启动瞬变的电路,包括:
增强发生器,被安排以提供增强电流;
参考元件,提供响应于静态参考电流和所述增强电流的输出偏置电流;
偏置元件,具有接收偏置电流的输入并被安排成提供偏置控制输出;以及
功率放大器,所述功率放大器响应于所述偏置控制输出并被安排成提供经放大的功率输出,其中所述功率放大器在所述功率放大器上电后的第一时段期间提供第一功率增益量,以及在所述功率放大器上电后的第二时段期间提供第二功率增益量,所述第二时段在所述第一时段之后,所述第一功率增益量响应于所述增强电流与所述静态参考电流之和,所述第二功率增益量由所述输出偏置电流朝所述静态参考电流的值的衰减所决定。
2.如权利要求1所述的电路,其特征在于,还包括极性转换电路,所述极性转换电路具有接收所述增强电流的输入并被安排成提供作为镜像的增强电流的输出,其中所述偏置电流响应于所述镜像的增强电流。
3.如权利要求2所述的电路,其特征在于,所述输出偏置电流是所述静态参考电流与所述镜像的增强电流之和。
4.如权利要求1所述的电路,其特征在于,所述第二功率增益量由所述第二时段期间所述输出偏置电流朝所述静态参考电流的所述值的指数衰减所决定。
5.如权利要求1所述的电路,其特征在于,所述第一时段开始于向所述功率放大器提供启用控制信号之时。
6.如权利要求1所述的电路,其特征在于,所述第二时段开始于所述第二功率增益量为所述第一时段开始时的所述第一功率增益量的值的37%之时。
7.如权利要求1所述的电路,其特征在于,所述增强发生器包括延迟元件和跨导元件。
8.如权利要求7所述的电路,其特征在于,所述延迟元件包括串联地电耦合的电容器和至少一个电阻器。
9.如权利要求8所述的电路,其特征在于,所述延迟元件包括串联地电耦合在一起并且是可数控的第一电阻器、第二电阻器和第三电阻器。
10.如权利要求7所述的电路,其特征在于,所述延迟元件被安排成产生响应于输入电压信号的延迟波形信号,并且所述跨导元件具有接收来自所述延迟元件的所述延迟波形信号的输入并且被安排成提供所述输出增强电流。
11.如权利要求10所述的电路,其特征在于,所述跨导元件的输出根据基于所述功率放大器的供电电压的缩放因子被调节。
12.如权利要求11所述的电路,其特征在于,所述缩放因子与所述功率放大器的供电电压成比例。
13.如权利要求7所述的电路,其特征在于,所述跨导元件包括串联地电耦合在一起的开关和至少一个电阻器。
14.如权利要求11所述的电路,其特征在于,所述跨导元件包括串联地电耦合在一起并且是可数控的第一电阻器、第二电阻器和第三电阻器。
15.如权利要求1所述的电路,其特征在于,所述输出偏置电流是所述静态参考电流与所述增强电流之和。
16.如权利要求1所述的电路,其特征在于,还包括功率缩放元件,所述功率缩放元件根据基于所述功率放大器的输入功率的功率缩放因子来调节所述增强电流。
17.如权利要求11所述的电路,其特征在于,还包括功率缩放元件,所述功率缩放元件根据基于所述功率放大器的输出功率的功率缩放因子来调节所述增强电流。
18.如权利要求16所述的电路,其特征在于,所述功率缩放因子与所述功率放大器的输出功率的大小成比例。
19.如权利要求17所述的电路,其特征在于,所述功率缩放因子与所述功率放大器的输出功率的大小成比例。
20.一种用于校正功率放大器中的启动瞬变的方法,包括:
产生具有衰减特性的增强电流;
产生静态参考电流;
累加所述增强电流和所述静态参考电流;
应用经累加的增强电流与静态参考电流以偏置功率放大器。
21.如权利要求20所述的方法,其特征在于,所述功率放大器在所述功率放大器上电后的第一时段期间提供第一功率增益量,以及在所述功率放大器上电后的第二时段期间提供第二功率增益量,所述第二时段在所述第一时段之后,所述第一功率增益量响应于所述增强电流与所述静态参考电流之和,所述第二功率增益量由经累加的增强电流朝所述静态参考电流的值的衰减所决定。
22.如权利要求20所述的方法,其特征在于,所述增强电流由延迟元件和跨导元件产生,所述延迟元件具有接收启用控制信号的输入并且被安排成提供包括延迟输出信号的输出,所述跨导元件具有接收来自所述延迟元件的延迟输出电压的输入并且被安排成提供包括所述增强电流的输出,所述增强电流基于所述延迟输出电压和所述跨导元件的增益。
23.如权利要求22所述的方法,其特征在于,所述延迟元件包括串联地耦合在一起的开关和至少一个电阻器。
24.如权利要求22所述的方法,其特征在于,所述跨导元件包括串联地耦合在一起的开关和至少一个电阻器。
25.如权利要求20所述的方法,其特征在于,所述增强电流的衰减特性使所述增强电流朝所述静态参考电流的值指数衰减。
26.如权利要求20所述的方法,其特征在于,所述增强电流的衰减开始于向所述功率放大器提供启用控制信号之时。
27.如权利要求20所述的方法,其特征在于,还包括根据基于所述功率放大器的供电电压和所述功率放大器的输入功率的缩放因子来调节所述增强电流。
28.如权利要求27所述的方法,其特征在于,所述缩放因子是与所述供电电压成比例的电压缩放因子和与所述功率放大器的输出功率的大小成比例的功率缩放因子。
29.一种用于校正功率放大器中的启动瞬变的方法,包括:
产生具有衰减特性的增强电流;
产生静态参考电流;
根据基于所述功率放大器的供电电压和所述功率放大器的输入功率的缩放因子来调节所述增强电流;
累加所述增强电流和所述静态参考电流;
应用经累加的增强电流与静态参考电流以偏置功率放大器。
30.如权利要求29所述的方法,其特征在于,所述功率放大器在所述功率放大器上电后的第一时段期间提供第一功率增益量,以及在所述功率放大器上电后的第二时段期间提供第二功率增益量,所述第二时段在所述第一时段之后,所述第一功率增益量响应于所述增强电流与所述静态参考电流之和,所述第二功率增益量由经累加的增强电流朝所述静态参考电流的值的衰减所决定。
31.如权利要求29所述的方法,其特征在于,所述增强电流由延迟元件和跨导元件产生,所述延迟元件具有接收启用控制信号的输入并且被安排成提供包括延迟输出信号的输出,所述跨导元件具有接收来自所述延迟元件的延迟输出电压的输入并且被安排成提供包括所述增强电流的输出,所述增强电流基于所述延迟输出电压和所述跨导元件的增益。
32.如权利要求31所述的方法,其特征在于,所述延迟元件包括串联地耦合在一起的开关和至少一个电阻器。
33.如权利要求31所述的方法,其特征在于,所述跨导元件包括串联地耦合在一起的开关和至少一个电阻器。
34.如权利要求29所述的方法,其特征在于,所述增强电流的衰减特性使所述增强电流朝所述静态参考电流的值指数衰减。
35.如权利要求29所述的方法,其特征在于,所述增强电流的衰减开始于向所述功率放大器提供启用控制信号之时。
36.如权利要求29所述的方法,其特征在于,所述缩放因子是与所述供电电压成比例的电压缩放因子和与所述功率放大器的输出功率的大小成比例的功率缩放因子。
CN201380025313.6A 2012-05-17 2013-05-17 用于动态误差向量大小加强的集成启动偏置增强 Active CN104321964B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261648504P 2012-05-17 2012-05-17
US61/648,504 2012-05-17
PCT/US2013/041671 WO2013173771A1 (en) 2012-05-17 2013-05-17 Integrated start-up bias boost for dynamic error vector magnitude enhancement

Publications (2)

Publication Number Publication Date
CN104321964A true CN104321964A (zh) 2015-01-28
CN104321964B CN104321964B (zh) 2017-06-23

Family

ID=48628909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380025313.6A Active CN104321964B (zh) 2012-05-17 2013-05-17 用于动态误差向量大小加强的集成启动偏置增强

Country Status (6)

Country Link
US (2) US9154090B2 (zh)
EP (1) EP2850727B1 (zh)
KR (1) KR101912490B1 (zh)
CN (1) CN104321964B (zh)
TW (1) TWI587625B (zh)
WO (1) WO2013173771A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428551A (zh) * 2017-08-21 2019-03-05 英飞凌科技股份有限公司 用于在收发器中提供偏置电压的方法和装置
CN109546845A (zh) * 2018-12-29 2019-03-29 华羿微电子股份有限公司 基于mosfet和固定电阻串并联的电子负载电路
CN109962683A (zh) * 2017-12-22 2019-07-02 三星电机株式会社 偏置电路和功率放大器电路
CN110166011A (zh) * 2018-02-13 2019-08-23 赛灵思公司 基于自偏置跨导运算放大器的参考电路

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650337B (zh) 2011-05-13 2016-09-21 天工方案公司 用于偏置功率放大器的装置和方法
US9503026B2 (en) 2013-09-19 2016-11-22 Skyworks Solutions, Inc. Dynamic error vector magnitude duty cycle correction
US9660600B2 (en) 2013-12-23 2017-05-23 Skyworks Solutions, Inc. Dynamic error vector magnitude compensation
CN106797204B (zh) * 2014-09-10 2021-03-16 天工方案公司 Wifi应用中高线性度的cmos rf功率放大器
US10374557B2 (en) 2016-10-28 2019-08-06 Samsung Electro-Mechanics Co., Ltd. Adaptive multiband power amplifier apparatus
US10110173B2 (en) 2016-10-28 2018-10-23 Samsung Electro-Mechanics Co., Ltd. Envelope tracking current bias circuit and power amplifier apparatus
CN107425815B (zh) * 2017-04-05 2019-08-20 广州慧智微电子有限公司 一种功率控制电路及功率放大电路
KR102465879B1 (ko) * 2017-12-27 2022-11-09 삼성전기주식회사 선형성 개선을 위한 바이어스 부스팅 구조를 갖는 파워 증폭 장치
KR102127808B1 (ko) 2018-08-09 2020-06-29 삼성전기주식회사 응답속도가 개선된 파워 증폭 장치
US11437992B2 (en) 2020-07-30 2022-09-06 Mobix Labs, Inc. Low-loss mm-wave CMOS resonant switch

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1200794B (it) 1985-10-16 1989-01-27 Sgs Microelettronica Spa Dispositivo per aumentare la potenza di uscita di una apparecchio radio alimentato a bassa tensione particolarmente del tipo autoradio
JPH07118614B2 (ja) * 1993-01-14 1995-12-18 日本電気株式会社 増幅器
US6233440B1 (en) 1998-08-05 2001-05-15 Triquint Semiconductor, Inc. RF power amplifier with variable bias current
US6636103B2 (en) * 2001-04-18 2003-10-21 Analog Devices, Inc. Amplifier system with on-demand power supply boost
US7064607B2 (en) 2003-12-29 2006-06-20 Texas Instruments Incorporated Bias system and method
JP5079336B2 (ja) * 2004-02-13 2012-11-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 増幅器用の適応型バイアス電流回路及び方法
US7405617B2 (en) 2004-04-09 2008-07-29 Skyworks Solutions, Inc. Dynamic biasing system for an amplifier
US7362179B2 (en) * 2005-01-24 2008-04-22 Via Technologies Inc. Power amplifier circuit and method thereof
TR200702096A2 (tr) 2007-03-30 2008-10-21 Vestel Elektron�K Sanay� Ve T�Caret A.�. Güç uygulama sürecinde oluşan gürültüyü (pop-noise) önleme yöntemi ve düzeneği
US7728672B2 (en) * 2007-12-21 2010-06-01 Electronics And Telecommunications Research Institute RF amplifier
JP2009200770A (ja) * 2008-02-21 2009-09-03 Sharp Corp 電力増幅器
US8264272B2 (en) * 2009-04-22 2012-09-11 Microchip Technology Incorporated Digital control interface in heterogeneous multi-chip module
US8089313B2 (en) * 2009-10-19 2012-01-03 Industrial Technology Research Institute Power amplifier
JP5990781B2 (ja) * 2011-02-14 2016-09-14 パナソニックIpマネジメント株式会社 高周波電力増幅器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428551A (zh) * 2017-08-21 2019-03-05 英飞凌科技股份有限公司 用于在收发器中提供偏置电压的方法和装置
CN109428551B (zh) * 2017-08-21 2023-09-22 英飞凌科技股份有限公司 用于在收发器中提供偏置电压的方法和装置
CN109962683A (zh) * 2017-12-22 2019-07-02 三星电机株式会社 偏置电路和功率放大器电路
CN109962683B (zh) * 2017-12-22 2023-01-31 三星电机株式会社 偏置电路和功率放大器电路
CN110166011A (zh) * 2018-02-13 2019-08-23 赛灵思公司 基于自偏置跨导运算放大器的参考电路
CN110166011B (zh) * 2018-02-13 2024-01-19 赛灵思公司 基于自偏置跨导运算放大器的参考电路
CN109546845A (zh) * 2018-12-29 2019-03-29 华羿微电子股份有限公司 基于mosfet和固定电阻串并联的电子负载电路

Also Published As

Publication number Publication date
US20130307627A1 (en) 2013-11-21
TWI587625B (zh) 2017-06-11
WO2013173771A1 (en) 2013-11-21
US9118281B2 (en) 2015-08-25
KR101912490B1 (ko) 2018-10-26
TW201401765A (zh) 2014-01-01
US9154090B2 (en) 2015-10-06
CN104321964B (zh) 2017-06-23
KR20150018780A (ko) 2015-02-24
EP2850727A1 (en) 2015-03-25
EP2850727B1 (en) 2019-07-03
US20130307625A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
CN104321964A (zh) 用于动态误差向量大小加强的集成启动偏置增强
US8106711B2 (en) Stacked pre-driver amplifier
US9454164B2 (en) Method and apparatus for limiting startup inrush current for low dropout regulator
CN104423407B (zh) 低压差线性稳压器及其启动方法、电子装置和芯片
CN106992681B (zh) 具有多模式恒流控制的开关转换电路
CN106569535A (zh) 有压差检测器和偏置电流限制器的电压调节器及相关方法
TWI780282B (zh) 過電流限制電路、過電流限制方法及電源電路
KR20100005486A (ko) 스위치 제어 장치 및 이를 포함하는 컨버터
TW200830075A (en) Analog combination regulator
US9960675B2 (en) Feed-forward control system with current estimator
TWI831857B (zh) 用於調節交換式電源供應器之偏電壓的設備
US20080310198A1 (en) Apparatus and method for suppressing the input current inrush for a voltage converter in a pre-charge stage
KR101086104B1 (ko) 검출회로 및 전원 시스템
CN106886243A (zh) 一种具有快速响应特性的低压差线性稳压器
US8030978B2 (en) Soft-start circuit
CN100508370C (zh) 源极跟随器及其稳定电流反馈电路
US10658856B1 (en) Battery pack and discharge method for limiting an excessive discharge current
CN110007707A (zh) 低压差线性稳压器及系统
US9608633B1 (en) Interface circuit with configurable variable supply voltage for transmitting signals
CN110620498A (zh) 一种恒功率型快速放电电路
US10951170B2 (en) Apparatus and method for assisting envelope tracking with transient response in supply voltage for power amplifier
CN109787603B (zh) 一种低导通平坦度模拟开关
CN108496291A (zh) 法拉电容充电电路及电子设备
CN117543972B (zh) 快速动态响应开关变换器电路、开关电源以及电子设备
CN114285248B (zh) 功率变换器的辅助电路和驱动电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant