CN104317306B - 卫星编队重构方法 - Google Patents

卫星编队重构方法 Download PDF

Info

Publication number
CN104317306B
CN104317306B CN201410589892.3A CN201410589892A CN104317306B CN 104317306 B CN104317306 B CN 104317306B CN 201410589892 A CN201410589892 A CN 201410589892A CN 104317306 B CN104317306 B CN 104317306B
Authority
CN
China
Prior art keywords
satellite
particle
formation
track
orbit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410589892.3A
Other languages
English (en)
Other versions
CN104317306A (zh
Inventor
蔡远文
史建伟
姚静波
程龙
辛朝军
张宇
李岩
解维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410589892.3A priority Critical patent/CN104317306B/zh
Publication of CN104317306A publication Critical patent/CN104317306A/zh
Application granted granted Critical
Publication of CN104317306B publication Critical patent/CN104317306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种卫星编队重构方法,其调整编队中卫星转移轨迹的主要步骤包括:确定编队重构过程中各卫星的起始位置和终止位置;针对卫星到达终止位置时的不同状态利用伪谱算法形成对应的转移轨道;形成轨道对应的卫星微推力器的燃料消耗控制信号;通过离散粒子群算法过滤会发生碰撞的转移轨道;根据约束条件,建立重构过程中的各卫星变轨转移策略;形成重构过程中卫星变轨时燃料消耗的控制信号策略。本发明形成队队中卫星转移轨道的双层规划,计算出编队重构中各卫星微推力器的燃料最优目标值,进而形成最终的重构轨迹方案。

Description

卫星编队重构方法
技术领域
本发明涉及一种卫星矢量推力控制方法,特别是涉及一种用于多个卫星矢量推力控制方法。
背景技术
微小卫星编队飞行不同于几颗卫星组成的固定星座飞行,每颗卫星都是一个完整功能的有机组成。因任务步骤、技术性能参数等的变化,需要进行编队形态的重构。由于编队飞行的卫星在功能和控制上是一个有机整体,从原有编队构型变换为另一种新的编队构型,各个编队卫星的控制必须相互协调,才能实现编队的整体功能。
构形重构的底层控制方法可以分为两类:基于冲量控制和基于连续微推力(连续微推力或多冲量)控制。其中,基于连续小推力的控制具有稳定、精度高等诸多优点,目前微推力器越来越多的应用于航天器控制中。基于连续微推力的编队重构,首先规划或计算出优化的相对运动转移轨迹,然后用跟踪控制方法实现转移过程。编队重构不仅要每颗卫星完成相应的轨道转移,还需要考虑编队中卫星之间的协同运动,受现有控制技术的局限,还不能做到可靠协同,进而满足重构过程中的整体性性能指标约束。
发明内容
本发明的目的是提供一种卫星编队重构方法,解决卫星编队重构过程中,卫星由起点至终点轨道设定控制不能可靠协同的技术问题。
本发明的卫星编队重构方法,其调整编队中卫星转移轨迹的主要步骤包括:
确定编队重构过程中各卫星的起始位置和终止位置;
针对卫星到达终止位置时的不同状态利用伪谱算法形成对应的转移轨道;
形成轨道对应的卫星微推力器的燃料消耗控制信号;
通过离散粒子群算法过滤会发生碰撞的转移轨道;
根据约束条件,建立重构过程中的各卫星变轨转移策略;
形成重构过程中卫星变轨时燃料消耗的控制信号策略。
所述起始位置和终止位置的确定步骤包括:
步骤1:生成起点集和终点集。对卫星和星位进行编号,卫星编号i,i=1,…,m,星位编号j,j=1,…,n,m≤n,将卫星i的位置和速度放置于起点集第i位,将星位j所需的位置和速度放置于终点集第j位。
所述离散粒子群算法的步骤包括:
步骤2:设置粒子群参数。粒子维数Dim设定为3m+3,粒子规模xSize、最大迭代次数MaxIt、惯性权重w、加速度常数c1和c2可以根据需要而定;
步骤3:粒子群初始化时,粒子群初始化时,随机生成1~n的自然数排列。第i位的自然数j表示卫星i将分配到星位j,将排列的前m位赋值给粒子群中粒子的前m位,表示位置,这样每个粒子中都含有重构方案信息;粒子的m+1~2m位为随机生成1~m的自然数排列,表示速度;粒子的2m+1~3m位为最优位置;粒子的第3m+1位是最优适应度值;粒子的第3m+2位是当前适应度值,也就是能量消耗值;粒子的第3m+3位为布尔型变量,当重构方案中任意两颗星之间的距离小于最小距离时,将该位置0,否则该位为1;
步骤4:读取粒子中的位置信息,应用伪谱法计算方案的能量消耗并计算方案中任意两颗星之间的距离,如果任意两颗星之间的距离小于最小距离,则终止运算并将粒子最后一位置0;否则,计算得出该方案的能量消耗赋值给粒子的倒数第二位;
步骤5:更新位置和速度,判断是否满足迭代条件,若满足,则终止;若不满足,则继续迭代;
步骤6:迭代结束后,删除标识符置0的粒子;
步骤7:选出最优个体和最优值。最优个体即为卫星与相位的最佳分配方案,最优值即为最小能量消耗值。
本发明的卫星编队重构方法形成队队中卫星转移轨道的双层规划,首先对单一微推力器的矢量控制信号进行优化,为编队中的每颗卫星生成从指定起点到指定终点的多条燃料最优策略或移动近优轨道,以较少控制节点即可获得较高的转移精度,然后,通过各卫星的转移轨道和燃料最优策略,计算出编队重构中各卫星微推力器的燃料最优目标值,进而形成最终的重构轨迹方案。
下面结合附图对本发明的实施例作进一步说明。
附图说明
图1为本发明卫星编队重构方法中用于编队中卫星间协同的改进离散粒子群算法进行数据处理时粒子排布及结构示意图。
具体实施方式
本实施例中,基于卫星编队重构不仅要使每颗卫星完成相应的轨道转移过程,还需要考虑编队卫星之间的协同运动,针对不同重构轨迹的卫星末状态存在确定和不确定的情况,对编队中各卫星的转移轨道和对应微推力器的燃料消耗策略,分别从卫星路径层和卫星协同方案层进行控制信号优化,实现能量消耗最省的重构方案。首先,由改进的离散粒子群算法负责生成重构过程中各卫星的轨迹方案,然后,由伪谱法计算每种轨迹方案中的各卫星对应微推力器的能耗量计算,最后,由改进的离散粒子群算法确定无碰撞的最优重构过程转移轨道方案。
通过(高斯)伪谱算法完成单个航天器的轨迹优化,将随时间连续变化的状态量和控制量在有限的时间点进行离散,用离散点上Lagrange插值多项式近似表达状态量和控制量函数,再利用Gauss数值积分将积分约束转化为代数求和约束,最终将最优控制问题转化为NLP问题来求解,利用伪谱算法好的特性获得单个航天器的若干个燃料最优策略或移动近优轨道。
通过改进粒子群算法进行重构路径规划,过滤存在碰撞的卫星重构轨迹,形成多个近优方案,并根据编队约束条件选出最优重构方案。
对离散粒子群算法进行如下改进:
粒子的位置:随机生成不超过m的互不相同的自然数序列表示位置X=(x1,x2,…,xm),1≤i≤m,1≤xi≤m,代表一种方案,xi表示在该方案中卫星xi对应于星位i;
粒子的速度:随机生成不超过m的互不相同的自然数序列表示速度V=(v1,v2,…,vm),1≤i≤m,1≤vi≤m,代表一个交换序列,vi的值对应交换对象的位置。以V=(2,6,3,5,4,1)为例,它代表的变换过程为:
①ν1=2,表示x1和x2交换;
②v2=6,表示x2和x6交换;
③v3=3,表示x3和x3交换,即不交换;
④v4=5,表示x4和x5交换;
⑤v5=4,表示x5和x4交换;
⑥v6=1,表示x6和x1交换;
此时V代表了一个6次的交换过程。
位置与速度的加法运算规则:位置与速度相加得到一个新的位置,
该式所表达的是:如果vi=i的话xi保持不变,否则xi与xvi交换。该交换序列从第1位到第m依次进行交换,共交换m次,产生一个新的位置。
例如,位置X=(1,2,3,4,5,6),速度V=(2,6,3,5,4,1),则X+V的交换得到新的位置X=(1,6,3,4,5,2)。
本实施例卫星编队重构方法的主要步骤如下:
步骤1:生成起点集和终点集。对卫星和星位进行编号,卫星编号i,i=1,…,m,星位编号j,j=1,…,n,m≤n,将卫星i的位置和速度放置于起点集第i位,将星位j所需的位置和速度放置于终点集第j位。
步骤2:设置粒子群参数。粒子维数Dim设定为3m+3,粒子规模xSize、最大迭代次数MaxIt、惯性权重w、加速度常数c1和c2可以根据需要而定。
步骤3:粒子群初始化,粒子群初始化时,随机生成1~n的自然数排列。第i位的自然数j表示卫星i将分配到星位j,将排列的前m位赋值给粒子群中粒子的前m位,表示位置,这样每个粒子中都含有重构方案信息;粒子的m+1~2m位为随机生成1~m的自然数排列,表示速度;粒子的2m+1~3m位为最优位置;粒子的第3m+1位是最优适应度值;粒子的第3m+2位是当前适应度值,也就是能量消耗值;粒子的第3m+3位为布尔型变量,当重构方案中任意两颗星之间的距离小于最小距离时,将该位置0,否则该位为1。具体粒子排列结构如图1所示。
步骤4:读取粒子中的位置信息,应用伪谱法计算方案的能量消耗并计算方案中任意两颗星之间的距离,如果任意两颗星之间的距离小于最小距离,则终止运算并将粒子最后一位置0;否则,计算得出该方案的能量消耗赋值给粒子的倒数第二位;
步骤5:更新位置和速度,判断是否满足迭代条件,若满足,则终止;若不满足,则继续迭代。
步骤6:迭代结束后,删除标识符置0的粒子;
步骤7:选出最优个体和最优值。最优个体即为卫星与相位的最佳分配方案,最优值即为最小能量消耗值。
本实施例的卫星编队重构方法形成两层次规划步骤,即高层规划通过离散粒子群优化重构方案实现编队的燃料最优目标;低层规划采用伪谱法,在满足约束条件的前提下,为编队中的每颗卫星生成从指定起点到指定终点的多条燃料最优或近优轨道。当低层规划计算完毕后,将结果反馈至高层规划器,高层规划器最终决定重构方案。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (1)

