CN104300817A - 能量转换系统中的t型三电平svpwm的控制方法 - Google Patents

能量转换系统中的t型三电平svpwm的控制方法 Download PDF

Info

Publication number
CN104300817A
CN104300817A CN201410442890.1A CN201410442890A CN104300817A CN 104300817 A CN104300817 A CN 104300817A CN 201410442890 A CN201410442890 A CN 201410442890A CN 104300817 A CN104300817 A CN 104300817A
Authority
CN
China
Prior art keywords
sector
district
vector
level
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410442890.1A
Other languages
English (en)
Other versions
CN104300817B (zh
Inventor
蔡旭
姜广宇
王海松
叶程广
丁卓禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing Shuju Textile Co., Ltd.
Original Assignee
ANHUI LIGHT ENERGY TECHNOLOGY RESEARCH INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI LIGHT ENERGY TECHNOLOGY RESEARCH INSTITUTE Co Ltd filed Critical ANHUI LIGHT ENERGY TECHNOLOGY RESEARCH INSTITUTE Co Ltd
Priority to CN201410442890.1A priority Critical patent/CN104300817B/zh
Publication of CN104300817A publication Critical patent/CN104300817A/zh
Application granted granted Critical
Publication of CN104300817B publication Critical patent/CN104300817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种能量转换系统中的T型三电平SVPWM的控制方法,包括以下步骤:步骤一、三电平三相变流器中每相都有3个开关状态,三相27个开关状态组合通过abc三相静止坐标系转换至αβ两相静止坐标系,并得出T型三电平空间矢量图,根据27个矢量模的大小,可以将矢量进行分类;步骤二、将整个αβ两相静止坐标系平面分为6个大的扇区;步骤三、判断参考矢量[Vrefα Vrefβ]所在的大扇区;步骤五、通过对称和旋转变换将处于Ⅰ、Ⅱ、Ⅳ、Ⅴ、Ⅵ扇区的矢量变换到第Ⅲ扇区;步骤六、判断变换后的矢量所在的第Ⅲ扇区小区域,所述小区域为别为A区、B区、C区和D区;步骤七、确定各矢量的时间分配及发送顺序。

