CN104289173A - 一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用 - Google Patents

一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用 Download PDF

Info

Publication number
CN104289173A
CN104289173A CN201410524029.XA CN201410524029A CN104289173A CN 104289173 A CN104289173 A CN 104289173A CN 201410524029 A CN201410524029 A CN 201410524029A CN 104289173 A CN104289173 A CN 104289173A
Authority
CN
China
Prior art keywords
lithium
calcium carbonate
nano
lithium salts
presoma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410524029.XA
Other languages
English (en)
Other versions
CN104289173B (zh
Inventor
吴素芳
卢尚青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410524029.XA priority Critical patent/CN104289173B/zh
Publication of CN104289173A publication Critical patent/CN104289173A/zh
Application granted granted Critical
Publication of CN104289173B publication Critical patent/CN104289173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/046Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,按质量百分比计,组成为:纳米碳酸钙70~99%;锂盐1~30%;所述的锂盐为硫酸锂、碳酸锂、氯化锂、硅酸锂、铝酸锂中的至少一种。还公开了由所述的锂盐掺合纳米氧化钙基吸附剂前驱体在制备吸附剂中的应用,将所述的锂盐与水混合,搅拌溶解得到锂盐溶液,再将纳米碳酸钙与锂盐溶液混合,分散均匀后滴加铝溶胶,反应后经过滤、干燥得到锂盐掺合纳米CaO基吸附剂。通过在纳米CaCO3中掺合锂盐,可以大幅降低纳米CaO基吸附剂前驱体的最终分解温度,且经历多次循环后最终分解温度降低并稳定,同时具有较高的吸附容量及吸附容量的稳定性。

Description

一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用
技术领域
本发明涉及钙基吸附剂的制备领域,特别涉及一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用。
背景技术
CaO在一定温度下与CO2反应成为CaCO3(称为反应吸附),在更高温度下CaCO3受热分解为CaO并放出CO2(称为再生),称为钙循环。实现钙循环过程需要以CaO为主要成分的CaO基CO2吸附剂,CaO基CO2吸附剂经历反应吸附-再生的钙循环,在CO2脱除和转化等过程,如节能减排的吸附强化甲烷蒸汽重整制氢、烟气脱二氧化碳、以及其它利用钙循环的热量转换过程都有重要的应用背景。
然而目前限制钙循环工业应用的主要问题是再生过程CaCO3煅烧温度较高。工业上为900~1000℃,如此高的煅烧温度使得吸附剂再生能耗大,而且更重要的是导致CaO的烧结十分严重,影响了CaO基CO2吸附剂在钙循环利用中性质的稳定性。因此降低CaCO3的分解温度的研究具有重要的研究和实用意义。
已有的降低CaCO3的分解温度的研究,大多是以微米级碳酸钙为原料的。
侯贵华等(侯贵华,沈晓冬,许仲梓,论氧化铜对碳酸钙热分解动力学过程的影响.JOURNAL OF THE CHINESE CERAMICSOCIETY,2005.33(1))以CuO为添加剂,研究了其对CaCO3分解温度的影响。通过实验发现,在CaCO3试样(平均粒径为30.48μm)中机械混合掺入1%(质量分数)的CuO,能使CaCO3的起始分解温度和最终分解温度分别降低12℃和13℃,并且分解活化能亦降低了10kJ/mol。该研究虽然发现CuO的存在能降低CaCO3的分解温度,但其降幅并不是很大,而且其研究主要用于水泥熟料的生产,需要的是一次煅烧中降低分解温度的效果,并未考虑钙循环过程循环使用中的分解温度的影响。
余兆男等(余兆南,碳酸钙分解的试验研究.热能动力工程,1997.12(4):第278-280页.)研究了添加质量分数为2%的NaCl、Na2CO3、K2CO3等化合物对CaCO3分解的影响,并根据实验结果得出:Fe、K、Na等杂质的存在对CaCO3的分解有影响,其中添加K、Na化合物能加快其分解速率,降低分解温度。但其研究中所用CaCO3为微米CaCO3(平均粒径在40-50微米间),而且只研究了CaCO3初次分解过程的特性,未深入研究K、Na等化合物的存在对其循环分解温度的影响。
王成毓等(王成毓,功能性纳米碳酸钙的仿生合成及表征[D],2007,吉林大学)进行了纳米CaCO3的仿生合成研究,主要考察了在不用有机质存在氛围下的纳米CaCO3合成技术及产品特定,研究的有机质包括有机磷酸酯、油酸、硬脂酸钠、甜菜碱和聚丙烯酰胺等,其中发现有机磷酸酯对CaCO3分解温度有较为显著的影响。在十八醇磷酸酯存在下,往Ca(OH)2悬浮溶液中通入CO2,将沉淀过滤干燥后即得到纺锤状纳米CaCO3颗粒。在TGA上对两种碳酸钙进行测试表征,发现,与未加十八醇磷酸酯相比,其平均分解温度降低了约30℃。
目前国内外对降低CaCO3再生温度的研究较少,而且,研究都以微米级CaCO3为基础。而且研究仅限于考察了这些物质对CaCO3初次分解温度的影响。
采用纳米CaCO3作为CaO基CO2吸附剂是一个重要的改进。纳米CaCO3的分解温度可以降低到750-800℃。岳林海等(岳林海,水淼,徐铸德.超细碳酸钙微晶结构与热分解特性[J].高等学校化学学报.Vol.21No.101555-1559)研究了平均粒径为40nm的纳米级粒径超细CaCO3起始分解温度比与粒径为5μm-20μm的微米级CaCO3的分解温度低。吴素芳等(Wu,S.,Q.Li,et al.(2008)."Properties of a nano CaO/Al2O3CO2sorbent."Ind.Eng.Chem.Res 47(1):180-184.)比较70纳米的CaCO3和5微米的CaCO3的分解温度,发现70纳米CaCO3起始和最终分解温度都比5微米的下降大约50℃。
然而,继续降低纳米CaO基CO2吸附剂的分解温度是比较难的,而且同时兼顾纳米CaO基CO2吸附剂的稳定性和分解温度低等重要性质更是难上加难,也没有相应的研究报道。
发明内容
本发明提供了一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,及制备的CaO基CO2吸附剂。通过在纳米CaCO3中掺合锂盐,可以大幅降低CaO基CO2吸附剂前驱体的最终分解温度,且经历多次循环后最终分解温度降低并稳定,同时具有较高的吸附容量及吸附容量的稳定性。
一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,按质量百分比计,组成为:
纳米碳酸钙  70~99%;
锂盐        1~30%;
所述的锂盐为硫酸锂、碳酸锂、氯化锂、硅酸锂、铝酸锂中的至少一种。
作为优选,所述锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体中,所述的锂盐为硫酸锂,质量百分比为1~20%。进一步优选,所述硫酸锂的质量百分比为2~13%,此时Li2SO4掺合纳米CaCO3后,获得的Li2SO4掺合纳米CaO基CO2吸附剂前驱体的最终分解温度(所谓最终分解温度即根据分解曲线中的转折点定义,换而言之,即物质质量几乎不随温度的改变而改变)由原来的742℃(纯纳米CaO基吸附剂前驱体)降为720~725℃,且具有较高的吸附容量,32次循环后的稳定吸附容量为4.16~5.41mol/kg吸附剂,同时最终分解温度和吸附容量的循环稳定性均有所提升,其中稳定性极佳。
作为优选,所述锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体中,所述的锂盐为Li2SO4和Li2CO3,总质量百分比为10~30%,Li2SO4和Li2CO3的质量比为1~5。此时,所述锂盐掺合纳米CaO基吸附剂前驱体的最终分解温度为713~726℃,吸附容量为2.81~3.45mol/kg吸附剂,且稳定性较优。
作为优选,所述锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体中,所述的锂盐为氯化锂,质量百分比为1~8%。此时所述锂盐掺合纳米CaO基吸附剂前驱体的最终分解温度为675~695℃,吸附容量为2.25~3.08mol/kg吸附剂,且稳定性有所提高。
作为优选,所述锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体中,所述的锂盐为硅酸锂,质量百分比为2~10%。此时所述锂盐掺合纳米CaO基吸附剂前驱体的最终分解温度为693~712℃,吸附容量为1.32~1.78mol/kg吸附剂,且稳定性略有提高。
作为优选,所述锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体中,所述的锂盐为铝酸锂,质量百分比为5~15%。此时所述锂盐掺合纳米CaO基吸附剂前驱体的最终分解温度为696~714℃,吸附容量为1.23~1.57mol/kg吸附剂,且稳定性略有提高。
一种锂盐掺合纳米CaO基吸附剂前驱体的制备方法,包括如下步骤:
首先将锂盐与蒸馏水混合,搅拌溶解得到锂盐溶液;再将纳米碳酸钙与锂盐溶液混合,分散均匀;最后经干燥得到锂盐掺合纳米CaO基吸附剂前驱体。
所述锂盐溶液的浓度为0.0017~0.015g/ml。
一种根据所述的锂盐掺合纳米氧化钙基吸附剂前驱体在制备吸附剂中的应用,步骤如下:
将所述的锂盐与水混合,搅拌溶解得到锂盐溶液,再将纳米碳酸钙与锂盐溶液混合,分散均匀后滴加铝溶胶,反应后经过滤、干燥得到锂盐掺合纳米CaO基吸附剂。
以硫酸锂掺合纳米CaO基吸附剂的制备为例,具体为:
(1)锂盐溶液的配置:称取一定量的硫酸锂,将其置于蒸馏水中,搅拌溶解,得到硫酸锂溶液;
(2)改性纳米碳酸钙制备:称取一定量的纳米碳酸钙,加入至硫酸锂溶液中,搅拌,搅拌并置于超声分散仪中分散一段时间,得到纳米碳酸钙浆液,不断滴加铝溶胶,并持续搅拌,反应一段时间后,置于干燥器中干燥,干燥过程中需不断搅拌,即可得到硫酸锂掺合纳米CaO基吸附剂。
附图说明
图1为本发明的锂盐掺合纳米CaO基CO2吸附剂前驱体的制备过程示意图,图中,矩形代表纳米碳酸钙,三角形代表锂盐;
图2为实施例2制备的锂盐掺合纳米CaO基CO2吸附剂前驱体的透射电镜图;
图3为实施例2制备的锂盐掺合纳米CaO基CO2吸附剂前驱体的扫描电镜图;
图4为实施例2制备的锂盐掺合纳米CaO基CO2吸附剂前驱体的EDS能谱图;
图5为实施例2制备的锂盐掺合的纳米CaO基CO2吸附剂前驱体与纳米碳酸钙的第一次循环分解温度曲线;
图6为实施例2制备的锂盐掺合的纳米CaO基CO2吸附剂前驱体的循环吸附容量曲线;
图7为实施例2制备的锂盐掺合纳米CaO基CO2吸附剂前驱体的孔径分布图。
具体实施方式
实施例1
1、称取0.10g硫酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硫酸锂溶液;
2、称取10.00g纳米碳酸钙,加入至硫酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硫酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例2
1、称取0.5g硫酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硫酸锂溶液;
2、称取10.00g纳米碳酸钙,加入至硫酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硫酸锂掺合纳米CaO基CO2吸附剂前驱体。
图7为本实施例制备的锂盐掺合纳米CaO基吸附剂前驱体的孔径分布图,从图中可知,改性前后纳米碳酸钙的孔径分布基本不变,但大孔孔径在原有基础上略有减小,可以认为是锂盐沉积所致。
实施例3
1、称取2.0g硫酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硫酸锂溶液;
2、称取10.00g纳米碳酸钙,加入至硫酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硫酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例4
1、称取0.5g碳酸锂和0.5g硫酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硫酸锂和碳酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至锂盐混合溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硫酸锂和碳酸锂混合掺合纳米CaO基CO2吸附剂前驱体。
实施例5
1、称取0.5g碳酸锂和2.0g硫酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硫酸锂和碳酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至锂盐混合溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硫酸锂和碳酸锂混合掺合纳米CaO基CO2吸附剂前驱体。
实施例6
1、称取0.5g碳酸锂和2.5g硫酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硫酸锂和碳酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至锂盐混合溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硫酸锂和碳酸锂混合掺合纳米CaO基CO2吸附剂前驱体。
实施例7
1、称取0.1g氯化锂,溶于150mL蒸馏水中,搅拌溶解,得到氯化锂溶液;
2、称取10.00g纳米碳酸钙,加入至氯化锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得氯化锂掺合纳米CaO基CO2吸附剂前驱体。
实施例8
1、称取0.5g氯化锂,溶于150mL蒸馏水中,搅拌溶解,得到氯化锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至氯化锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得氯化锂掺合纳米CaO基CO2吸附剂前驱体。
实施例9
1、称取0.8g氯化锂,溶于150mL蒸馏水中,搅拌溶解,得到氯化锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至氯化锂溶液中,超声分散5min;3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得氯化锂掺合纳米CaO基CO2吸附剂前驱体。
实施例10
1、称取0.2g硅酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硅酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至硅酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硅酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例11
1、称取0.5g硅酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硅酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至硅酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硅酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例12
1、称取1.0g硅酸锂,溶于150mL蒸馏水中,搅拌溶解,得到硅酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至硅酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得硅酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例13
1、称取0.5g铝酸锂,溶于150mL蒸馏水中,搅拌溶解,得到铝酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至铝酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得铝酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例14
1、称取0.8g铝酸锂,溶于150mL蒸馏水中,搅拌溶解,得到铝酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至铝酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得铝酸锂掺合纳米CaO基CO2吸附剂前驱体。
实施例15
1、称取1.5g铝酸锂,溶于150mL蒸馏水中,搅拌溶解,得到铝酸锂混合溶液;
2、称取10.00g纳米碳酸钙,加入至铝酸锂溶液中,超声分散5min;
3、将超声分散后的浆液放于干燥器中搅拌干燥,即制得铝酸锂掺合纳米CaO基CO2吸附剂前驱体。
各实施例中制备得到的CaO基CO2吸附剂前驱体的最终分解温度和吸附容量结果见表1。
表1
应用例1
将10g实施例2获得的掺合纳米CaO基CO2吸附剂前驱体,加入水中分散,不断滴加2g铝溶胶,并持续搅拌3h时间后,将其蒸干,即可获得所需吸附剂。
应用例2
将10g实施例2获得的掺合纳米CaO基CO2吸附剂前驱体,加入水中分散,不断滴加5g铝溶胶,并持续搅拌3h时间后,将其蒸干,即可获得所需吸附剂。
应用例3
将10g实施例5获得的掺合纳米CaO基CO2吸附剂前驱体,加入水中分散,不断滴加2g铝溶胶,并持续搅拌3h时间后,将其蒸干,即可获得所需吸附剂。
应用例4
将10g实施例5获得的掺合纳米CaO基CO2吸附剂前驱体,加入水中分散,不断滴加5g铝溶胶,并持续搅拌3h时间后,将其蒸干,即可获得所需吸附剂。
各应用例中得到的吸附剂的最终分解温度和吸附容量结果见表2
表2