1.一种卫星编队重构方法,其调整编队中卫星转移轨迹的主要步骤包括:
确定编队重构过程中各卫星的起始位置和终止位置;
针对卫星到达终止位置时的不同状态利用伪谱算法形成对应的转移轨道;
形成轨道对应的卫星微推力器的燃料消耗控制信号;
通过离散粒子群算法过滤会发生碰撞的转移轨道;
根据约束条件,建立重构过程中的各卫星变轨转移策略;
形成重构过程中卫星变轨时燃料消耗的控制信号策略;
所述起始位置和终止位置的确定步骤包括:
步骤1:生成起点集和终点集,对卫星和星位进行编号,卫星编号i,i=1,…,m,星位编号j,j=1,…,n,m≤n,将卫星i的位置和速度放置于起点集第i位,将星位j所需的位置和速度放置于终点集第j位;
所述离散粒子群算法的步骤包括:
步骤2:设置粒子群参数,粒子维数Dim设定为3m+3,粒子规模xSize、最大迭代次数MaxIt、惯性权重w、加速度常数c1和c2可以根据需要而定;
步骤3:粒子群初始化,粒子群初始化时,随机生成1~n的自然数排列,第i位的自然数j表示卫星i将分配到星位j,将排列的前m位赋值给粒子群中粒子的前m位,表示位置,这样每个粒子中都含有重构方案信息;粒子的m+1~2m位为随机生成1~m的自然数排列,表示速度;粒子的2m+1~3m位为最优位置;粒子的第3m+1位是最优适应度值;粒子的第3m+2位是当前适应度值,也就是能量消耗值;粒子的第3m+3位为布尔型变量,当重构方案中任意两颗星之间的距离小于最小距离时,将该位置0,否则该位为1;
步骤4:读取粒子中的位置信息,应用伪谱法计算方案的能量消耗并计算方案中任意两颗星之间的距离,如果任意两颗星之间的距离小于最小距离,则终止运算并将粒子最后一位置0;否则,计算得出该方案的能量消耗赋值给粒子的倒数第二位;
步骤5:更新位置和速度,判断是否满足迭代条件,若满足,则终止;若不满足,则继续迭代;
步骤6:迭代结束后,删除标识符置0的粒子;
步骤7:选出最优个体和最优值,最优个体即为卫星与相位的最佳分配方案,最优值即为最小能量消耗值。
CN201410589892.3A 2014-10-28 2014-10-28 卫星编队重构方法 Active CN104317306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410589892.3A CN104317306B (zh) 2014-10-28 2014-10-28 卫星编队重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410589892.3A CN104317306B (zh) 2014-10-28 2014-10-28 卫星编队重构方法

Publications (2)

Publication Number Publication Date
CN104317306A CN104317306A (zh) 2015-01-28
CN104317306B true CN104317306B (zh) 2017-07-21

Family

ID=52372548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410589892.3A Active CN104317306B (zh) 2014-10-28 2014-10-28 卫星编队重构方法

Country Status (1)

Country Link
CN (1) CN104317306B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105138010B (zh) * 2015-08-31 2017-07-28 哈尔滨工业大学 一种编队卫星分布式有限时间跟踪控制方法
CN106681138B (zh) * 2016-12-02 2019-06-21 上海航天控制技术研究所 一种编队卫星系统燃料消耗均衡在轨实现方法
CN107554817B (zh) * 2017-07-11 2020-02-14 西北工业大学 卫星复合编队方法
CN107885917A (zh) * 2017-10-27 2018-04-06 中国地质大学(武汉) 基于异面变轨策略的卫星星座重构方法、设备及存储设备
CN108216687B (zh) * 2017-12-25 2019-12-20 中国空间技术研究院 基于粒子群算法的geo卫星变轨策略计算方法、系统及介质
CN110488858B (zh) * 2018-09-27 2020-05-19 北京航空航天大学 一种采用Jordan分解进行编队飞行小推力重构的方法
CN110083170A (zh) * 2019-04-11 2019-08-02 北京航空航天大学 一种使用固体微推力器进行轨道保持的优化控制方法
CN113110560B (zh) * 2021-05-24 2021-12-07 四川大学 基于切比雪夫不等式的卫星编队重构模型预测控制方法
CN113296535B (zh) * 2021-05-24 2022-06-21 四川大学 一种基于随机模型预测控制的卫星编队重构算法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119047B1 (en) * 2007-03-03 2010-09-22 Astrium Limited Satellite beam-pointing error correction in digital beam-forming architecture
CN102040008A (zh) * 2010-12-13 2011-05-04 北京航空航天大学 一种用于编队卫星在轨运行安全的防碰控制方法
CN102541070A (zh) * 2012-01-20 2012-07-04 哈尔滨工业大学 一种卫星编队飞行地面试验系统的碰撞规避方法
CN103092212A (zh) * 2013-01-08 2013-05-08 天津大学 微小卫星编队系统的仿真验证平台及实现方法
CN103903054A (zh) * 2014-04-23 2014-07-02 武汉大学 一种自学习迁移粒子群人工智能算法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119047B1 (en) * 2007-03-03 2010-09-22 Astrium Limited Satellite beam-pointing error correction in digital beam-forming architecture
CN102040008A (zh) * 2010-12-13 2011-05-04 北京航空航天大学 一种用于编队卫星在轨运行安全的防碰控制方法
CN102541070A (zh) * 2012-01-20 2012-07-04 哈尔滨工业大学 一种卫星编队飞行地面试验系统的碰撞规避方法
CN103092212A (zh) * 2013-01-08 2013-05-08 天津大学 微小卫星编队系统的仿真验证平台及实现方法
CN103903054A (zh) * 2014-04-23 2014-07-02 武汉大学 一种自学习迁移粒子群人工智能算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
深空环境下卫星编队飞行队形重构实时重规划;黄海滨等;《宇航学报》;20120331;第33卷(第3期);第325页-333页 *

Also Published As

Publication number Publication date
CN104317306A (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
CN104317306B (zh) 卫星编队重构方法
Sang et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations
Zhang et al. Distributed control of coordinated path tracking for networked nonholonomic mobile vehicles
Hao et al. Adaptive dynamic surface control for cooperative path following of underactuated marine surface vehicles via fast learning
Duan et al. ? Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration
Alonso-Mora et al. Multi-robot system for artistic pattern formation
CN110865653B (zh) 一种分布式集群无人机队形变换方法
Park et al. Modular Q-learning based multi-agent cooperation for robot soccer
CN108326852A (zh) 一种多目标优化的空间机械臂轨迹规划方法
CN107193212A (zh) 基于新型灰狼优化算法的航空发动机非线性预测控制方法
CN105841702A (zh) 一种基于粒子群优化算法的多无人机航路规划方法
CN106218922A (zh) 挠性敏捷卫星的联合执行机构控制方法
CN110991972A (zh) 一种基于多智能体强化学习的货物运输系统
CN109240091A (zh) 一种基于强化学习的水下机器人控制方法及其进行跟踪的控制方法
Li et al. A hybrid assembly sequence planning approach based on discrete particle swarm optimization and evolutionary direction operation
Taha et al. A discrete bat algorithm for the vehicle routing problem with time windows
CN109459041A (zh) 一种微纳星群变迁规划与控制方法
CN111551178A (zh) 一种基于最短路径的分段轨迹时间规划方法
Zhang et al. Multi-robot cooperative target encirclement through learning distributed transferable policy
CN116331518A (zh) 一种基于安全自适应动态规划的星群智能编队避碰控制方法
CN107194039A (zh) 一种基于改进高斯伪谱法的空间柔性系统展开控制方法
Yu et al. A traversal multi-target path planning method for multi-unmanned surface vessels in space-varying ocean current
Xiao-Ting et al. Flight path planning based on an improved genetic algorithm
Yang et al. Meta-IRLSOT++: A meta-inverse reinforcement learning method for fast adaptation of trajectory prediction networks
Yujie et al. Ship path planning based on improved particle swarm optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant