CN104282804A - 一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法 - Google Patents

一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法 Download PDF

Info

Publication number
CN104282804A
CN104282804A CN201410326643.5A CN201410326643A CN104282804A CN 104282804 A CN104282804 A CN 104282804A CN 201410326643 A CN201410326643 A CN 201410326643A CN 104282804 A CN104282804 A CN 104282804A
Authority
CN
China
Prior art keywords
film
zinc
copper
tin
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410326643.5A
Other languages
English (en)
Other versions
CN104282804B (zh
Inventor
孟磊
徐娜
陈哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Institute of Chemical Technology
Original Assignee
Jilin Institute of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Institute of Chemical Technology filed Critical Jilin Institute of Chemical Technology
Priority to CN201410326643.5A priority Critical patent/CN104282804B/zh
Publication of CN104282804A publication Critical patent/CN104282804A/zh
Application granted granted Critical
Publication of CN104282804B publication Critical patent/CN104282804B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种通过二次硫化热处理改变化学配比的铜锌锡硫(Cu2ZnSnS4)薄膜的制备方法。其特征是采用铜锌锡硫单一靶材磁控溅射铜锌锡硫预制膜,对预制膜进行二次硫化热处理,得到贫铜富锌得优质铜锌锡硫薄膜。对应的带隙由1.42eV变为1.52eV。本方法工艺简单,成本低廉,操作方便,可重复性强,有助于铜锌锡硫吸收层的叠层太阳电池的产业化发展。

Description

一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法
技术领域
本发明涉及通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法,采用铜锌锡硫单一靶材磁控溅射铜锌锡硫预制膜,然后对预制膜进行二次硫化热处理来调节铜锌锡硫薄膜中Cu,Zn,Sn,S的相对含量,获得贫铜富锌的铜锌锡硫薄膜,属于薄膜太阳电池材料领域。
背景技术
铜锌锡硫是一种直接带隙化合物半导体,光学带隙约为1.5 eV,其吸收边高能侧吸收系数高达104 cm-1,被用于制备薄膜太阳电池的吸收层。铜锌锡硫作为吸收层,其元素配比是调控薄膜太阳电池光电转换效率的重要因素,而且,一般高转换效率的铜锌锡硫吸收层具有铜少锌多的特点。目前,铜锌锡硫的制备方法有很多,其中采用单一靶材溅射后硫化的方法具有工艺简单,稳定性,均匀性比较好的特点,有利于该类太阳能电池的产业化发展。但是,采用溅射后一次硫化的制备方法无法解决铜锌锡硫薄膜中锡的含量较多的问题,不符合铜少锌多的高效率吸收层的元素配比。而采用通过二次硫化对溅射后薄膜进行热处理,能有效地解决以上问题,达到贫铜富锌的目的。
发明内容
本发明的目的在于克服目前采用一次硫化的方法不能完全解决锡含量较多的问题。本发明采用二次硫化能进一步降低锡的含量,调节铜锌锡硫薄膜的元素配比从而达到贫铜富锌的目的。
本发明的目的是这样实施的:将单一铜锌锡硫靶材进行磁控溅射,衬底采用钠钙玻璃,衬底温度为500oC,溅射功率为60W,通入氩气前真空度为7×10-4Pa, 相同条件制备4个相同的铜锌锡硫预制膜(a),(b),(c),(d)。再对溅射好的预制铜锌锡硫薄膜(b),(c),(d)加入硫粉后进行真空封管。将封管后的铜锌锡硫薄膜(b),(c)进行一次高温快速硫化热处理,其中:薄膜(c)的保温时间为薄膜(b)的一倍。对铜锌锡硫薄膜(d)先进行低温缓慢硫化热处理后,再进行第二次高温快速硫化热处理。X射线能谱分析表明:磁控溅射后的铜锌锡硫薄膜(a)为贫铜富锡薄膜,进行一次高温快速硫化热处理的薄膜(b),(c):锡的含量有所下降,但仍然没有完全解决锡过量的问题,且延长保温时间没有能有效的进一步减少锡的含量。而进行二次硫化热处理的薄膜(d): 锡的含量大幅度的减少并最终形成 Cu/(Zn+Sn)=0.8, Zn/Sn=1.2的贫铜富锌优质薄膜,说明通过二次硫化热处理相对于一次硫化热处理能更有效地减少磁控溅射薄膜锡过量的问题。
本发明调控铜锌锡硫光学带隙的方法的优点是:
(1)工艺简单,可重复性高。
(2)对薄膜元素配比可调,便于进一步进行研究元素配比对器件转换效率的影响。
附图说明
(1)图1是工艺流程图。
(2)图2是制备的铜锌锡硫薄膜硫化前后的X光衍射图。
(3)图3是制备的铜锌锡硫薄膜硫化前后X射线能谱分析及化学配比。
(4)图4是制备的铜锌锡硫薄膜硫化前后的光学吸收谱图。
具体实施方式
实施例
将硫化亚铜,硫化锌,二硫化锡按照摩尔比1:1:1进行混合,采用玛瑙研钵进行研磨,时间为4h,将混合好的粉末进行高温热压,温度为700oC, 得到化学元素配比为2:1:1:4的铜锌锡硫单一靶材,采用射频磁控溅射在钠钙玻璃上溅射铜锌锡硫薄膜,工艺条件为:衬底温度:500oC, 氩气流速:30ccm, 溅射功率:60W,溅射压强:0.1Pa,溅射前真空度:7×10-4Pa.以相同溅射条件得到4个铜锌锡硫预制膜分别用(a),(b),(c),(d)表示。将薄膜(b),(c),(d)分别放入装有10mg硫粉的石英管中,进行真空封管。采用快速退火炉,先将装有薄膜(b)的石英管放于炉内,快速升温至550oC时,保温10min (升温速率为5oC/s),自然冷却。再将装有薄膜(c)的石英管以同样方法进行热处理,保温时间变为20min。最后将装有薄膜(d)的石英管放于炉内,当退火炉快速温度升至250oC后(升温速率为5oC/s),再将温度缓慢地升至380oC (升温速率为5oC/min),之后再快速将温度升至550oC(升温速率为5oC/s),保温10min,自然冷却。图2为磁控溅射薄膜与不同硫化热处理条件下铜锌锡硫薄膜的X光衍射图,其衍射峰均为铜锌锡硫相,未发现与杂质相关的第二相,说明获得的铜锌锡硫为单一相kesterite结构。比较预制膜(a),一次硫化薄膜(b)和二次硫化薄膜(d) (112) 衍射峰,其衍射峰依次向大角偏移,且半高宽依次变小,说明锡含量在逐渐减少,结晶程度不断提高。图3为磁控溅射与不同硫化热处理条件下铜锌锡硫薄膜的元素配比,磁控溅射后的薄膜(a)为贫铜富锡:Cu/(Zn+Sn)=0.7, Zn/Sn=0.8,薄膜(b)的化学配比为 Cu/(Zn+Sn)=0.93, Zn/Sn=1.1的薄膜。薄膜(c)的化学配比于薄膜(b)基本一致。说明延长保温时间不能有效的减少锡的含量。薄膜(d)的化学配比:Cu/(Zn+Sn)=0.8, Zn/Sn=1.2 为贫铜富锌优质的铜锌锡硫薄膜。图4为磁控溅射薄膜与不同硫化热处理条件下铜锌锡硫薄膜的光学吸收谱。硫化前的铜锌锡硫薄膜带隙为1.42eV(a), 一次硫化后薄膜带隙为1.48eV(b), 二次硫化后薄膜带隙为1.52eV(d),带隙依次变大且逐渐趋近于铜锌锡硫的理想的带隙大小,二次硫化后的薄膜斜率比一次硫化后的大,说明二次硫化的结晶程度相对提高与缺陷相对减少,这有利于转换效率的提高。

Claims (3)

1.一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法,其特征在于采用铜锌锡硫单一靶材进行磁控溅射,对溅射后的薄膜进行二次硫化热处理,将获得贫铜富锌的铜锌锡硫薄膜。
2.一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法,其特征在于Cu/(Zn+ Sn)=0.8, Zn/Sn=1.2,铜锌锡硫薄膜为锌黄锡矿(Kesterite)结构。
3.按照权利要求1所述的通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法,其特征在于通过对单一靶材磁控溅射的铜锌锡硫薄膜进行二次硫化能有效解决薄膜中锡过量的问题,二次流化后的铜锌锡硫的光学带隙在1.54eV左右。
CN201410326643.5A 2014-09-03 2014-09-03 一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法 Expired - Fee Related CN104282804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410326643.5A CN104282804B (zh) 2014-09-03 2014-09-03 一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410326643.5A CN104282804B (zh) 2014-09-03 2014-09-03 一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法

Publications (2)

Publication Number Publication Date
CN104282804A true CN104282804A (zh) 2015-01-14
CN104282804B CN104282804B (zh) 2017-07-11

Family

ID=52257497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410326643.5A Expired - Fee Related CN104282804B (zh) 2014-09-03 2014-09-03 一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法

Country Status (1)

Country Link
CN (1) CN104282804B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653898A (zh) * 2016-11-04 2017-05-10 中利腾晖光伏科技有限公司 一种czts太阳能电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339903A (zh) * 2011-07-26 2012-02-01 友达光电股份有限公司 形成光电转换层的方法
US20130037100A1 (en) * 2010-04-09 2013-02-14 Charlotte PLATZER BJÖRKMAN Thin Film Photovoltaic Solar Cells
CN103172378A (zh) * 2011-12-21 2013-06-26 北京有色金属研究总院 铜锌锡硫陶瓷靶材及其真空热压制备方法
CN103219420A (zh) * 2013-03-26 2013-07-24 无锡舒玛天科新能源技术有限公司 一种用四元素合金靶材制备铜锌锡硫薄膜的方法
CN103354252A (zh) * 2013-07-17 2013-10-16 深圳先进技术研究院 Czts太阳电池的pn结及czts太阳电池器件的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130037100A1 (en) * 2010-04-09 2013-02-14 Charlotte PLATZER BJÖRKMAN Thin Film Photovoltaic Solar Cells
CN102339903A (zh) * 2011-07-26 2012-02-01 友达光电股份有限公司 形成光电转换层的方法
CN103172378A (zh) * 2011-12-21 2013-06-26 北京有色金属研究总院 铜锌锡硫陶瓷靶材及其真空热压制备方法
CN103219420A (zh) * 2013-03-26 2013-07-24 无锡舒玛天科新能源技术有限公司 一种用四元素合金靶材制备铜锌锡硫薄膜的方法
CN103354252A (zh) * 2013-07-17 2013-10-16 深圳先进技术研究院 Czts太阳电池的pn结及czts太阳电池器件的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653898A (zh) * 2016-11-04 2017-05-10 中利腾晖光伏科技有限公司 一种czts太阳能电池

Also Published As

Publication number Publication date
CN104282804B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
Seol et al. Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process
CN100511729C (zh) 一种制备Cu2ZnSnS4半导体薄膜太阳能电池吸收层的工艺
Wang et al. The effect of sulfur vapor pressure on Cu2ZnSnS4 thin film growth for solar cells
CN105336800A (zh) Cigs基薄膜太阳能电池光吸收层的制备方法
CN106783541A (zh) 一种硒化亚锗多晶薄膜和含有该薄膜的太阳能电池及其制备方法
Tiwari et al. Cu2ZnSnS4 thin films by simple replacement reaction route for solar photovoltaic application
CN101101939A (zh) 一种制备Cu2ZnSnS4薄膜太阳能电池吸收层的工艺
CN103088301B (zh) 一种铜铟镓硒薄膜的硒化处理装置、方法及铜铟镓硒薄膜器件
Huang et al. The optimization of a Mo bilayer and its application in Cu (In, Ga) Se2 solar cells
CN106449816B (zh) 一种铜铟镓硒薄膜的制备方法
CN103219420B (zh) 一种用四元素合金靶材制备铜锌锡硫薄膜的方法
CN103602982A (zh) 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN103318851A (zh) 铜铟镓硫硒太阳能电池、薄膜吸收层及其制备方法
Shin et al. Growth of a High-quality Zn (S, O, OH) thin film via chemical bath deposition for Cd‐free Cu (In, Ga) Se2 solar cells
Lyu et al. Influences of sulfurization on performances of Cu (In, Ga)(Se, S) 2 cells fabricated based on the method of sputtering CIGSe quaternary target
CN106229362B (zh) 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
CN104282804A (zh) 一种通过二次硫化调节铜锌锡硫薄膜元素配比的制备方法
CN106449812B (zh) 溅射锡靶和硫化铜靶制备铜锡硫薄膜电池的方法
CN104051577B (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
CN104060235A (zh) 一种通过硒元素掺杂提高铜镉锡硫薄膜晶粒尺寸的制备方法
CN110349836A (zh) 一种一定禁带宽度硒化亚锗薄膜的制备方法
CN102943238A (zh) 一种薄膜太阳电池的制备方法
Chang et al. Growth of amorphous Zn–Sn–O thin films by RF sputtering for buffer layers of CuInSe2 and SnS solar cells
CN106637107A (zh) 一种Se/S比连续可调的Cu2ZnSn(S1-xSex)4薄膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170711

Termination date: 20180903

CF01 Termination of patent right due to non-payment of annual fee