Description

能量转换系统中的T型三电平SVPWM的控制方法
技术领域
本发明涉及能量转换系统(Power Convert System)变频器技术领域,更具体的说涉及一种能量转换系统(PCS)变频器中的T型三电平的SVPWM控制方法。
背景技术
传统正弦波脉宽调制SPWM,在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,这样的电压脉冲系列可以使负载中电流高次谐波大为减小。SPWM的调制方法主要有单极性SPWM和双极性SPWM,各有其优缺点。传统的SPWM相比,SVPWM在输出电压或电机线圈的电流都将产生更少的谐波,电流波形畸变减小,提高了对PCS对直流电源的利用率,易于数字化实现。但是SVPWM扇区的确定需要大量的计算,对控制芯片的计算能力要求高,随着DSP等芯片的快速发展,SVPWM调制必将会有更加广阔的应用前景。
发明内容
针对相关技术领域文献和以上现有技术的不足,在大量现有文献研究和长期在相关领域研发实践的基础上,本发明提出“一种能量转换系统(PCS)中的T型三电平的SVPWM控制方法”,通过“SPWM的调制方法”,实现“产生更少的谐波,电流波形畸变减小,提高了对PCS对直流电源的利用率以及基于DSP更为高效的执行算法”的有益效果。
为实现上述目的,本发明是通过以下技术方案实现的:一种能量转换系统中的T型三电平SVPWM的控制方法,包括以下步骤:步骤一、三电平三相变流器中每相都有3个开关状态,三相27个开关状态组合通过abc三相静止坐标系转换至αβ两相静止坐标系,并得出T型三电平空间矢量图,根据27个矢量模的大小,可以将矢量进行分类;步骤二、将整个αβ两相静止坐标系平面分为6个大的扇区;步骤三、判断参考矢量[Vrefα Vrefβ]所在的大扇区;步骤五、通过对称和旋转变换将处于Ⅰ、Ⅱ、Ⅳ、Ⅴ、Ⅵ扇区的矢量变换到第Ⅲ扇区;步骤六、判断变换后的矢量所在的第Ⅲ扇区小区域,所述小区域为别为A区、B区、C区和D区;步骤七、确定各矢量的时间分配及发送顺序。所述步骤一的开关状态可输出三种电平分别为:正电平+Vdc/2,零电平0、负电平-Vdc/2。所述T型三电平空间矢量图,将整个αβ两相静止坐标系平面分为6个大的扇区,并依照逆时针方向六个大扇区为Ⅲ区、Ⅰ区、Ⅴ区、Ⅳ区、Ⅵ区、Ⅱ区。所述步骤三先根据矩阵 T αβ / abc = 2 3 1 0 - 1 2 3 2 - 1 2 - 3 2 对参考矢量进行变换 u a = v refβ u b = 1 / 2 ( 3 v refα - v refβ ) u c = 1 / 2 ( - 3 v refα - v refβ ) , 并根据ua,ub,uc的极性确定参考矢量所在的大扇区N=A+2B+4C,其中A,B,C为变量,如果ua>0,则A=1,否则A=0;如果ub>0,则B=1,否则B=0;如果uc>0,则C=1,否则C=0。所述步骤五中,第Ⅰ扇区变换为第Ⅲ扇区以为反射轴做反射变换, v , refα = - 1 / 2 v refα + 3 / 2 v refβ v , refβ = 3 / 2 v refα + 1 / 2 v refβ , 第Ⅴ扇区变换为第Ⅲ扇区顺时针旋转120°, v , refα = - 1 / 2 v refα + 3 / 2 v refβ v , refβ = - 3 / 2 v refα - 1 / 2 v refβ , 第Ⅳ扇区变换为第Ⅲ扇区以 v β = - 3 v α 为反射轴做反射变换, v , refα = - 1 / 2 v refα - 3 / 2 v refβ v , refβ = - 3 / 2 v refα + 1 / 2 v refβ , 第Ⅵ扇区变换为第Ⅲ扇区逆时针旋转120°, v , refα = - 1 / 2 v refα - 3 / 2 v refβ v , refβ = 3 / 2 v refα - 1 / 2 v refβ , 以α轴为反射轴做反射变换, v , refα = v refα v , refβ = - v refβ . 所述步骤六,如果矢量 3 v , refα + v , refβ ≤ 3 , 则为小区域A区,如果 3 v , refα - v , refβ ≥ 3 , 则为小区域C区,如果 2 v , refβ ≥ 3 , 则为小区域D区,其他情况为B区。所述步骤七在合成矢量时,选用参考矢量终点所在的小区域的三个顶点上的基本电压矢量来合成,若落在A区则选择基本矢量V0、V1、V2,若落在B区则选择基本矢量V1、V2、V8,若落在C区则选择基本矢量V1、V7、V8,若落在D区则选择基本矢量V2、V8、V9
本发明具备的有益效果是:与传统技术相比,本发明有益效果是:采用TMS320F28335作为控制芯片,简单易于实现,SVPWM控制产生更少的谐波,电流波形畸变减小,并且提高了对PCS对直流电源的利用率。
附图说明
图1为本发明具体实施例的三相T型三电平并网变流器主电路拓扑;
图2为本发明具体实施例的T型三电平空间矢量图;
图3为本发明具体实施例的第Ⅲ扇区分布图
图4为本发明具体实施例的第Ⅲ扇区C区驱动波形
具体实施方式
下面对照附图,通过对实施例的描述,对本发明的具体实施方式如所涉及的控制系统,相互间的连接关系,及实施方法,作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
1、采用了TI的TMS320F28335作为控制芯片,主频达150MHz,有多达18路的PWM输出,其中有6路为TI特有的更高精度的ePWM输出,12位16通道ADC。能够快速实时地实现各种数字信号信息的采集和处理,可以很方便完成数字控制算法的计算。
2、如图1所示,为三相T型三电平并网变流器主电路拓扑,其中vdc为直流电压,C1与C2为直流母线电容,ua、ub、uc分别为以母线电容中点O为参考点的三相变流器各桥臂输出的电压,La、Lb、Lc为逆变器侧滤波电感,C为滤波电容,Rd为阻尼电阻,ia、ib、ic分别为流入逆变器的各相交流电流,iga、igb、igc为从电网流出的各相交流电流,Lg为网侧电感,uga、ugb、ugc是以中性点N为参考点的电网的各相电压。
3、如图1所示,以a相为例,变流器输出a相电压ua(以母线电容中点O为参考)根据开关状态可输出三种电平分别为:正电平+Vdc/2用P来表示,零电平用0来表示,负电平-Vdc/2用N来表示,具体的各开关管的开关状态与对应输出的电压如下表所示:
表1 a相开关状态表
可见三电平三相变流器中各个相都有3个开关状态,那么三相会产生27个开关状态组合,可以通过abc三相静止坐标系转换至αβ两相静止坐标系推出矢量图,如图2所示。
为方便计算,取变换矩阵为:
T abc / αβ = 1 - 1 2 - 1 2 0 3 2 - 3 2 - - - ( 1 )
以T型三电平输出状态PPN为例,此时三相分别输出用矢量表示为[+Vdc/2,+Vdc/2,-Vdc/2],经过式(1)矩阵变换可得,在αβ两相静止坐标系上的矢量表示:
V α V β = 1 - 1 2 - 1 2 0 3 2 - 3 2 V dc / 2 V dc / 2 - V dc / 2 = V dc / 2 3 V dc / 2 - - - ( 2 )
可知此矢量的模为:
V α 2 + V β 2 = V dc - - - ( 3 )
根据27个矢量模的大小,可以将矢量进行分类,如下表所示:
表2 矢量分类表
如图2 T型三电平空间矢量图,将整个αβ两相静止坐标系平面分为6个大的扇区,并依照逆时针方向将六个大扇区标记成Ⅲ、Ⅰ、Ⅴ、Ⅳ、Ⅵ、Ⅱ区。
4 SVPWM具体调制算法如下:
4.1 首先判断参考电压矢量所在的大扇区。
由变换矩阵(1)可知若由αβ两相静止坐标系转换至abc三相静止坐标系的矩阵为:
T αβ / abc = 2 3 1 0 - 1 2 3 2 - 1 2 - 3 2 - - - ( 4 )
首先根据矩阵(4)对参考矢量[Vrefα Vrefβ]进行如下变换:
u a = v refβ u b = 1 / 2 ( 3 v refα - v refβ ) u c = 1 / 2 ( - 3 v refα - v refβ ) - - - ( 5 )
可根据ua,ub,uc的极性来确定参考矢量所在的大扇区,取A,B,C三个变量,有如下规定:
(1)如果ua>0,则A=1,否则A=0;
(2)如果ub>0,则B=1,否则B=0;
(3)如果uc>0,则C=1,否则C=0。
则可以确定大扇区号N=A+2B+4C。
4.2 从图2 T型三电平空间矢量图可以看出电压矢量的分布具有对称性,因此为尽量的简化计算可通过对称和旋转变换将处于Ⅰ、Ⅱ、Ⅳ、Ⅴ、Ⅵ扇区的矢量变换到第Ⅲ扇区,具体做法如下表所示。
表3 线性变换表格
4.3 判断矢量所在的小区域
如图3所示为第Ⅲ扇区分布图,可分为四个小区域,A区(包括A1和A2),B区(包括B1和B2),C区以及D区,矢量Vref’=[Vrefα’ Vrefβ’]为参考矢量,ta,tb,tc为相应的矢量分配时间。
表4 小区域判断条件
4.4 确定各矢量的时间分配及发送顺序
Ts为开关周期,如图3,可对C区进行分析,按照伏秒平衡的原理,可确定相应的矢量分配时间有:
可得
t a = ( 2 - v , refα - 3 3 v , refβ ) · 2 T s V dc t b = 2 3 v , refβ · 2 T s V dc t c = ( v , refα - 3 3 v , refβ - 1 ) · 2 T s V dc - - - ( 7 )
同理可以求出其他小扇区的矢量分配时间如表5所示。
表5 矢量时间分配
如图3以第Ⅲ扇区为例,基本矢量V0(PPP/000/NNN),V1(P00/0NN),V2(PP0/00N),V7(PNN),V8(P0N),V9(PPN)。通常在合成矢量时,选用参考矢量终点所在的小区域的三个顶点上的基本电压矢量来合成,可使变流器侧输出电压的谐波尽量减少。比如,若落在A区则选择基本矢量V0、V1、V2,若落在B区则选择基本矢量V1、V2、V8,若落在C区则选择基本矢量V1、V7、V8,若落在D区则选择基本矢量V2、V8、V9。则在第Ⅲ扇区内的矢量发送顺序如下表所示。
表6 矢量发送顺序
区域 发送顺序
A1 PP0-P00-000-00N-000-P00-PP0
A2 P00-000-00N-0NN-00N-000-P00
B1 PP0-P00-P0N-00N-P0N-P00-PP0
B2 P00-P0N-00N-0NN-00N-P0N-P00
C P00-P0N-PNN-0NN-PNN-P0N-P00
D PP0-PPN-P0N-00N-P0N-PPN-PP0
在其它大扇区中,计算矢量分配时间可参考表5即可,具体的矢量发送顺序,可根据相对应的矢量参考表6进行相应的调整即可。
5、定义开关切换时间
以第Ⅲ扇区为参考,可将第Ⅲ扇区分为两部分,以α轴正方向为参考,一部分为0度到30度区域,一部分为30度到60度区域,其中Ta,Tb,Tc为切换点。
当矢量处于0度到30度之间时:
T a = t a / 4 T b = T a + t b / 2 T c = T b + t c / 2 - - - ( 8 )
当矢量处于30度到60度之间时:
T a = t c / 4 T b = T a + t a / 2 T c = T b + t b / 2 - - - ( 9 )
在DSP数字化控制中,装载到DSP事件管理器的比较寄存器的值为:(其中PWMPR为周期寄存器的值)
CMPR a = T a T s / 2 · PWMPR CMPR b = T b T s / 2 · PWMPR CMPR c = T c T s / 2 · PWMPR - - - ( 10 )
当矢量处于0度到30度之间时:
D 1 = CMPR a = T a T s / 2 · PWMPR = t a / 4 T s / 2 · PWMPR D 2 = CMPR b = T b T s / 2 · PWMPR = t b / 2 T s / 2 · PWMPR + D 1 D 3 = CMPR c = T c T s / 2 · PWMPR = t c / 2 T s / 2 · PWMPR + D 2 - - - ( 11 )
当矢量处于30度到60度之间时:
D 4 = CMPR a = T a T s / 2 · PWMPR = t c / 4 T s / 2 · PWMPR D 5 = CMPR b = T b T s / 2 · PWMPR = t a / 2 T s / 2 · PWMPR + D 4 D 6 = CMPR c = T c T s / 2 · PWMPR = t b / 2 T s / 2 · PWMPR + D 5 - - - ( 12 )
仍以第Ⅲ扇区为例,由此可以得到不同小区域内的装载到DSP事件管理器比较寄存器的值。其中CMPR(Ta1)表示为驱动Ta1管的比较寄存器的值,CMPR(Ta2)表示为驱动Ta2管的比较寄存器的值,CMPR(Tb1)表示为驱动Tb1管的比较寄存器的值,CMPR(Tb2)表示为驱动Tb2管的比较寄存器的值,CMPR(Tc1)表示为驱动Tc1管的比较寄存器的值,CMPR(Tc2)表示为驱动Tc2管的比较寄存器的值,
A区:30到60度:CMPR(Ta1)=D5,CMPR(Ta2)=PWMPR,CMPR(Tb1)=D4,CMPR(Tb2)=PWMPR,CMPR(Tc1)=0,CMPR(Tc2)=D6
0到30度:CMPR(Ta1)=D1,CMPR(Ta2)=PWMPR,CMPR(Tb1)=D3,CMPR(Tb2)=PWMPR,CMPR(Tc1)=0,CMPR(Tc2)=D2
B区:30到60度:CMPR(Ta1)=D6,CMPR(Ta2)=PWMPR,CMPR(Tb1)=D4,CMPR(Tb2)=PWMPR,CMPR(Tc1)=0,CMPR(Tc2)=D5
0到30度:CMPR(Ta1)=D2,CMPR(Ta2)=PWMPR,CMPR(Tb1)=0,CMPR(Tb2)=D3,CMPR(Tc1)=0,CMPR(Tc2)=D1
C区:CMPR(Ta1)=D3,CMPR(Ta2)=PWMPR,CMPR(Tb1)=0,CMPR(Tb2)=D2,CMPR(Tc1)=0,CMPR(Tc2)=D1
D区:CMPR(Ta1)=D6,CMPR(Ta2)=PWMPR,CMPR(Tb1)=D5,CMPR(Tb2)=PWMPR,CMPR(Tc1)=0,CMPR(Tc2)=D4
以第Ⅲ扇区C区为例,如图4所示。
其中短矢量V1(P00/0NN)的持续时间ta,ta1与ta2分别为小矢量P00和0NN的分配时间,且ta1+ta2=ta,ta1、ta2的分配关系将用于控制电容中点电位平衡,在不考虑中点电位不平衡时,有ta1=ta2=ta/2。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的执行步骤,能够以基于DSP硬件、计算机软件以及二者的结合来实现,专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明并不局限于上述特定实施例,在不脱离本发明精神及其实质情况下,本领域的普通技术人员可根据本发明做出各种相应改变和变形,这些相应对本发明进行的修改或者等同替换,其均应涵盖在本发明的权利要求保护的范围当中。

Claims (7)

1.一种能量转换系统中的T型三电平SVPWM的控制方法,其特征在于,该方法包括以下步骤: 
步骤一、三电平三相变流器中每相都有3个开关状态,三相27个开关状态组合通过abc三相静止坐标系转换至αβ两相静止坐标系,并得出T型三电平空间矢量图,根据27个矢量模的大小,可以将矢量进行分类; 
步骤二、将整个αβ两相静止坐标系平面分为6个大的扇区; 
步骤三、判断参考矢量[Vrefα Vrefβ]所在的大扇区; 
步骤四、通过对称和旋转变换将处于Ⅰ、Ⅱ、Ⅳ、Ⅴ、Ⅵ扇区的矢量变换到第Ⅲ扇区; 
步骤五、判断变换后的矢量所在的第Ⅲ扇区小区域,所述小区域为别为A区、B区、C区和D区; 
步骤六、确定各矢量的时间分配及发送顺序。 
2.根据权利要求1所述的T型三电平SVPWM的控制方法,其特征在于:所述步骤一的开关状态可输出三种电平分别为:正电平+Vdc/2,零电平0、负电平-Vdc/2。 
3.根据权利要求1所述的T型三电平SVPWM的控制方法,其特征在于:所述T型三电平空间矢量图,将整个αβ两相静止坐标系平面分为6个大的扇区,并依照逆时针方向六个大扇区为Ⅲ区、Ⅰ区、Ⅴ区、Ⅳ区、Ⅵ区、Ⅱ区。 
4.根据权利要求1所述的T型三电平SVPWM的控制方法,其特征在于:所述步骤三先根据矩阵对参考矢量进行变换 并根据ua,ub,uc的极性确定参考矢量所在的大扇区N=A+2B+4C,其中A,B,C为变量,如果ua>0,则A=1,否则A=0;如果ub>0,则B=1,否则B=0;如果uc>0,则C=1,否则C=0。 
5.根据权利要求1所述的T型三电平SVPWM的控制方法,其特征在于:所述 步骤五中,第Ⅰ扇区变换为第Ⅲ扇区以为反射轴做反射变换, 第Ⅴ扇区变换为第Ⅲ扇区顺时针旋转120°, 第Ⅳ扇区变换为第Ⅲ扇区以为反射轴做反射变换,第Ⅵ扇区变换为第Ⅲ扇区逆时针旋转120°,以α轴为反射轴做反射变换,
6.根据权利要求1所述的T型三电平SVPWM的控制方法,其特征在于:所述步骤六,如果矢量则为小区域A区,如果则为小区域C区,如果则为小区域D区,其他情况为B区。 
7.根据权利要求1所述的T型三电平SVPWM的控制方法,其特征在于:所述步骤七在合成矢量时,选用参考矢量终点所在的小区域的三个顶点上的基本电压矢量来合成,若落在A区则选择基本矢量V0、V1、V2,若落在B区则选择基本矢量V1、V2、V8,若落在C区则选择基本矢量V1、V7、V8,若落在D区则选择基本矢量V2、V8、V9。 
CN201410442890.1A 2014-09-02 2014-09-02 能量转换系统中的t型三电平svpwm的控制方法 Active CN104300817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410442890.1A CN104300817B (zh) 2014-09-02 2014-09-02 能量转换系统中的t型三电平svpwm的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410442890.1A CN104300817B (zh) 2014-09-02 2014-09-02 能量转换系统中的t型三电平svpwm的控制方法

Publications (2)

Publication Number Publication Date
CN104300817A true CN104300817A (zh) 2015-01-21
CN104300817B CN104300817B (zh) 2017-04-05

Family

ID=52320433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410442890.1A Active CN104300817B (zh) 2014-09-02 2014-09-02 能量转换系统中的t型三电平svpwm的控制方法

Country Status (1)

Country Link
CN (1) CN104300817B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712557A (zh) * 2017-02-15 2017-05-24 华南理工大学 一种基于合成中矢量的t型三电平逆变器中点电位平衡方法
CN106787887A (zh) * 2016-12-12 2017-05-31 华南理工大学 一种三电平t型逆变器高功率因数时的中点电位平衡方法
CN107196536A (zh) * 2017-05-03 2017-09-22 浙江大学 一种具有中点平衡和共模电压抑制能力的三电平svpwm方法
CN108599605A (zh) * 2018-05-14 2018-09-28 华南理工大学 基于两矢量合成的三电平逆变器模型预测功率控制方法
CN109302093A (zh) * 2017-07-24 2019-02-01 深圳市德朗能电子科技有限公司 逆变器的控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340156B (zh) * 2008-08-07 2010-12-29 株洲南车时代电气股份有限公司 一种三电平空间矢量的调制方法及系统
CN103138619B (zh) * 2011-12-01 2016-12-21 苏州欧姆尼克新能源科技有限公司 一种用于三相三电平光伏并网逆变器的零序分量注入抑制中点电位波动方法
CN102522910B (zh) * 2011-12-14 2014-01-08 西安理工大学 用于三相并网逆变器的混合式svpwm控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787887A (zh) * 2016-12-12 2017-05-31 华南理工大学 一种三电平t型逆变器高功率因数时的中点电位平衡方法
CN106787887B (zh) * 2016-12-12 2019-01-29 华南理工大学 一种三电平t型逆变器高功率因数时的中点电位平衡方法
CN106712557A (zh) * 2017-02-15 2017-05-24 华南理工大学 一种基于合成中矢量的t型三电平逆变器中点电位平衡方法
CN106712557B (zh) * 2017-02-15 2019-05-14 华南理工大学 一种基于合成中矢量的t型三电平逆变器中点电位平衡方法
CN107196536A (zh) * 2017-05-03 2017-09-22 浙江大学 一种具有中点平衡和共模电压抑制能力的三电平svpwm方法
CN109302093A (zh) * 2017-07-24 2019-02-01 深圳市德朗能电子科技有限公司 逆变器的控制方法
CN108599605A (zh) * 2018-05-14 2018-09-28 华南理工大学 基于两矢量合成的三电平逆变器模型预测功率控制方法

Also Published As

Publication number Publication date
CN104300817B (zh) 2017-04-05

Similar Documents

Publication Publication Date Title
Gu et al. High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems
Babaei et al. Cascaded multilevel inverter using sub-multilevel cells
Wang et al. Diode-free T-type three-level neutral-point-clamped inverter for low-voltage renewable energy system
CN104158212B (zh) 一种多电平光伏发电系统拓扑结构及其控制方法
Li et al. Loss calculation method and loss characteristic analysis of MMC based VSC-HVDC system
JPWO2015105081A1 (ja) 電力変換装置及び三相交流電源装置
CN109586590B (zh) 用于电流源型变流器的多功能空间矢量调制方法
CN104300817A (zh) 能量转换系统中的t型三电平svpwm的控制方法
Schettino et al. Simulation and experimental validation of multicarrier PWM techniques for three-phase five-level cascaded H-bridge with FPGA controller
CN103227580B (zh) 一种三电平变频器控制方法
CN108599604B (zh) 一种单相七电平逆变电器及其pwm信号调制方法
CN105226982A (zh) 一种基于中点电流的三电平npc逆变器中点电位均衡控制方法
Nathan et al. The 27-level multilevel inverter for solar PV applications
Gopalakrishnan et al. Space vector based modulation scheme for reducing capacitor RMS current in three-level diode-clamped inverter
Hao et al. A new interleaved three-level boost converter and neutral-point potential balancing
Kumar et al. A modified PWM Scheme to improve AC power quality for MLIs using PV Source
Kumar et al. A hybrid gan+ si based cascaded h-bridge multi-level inverter and pwm scheme for improved efficiency
Chen et al. A new modulation technique to reduce leakage current without compromising modulation index in PV systems
Jalilzadeh et al. Analytical study and simulation of a transformer-less photovoltaic grid-connected inverter with a delta-type tri-direction clamping cell for leakage current elimination
Golwala et al. Simulation of three-phase four-wire shunt active power filter using novel switching technique
Wang et al. Modified carrier phase-shifted SPWM for a hybrid modular multilevel converter with HBSMs and FBSMs
Farokhnia et al. Closed form line to line voltage THD of the cascade multilevel inverter including device voltage drops
Ji et al. A new topology for a single phase 21 level multi level inverter using reduced number of switches
Harish et al. Three phase multi level inverter for high power applications
Kumar et al. A novel hardware and pwm scheme for modular multilevel converter using wide band gap devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190520

Address after: 230000 B-1512, west of Ganquan Road, Shushan District, Hefei, Anhui.

Patentee after: Anhui Eagle Dragon Industrial Design Co., Ltd.

Address before: 241200 No. 17 Zhanghe Road, National High-tech Industrial Development Zone, Yijiang District, Wuhu City, Anhui Province

Patentee before: ANHUI LIGHT ENERGY TECHNOLOGY RESEARCH INSTITUTE CO., LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190925

Address after: 314000 Zhouquan Town Industrial Park, Tongxiang City, Jiaxing City, Zhejiang Province

Patentee after: Jiaxing Shuju Textile Co., Ltd.

Address before: Ganquan road Shushan District of Hefei City, Anhui Province, 230000 West hillock road to the South Wild Garden commercial office building room B-1512

Patentee before: Anhui Eagle Dragon Industrial Design Co., Ltd.

TR01 Transfer of patent right