Claims (9)

1.一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,按质量百分比计,组成为:
纳米碳酸钙     70~99%;
锂盐           1~30%;
所述的锂盐为硫酸锂、碳酸锂、氯化锂、硅酸锂、铝酸锂中的至少一种。
2.根据权利要求1所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述前驱体中,所述的锂盐为硫酸锂,锂盐的质量百分比为1~20%。
3.根据权利要求2所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述硫酸锂的质量百分比为2~13%。
4.根据权利要求1所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述前驱体中,所述的锂盐为硫酸锂和碳酸锂,锂盐的质量百分比为10~30%。
5.根据权利要求4所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述硫酸锂和碳酸锂的质量比为1~5。
6.根据权利要求1所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述前驱体中,所述的锂盐为氯化锂,锂盐的质量百分比为1~8%。
7.根据权利要求1所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述前驱体中,所述的锂盐为硅酸锂,锂盐的质量百分比为2~10%。
8.根据权利要求1所述的锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体,其特征在于,所述前驱体中,所述的锂盐为铝酸锂,锂盐的质量百分比为5~15%。
9.一种根据权利要求1~8任一权利要求所述的前驱体在制备吸附剂中的应用,其特征在于,步骤如下:
将所述的锂盐与水混合,搅拌溶解得到锂盐溶液,再将纳米碳酸钙与锂盐溶液混合,分散均匀后滴加铝溶胶,反应后经过滤、干燥得到锂盐掺合纳米CaO基二氧化碳吸附剂。
CN201410524029.XA 2014-09-30 2014-09-30 一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用 Active CN104289173B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410524029.XA CN104289173B (zh) 2014-09-30 2014-09-30 一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410524029.XA CN104289173B (zh) 2014-09-30 2014-09-30 一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用

Publications (2)

Publication Number Publication Date
CN104289173A true CN104289173A (zh) 2015-01-21
CN104289173B CN104289173B (zh) 2016-11-23

Family

ID=52309260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410524029.XA Active CN104289173B (zh) 2014-09-30 2014-09-30 一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用

Country Status (1)

Country Link
CN (1) CN104289173B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108499515A (zh) * 2018-03-05 2018-09-07 昆明理工大学 一种掺杂型co2钙基吸附剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1935634A (zh) * 2006-09-21 2007-03-28 中国石油化工股份有限公司 采用循环流化床的吸附强化甲烷水蒸汽重整制氢工艺及装置
JP2011255376A (ja) * 2000-04-04 2011-12-22 Tosoh Corp 二酸化炭素の吸着分離方法
CN102674424A (zh) * 2012-04-28 2012-09-19 浙江大学 一种以废石膏为钙源制备纳米碳酸钙浆料的方法、产品及应用
CN102671618A (zh) * 2012-04-28 2012-09-19 浙江大学 一种用于循环流化床的微球纳米CaO基CO2吸附剂的制备方法、产品及应用
CN103429972A (zh) * 2011-03-02 2013-12-04 克莱米特威尔上市有限公司 纳米颗粒包覆的盐

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011255376A (ja) * 2000-04-04 2011-12-22 Tosoh Corp 二酸化炭素の吸着分離方法
CN1935634A (zh) * 2006-09-21 2007-03-28 中国石油化工股份有限公司 采用循环流化床的吸附强化甲烷水蒸汽重整制氢工艺及装置
CN103429972A (zh) * 2011-03-02 2013-12-04 克莱米特威尔上市有限公司 纳米颗粒包覆的盐
CN102674424A (zh) * 2012-04-28 2012-09-19 浙江大学 一种以废石膏为钙源制备纳米碳酸钙浆料的方法、产品及应用
CN102671618A (zh) * 2012-04-28 2012-09-19 浙江大学 一种用于循环流化床的微球纳米CaO基CO2吸附剂的制备方法、产品及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIN-MO HUANG ET AL.: ""Lithium carbonate enhancement of the calcination of calcium carbonate proposed extended-shell model"", 《THERMOCHIMICA ACTA》, vol. 118, 26 November 2001 (2001-11-26) *
SU F.WU ET AL.: ""Properties of a nano CaO/Al2O3 CO2 sorbent"", 《INDUUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH 》, vol. 47, 28 November 2007 (2007-11-28) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108499515A (zh) * 2018-03-05 2018-09-07 昆明理工大学 一种掺杂型co2钙基吸附剂的制备方法
CN108499515B (zh) * 2018-03-05 2021-01-05 昆明理工大学 一种掺杂型co2钙基吸附剂的制备方法

Also Published As

Publication number Publication date
CN104289173B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions
CN108328706B (zh) 一种mof衍生多孔碳/石墨烯复合电极材料的制备及应用
Luo et al. Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture
Wang et al. Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture
CN102674424B (zh) 一种以废石膏为钙源制备纳米碳酸钙浆料的方法、产品及应用
Wang et al. Synthesis of macroporous Li4SiO4 via a citric acid-based sol–gel route coupled with carbon coating and its CO2 chemisorption properties
CN103962087B (zh) 一种表面包覆改性的纳米氧化钙基co2吸附剂及其制备方法
Niu et al. Lithium orthosilicate with halloysite as silicon source for high temperature CO 2 capture
Xu et al. Improved preparation of electrospun MgO ceramic fibers with mesoporous structure and the adsorption properties for lead and cadmium
Du et al. Water-bathing synthesis of high-surface-area zeolite P from diatomite
Wu et al. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO
CN104383873A (zh) 利用低品位凹凸棒石黏土制备复合吸附剂的方法
Kim et al. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization
CN114272892B (zh) 一种co2捕集吸附剂及其制备方法和应用
Ge et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin
Xu et al. Efficient MgO-doped CaO sorbent pellets for high temperature CO 2 capture
Li et al. Synthesis of uniformly distributed magnesium oxide micro-/nanostructured materials with deep eutectic solvent for dye adsorption
Hu et al. Development of CaO-based sorbent doped with mineral rejects–bauxite-tailings in cyclic CO2 capture
CN103769045A (zh) 一种粉煤灰基高性能吸附材料的制备方法
Si et al. Simultaneous removal of nitrogen and phosphorus by magnesium-modified calcium silicate core-shell material in water
Sun et al. Magnetic mesoporous γ-Al2O3/ZnFe2O4 micro-bowls realizing enhanced adsorption, separation and recycle performance towards waste water
Guangyu et al. Facile fabrication of CeO2 hollow microspheres with yeast as bio-templates
Yue et al. Influence of additives on CaCO3 precursors and multicycle CO2 capture performance of CaO sorbents
Han et al. Enhancing phosphate removal from water by using ordered mesoporous silica loaded with samarium oxide
CN104289173A (zh) 一种锂盐掺合纳米碳酸钙的二氧化碳吸附剂前驱体及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant