CN104282560A - 级联堆叠纳米线mos晶体管制作方法 - Google Patents

级联堆叠纳米线mos晶体管制作方法 Download PDF

Info

Publication number
CN104282560A
CN104282560A CN201310274977.8A CN201310274977A CN104282560A CN 104282560 A CN104282560 A CN 104282560A CN 201310274977 A CN201310274977 A CN 201310274977A CN 104282560 A CN104282560 A CN 104282560A
Authority
CN
China
Prior art keywords
nano wire
stacking
etching
shape
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310274977.8A
Other languages
English (en)
Other versions
CN104282560B (zh
Inventor
殷华湘
马小龙
徐唯佳
徐秋霞
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201310274977.8A priority Critical patent/CN104282560B/zh
Priority to US14/387,830 priority patent/US10068990B2/en
Priority to PCT/CN2013/080893 priority patent/WO2015000205A1/zh
Publication of CN104282560A publication Critical patent/CN104282560A/zh
Application granted granted Critical
Publication of CN104282560B publication Critical patent/CN104282560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种堆叠纳米线MOS晶体管及其制作方法,包括:多个纳米线堆叠,在衬底上沿第一方向延伸;多个栅极堆叠,沿第二方向延伸并且跨越了每个纳米线堆叠;多个源漏区,位于每个栅极堆叠沿第二方向两侧;多个沟道区,由位于多个源漏区之间的纳米线堆叠构成;其中多个纳米线堆叠为级联的多个纳米线构成的堆叠。依照本发明的堆叠纳米线MOS晶体管及其制作方法,通过多次回刻、侧向刻蚀沟槽并填充,形成了质量良好的级联的纳米线堆叠,以较低的成本充分增大导电沟道有效宽度,并且提高了有效导电总截面面积,从而提高驱动电流。

Description

级联堆叠纳米线MOS晶体管制作方法
技术领域
本发明涉及一种半导体器件制造方法,特别是涉及一种新型的级联堆叠纳米线MOS晶体管制作方法。
背景技术
在当前的亚20nm技术中,三维多栅器件(FinFET或Tri-gate)是主要的器件结构,这种结构增强了栅极控制能力、抑制了漏电与短沟道效应。
例如,双栅SOI结构的MOSFET与传统的单栅体Si或者SOI MOSFET相比,能够抑制短沟道效应(SCE)以及漏致感应势垒降低(DIBL)效应,具有更低的结电容,能够实现沟道轻掺杂,可以通过设置金属栅极的功函数来调节阈值电压,能够得到约2倍的驱动电流,降低了对于有效栅氧厚度(EOT)的要求。而三栅器件与双栅器件相比,栅极包围了沟道区顶面以及两个侧面,栅极控制能力更强。进一步地,全环绕纳米线多栅器件更具有优势。
环栅纳米线器件虽然有更好的栅控作用,能更有效的控制短沟道效应,在亚14纳米技术的缩减过程中更具优势,但是一个关键问题是由于微小的导电沟道,在等效硅平面面积内不能提供更多的驱动电流。
例如,对于等效线宽1μm的器件而言,环栅纳米线器件的尺寸要满足:d*n+(n-1)*s=1μm,并且π*d*n>1μm。其中,d为单个纳米线(NW)的直径,n为纳米线的数目,s为纳米线之间的间距。因此,对于直径d分别为3、5、7、10nm的情形而言,纳米线间距s必须分别小于6.4、10.6、15、21.4nm。也即,如果要获得等同于体硅1um的栅宽,纳米线器件的平行排列要非常的紧密。依据现有的FinFET曝光和刻蚀技术(Fin间距在60纳米左右),制作这种极小间距的纳米线立体排列结构是很难实现的。
在垂直方向上实现堆叠环栅纳米线结构是提高晶体管驱动电流的有效方法,但在实现工艺(制作方法上)十分困难,与传统工艺兼容并减少工艺成本面临重大挑战。例如,一种现有的实现堆叠纳米线的是利用Si/SiGe多层异质外延并进行选择腐蚀,也即在埋氧层(BOX)上依次交替异质外延多个Si与SiGe的层叠,然后通过例如湿法腐蚀等方法选择性去除SiGe,从而留下Si纳米线的堆叠。这种方法严重受制于外延薄层质量的影响,极大的增加了工艺成本。另一方面,在单位footprint面积下,传统结构(纳米线堆叠之间有栅极填充,也即每个纳米线四周均被HK/MG的栅极堆叠环绕)的堆叠纳米线有效总电流较小,而在同一投影面积下,非堆叠纳米线的鳍片(翅片,Fin)的导通有效截面积(垂直于Fin或者纳米线延伸方向截得,也即垂直于沟道方向)更大。
因此,需要寻找一种充分增大导电沟道有效宽度提高驱动电流的新型纳米线器件结构及其制造方法。
发明内容
由上所述,本发明的目的在于克服上述技术困难,提出一种新型纳米线器件结构及其制造方法,充分增大导电沟道有效宽度从而提高驱动电流。
为此,本发明提供了一种堆叠纳米线MOS晶体管制作方法,包括:在衬底上形成沿第一方向延伸的多个鳍片;在每个鳍片中形成由多个纳米线级联构成的纳米线堆叠;在纳米线堆叠上形成沿第二方向延伸的栅极堆叠结构;在栅极堆叠结构两侧形成源漏区,源漏区之间的纳米线构成沟道区。
其中,在每个鳍片中形成由多个纳米线级联构成的纳米线堆叠的步骤进一步包括:步骤a,侧向刻蚀鳍片,在鳍片沿第二方向的侧面形成凹槽;步骤b,沉积保护层,填充凹槽;以及重复步骤a和步骤b,形成多个纳米线。
其中,相邻的纳米线在平行于衬底表面的平面内相切或者相交。其中,相邻的纳米线的相交部分的尺寸小于纳米线自身尺寸的5%。
其中,凹槽和/或纳米线截面的形状包括矩形、梯形、倒梯形、圆形、椭圆形、Σ形、D形、C形及其组合。
其中,侧向刻蚀鳍片的步骤包括具有横向刻蚀深度的各向同性的等离子体干法刻蚀,或者各向同性刻蚀与各向异性刻蚀的组合方法。
其中,侧向刻蚀鳍片的步骤包括利用不同晶向上选择腐蚀的湿法腐蚀方法。
其中,形成多个纳米线之后进一步包括:去除保护层,露出多个纳米线;对纳米线堆叠进行表面处理、圆化工艺。
其中,栅极堆叠结构为适用于后栅工艺的假栅极堆叠结构,并且形成源漏区之后进一步包括:沉积层间介质层;刻蚀去除假栅极堆叠结构,留下栅极沟槽;在栅极沟槽中沉积栅极堆叠结构。
本发明还提供了由上述方法制造的一种堆叠纳米线MOS晶体管,包括:多个纳米线堆叠,在衬底上沿第一方向延伸;多个栅极堆叠,沿第二方向延伸并且跨越了每个纳米线堆叠;多个源漏区,位于每个栅极堆叠沿第二方向两侧;多个沟道区,由位于多个源漏区之间的纳米线堆叠构成;其中多个纳米线堆叠为级联的多个纳米线构成的堆叠。
其中,相邻的纳米线在平行于衬底表面的平面内相切或者相交。
其中,相邻的纳米线的相交部分的尺寸小于纳米线自身尺寸的5%。
其中,纳米线截面的形状包括矩形、梯形、倒梯形、圆形、椭圆形、Σ形、D形、C形及其组合。
依照本发明的堆叠纳米线MOS晶体管及其制作方法,通过多次回刻、侧向刻蚀沟槽并填充,形成了质量良好的级联的纳米线堆叠,以较低的成本充分增大导电沟道有效宽度,并且提高了有效导电总截面面积,从而提高驱动电流。
附图说明
以下参照附图来详细说明本发明的技术方案,其中:
图1至图8为依照本发明的堆叠纳米线MOS晶体管制造方法各步骤的剖面示意图;以及
图9为依照本发明的FinFET器件结构的立体示意图。
具体实施方式
以下参照附图并结合示意性的实施例来详细说明本发明技术方案的特征及其技术效果,公开了充分增大导电沟道有效宽度从而提高驱动电流的堆叠纳米线MOS晶体管及其制造方法。需要指出的是,类似的附图标记表示类似的结构,本申请中所用的术语“第一”、“第二”、“上”、“下”等等可用于修饰各种器件结构或制造工序。这些修饰除非特别说明并非暗示所修饰器件结构或制造工序的空间、次序或层级关系。
图9所示为依照本发明制造的堆叠纳米线MOS晶体管的立体示意图,其中堆叠纳米线MOS晶体管,包括衬底上沿第一方向延伸的多个纳米线堆叠,沿第二方向延伸并且跨越了每个纳米线堆叠的多个金属栅极,沿第一方向延伸的纳米线堆叠两侧的多个源漏区,位于多个源漏区之间的纳米线堆叠构成的多个沟道区,其中金属栅极环绕沟道区。以下将先参照图1至图8来描述制造方法的各个剖视图,最后将回头进一步详细描述图9的器件结构。
特别地,以下某图的左部所示是沿图9中垂直于沟道方向(沿第二方向,也即X--X’轴)的剖视图,某图的右部所示是沿图9中平行于沟道方向(沿第一方向,也即Y--Y’方向)的剖视图。
参照图1,形成沿第一方向(图9中X--X’轴线)延伸的多个鳍片结构,其中第一方向为未来器件沟道区延伸方向。提供衬底1,衬底1依照器件用途需要而合理选择,可包括单晶体硅(Si)、单晶体锗(Ge)、应变硅(Strained Si)、锗硅(SiGe),或是化合物半导体材料,例如氮化镓(GaN)、砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb),以及碳基半导体例如石墨烯、SiC、碳纳管等等。出于与CMOS工艺兼容的考虑,衬底1优选地为体Si。光刻/刻蚀衬底1,在衬底1中形成多个沿第一方向平行分布的沟槽1G以及沟槽1G之间剩余的衬底1材料所构成的鳍片1F。沟槽1G的深宽比优选地大于5:1。优选地,在多个鳍片结构的顶部沉积硬掩模层HM,其材质可以是氧化硅、氮化硅、氮氧化硅及其组合,并且优选地为氮化硅。
参照图2,刻蚀每个鳍片结构1F,形成级联的纳米线堆叠1N1~1Nm。优选地,通过干法或者湿法刻蚀,以HM为掩模,沿垂直于第一方向的第二方向(图9中Y--Y’轴线)侧向刻蚀每个鳍片结构1F的侧面,在1F的侧面形成连续的向内(从1F的侧面表层垂直地朝向中心)凹陷1R,使得剩余的1F成为级联的纳米线堆叠,从上至下依次包括多个纳米线1N1、1N2……1Nm,其中m为大于1的自然数(依照器件性能需要,m可以选择为2~20)。相邻的纳米线1Ni与1Nj之间(i、j为不同的自然数)具有连接处,例如通过各自纳米线的顶点(纳米线截面为圆形时为两圆之间的切点,截面为矩形、菱形或其他多边形时为两者之间的重合顶点)相连,也即相邻的纳米线之间具有相互接触的切面。可选地,连接处依照刻蚀工艺不同也可以具有一定尺寸(沿第二方向),例如一定的厚度/高度/宽度(沿第一方向的长度与纳米线的长度相同),但是优选地连接处的厚度/高度/宽度小于纳米线自身最大尺寸(厚度/高度/宽度)的5%(从而在剖视图中示出为近似理想的切点),例如其尺寸仅为1nm量级或者更小。刻蚀1F形成纳米线1N堆叠的刻蚀工艺可以是各向同性的氟基或氯基等离子体干法刻蚀,或者TMAH湿法腐蚀,选择刻蚀温度等工艺参数以提高对于侧面的刻蚀。优选地,刻蚀工艺是反应离子刻蚀(RIE),刻蚀气体包括氟基或氯基气体,例如NF3、SF6、CF4、CH2F2、CH3F、CHF3、Cl2等及其组合。依照刻蚀工艺参数不同,可以控制凹进1R的形状为矩形、梯形、倒梯形、Σ形(多段折线相连)、C形(超过1/2曲面,曲面可以是圆面、椭圆面、双曲面)、D形(1/2曲面,曲面可以是圆面、椭圆面、双曲面),从而使得纳米线1N1~1Nm的截面为圆形、椭圆形、矩形、菱形、梯形、倒梯形、C形、D形、Σ形以及其他多边形或曲面。获得的纳米线堆叠中,最顶部(1N1)和最低部的纳米线(1Nm)可以是上述截面的一部分,例如半圆。
在本发明一个优选实施例中,刻蚀纳米线堆叠1N的工艺步骤具体包括:
沉积临时保护层(或者后续的STI2)并回刻露出部分鳍片。沿第一方向在鳍片1F顶部中侧向刻蚀形成第一凹槽(未示出),暴露出鳍片1F位于STI2上方的顶部(未来形成顶层沟道区的那部分)。第一凹槽的侧壁形状可以是矩形、梯形、倒梯形、Σ形(多段折线相连)、C形(超过1/2曲面,曲面可以是圆面、椭圆面、双曲面)、D形(1/2曲面,曲面可以是圆面、椭圆面、双曲面)。依照材料不同,刻蚀方法可以是氟基或氯基等离子体干法刻蚀,或者TMAH湿法腐蚀。
在整个器件上沉积第一保护层,其材质包括氧化硅、氮化硅、非晶硅、非晶锗、非晶碳等及其组合,优选地为以与保护层或者STI2材质相区别,从而避免后续刻蚀过程中被意外地去除。
各向异性刻蚀第一保护层,露出顶部纳米线以及STI2。各向异性刻蚀方法例如是碳氟氢基气体等离子刻蚀,并且调整刻蚀气体成分使得例如氧化硅的STI2基本不被刻蚀,而仅刻蚀氮化硅的第一保护层。
回刻STI2,暴露鳍片1F的中部。对于氧化硅材质的STI2,可以采用HF基腐蚀液湿法去除,也可以采用氟基等离子体各向异性干法刻蚀,向下刻蚀STI2以暴露出鳍片1F的中部,该中部将用作稍后器件的沟道区,具体为纳米线堆叠的中部层,最底部将被刻蚀而作为器件的隔离区。
随后,重复以上步骤,依次刻蚀形成第二凹槽、沉积第二保护层、各向异性刻蚀第二保护层、回刻STI2露出鳍片1F的中部、刻蚀形成第三凹槽、沉积第三保护层、各向异性刻蚀第三保护层……,最终形成图2所示的结构。优选地,进行表面处理、圆化等工艺,使得由干法刻蚀形成的纳米线1N1、1N2……1Nm等的剖面形态向圆形转变,以提高栅极、沟道区的对称度,从而提高器件性能的均匀性。表面处理、圆化等工艺例如是采用表面氧化后再湿法微腐蚀的方法,表面氧化工艺包括炉温氧化或者强氧化剂溶液氧化等。表面处理、圆化等工艺还可以选择氢气高温烘烤等。表面处理、圆化等工艺还可选择各向同性腐蚀硅等。
在本发明另一个优选实施例中,刻蚀纳米线堆叠1N的工艺步骤具体包括:
在鳍片顶部HM层的掩蔽下,先用高各向异性的刻蚀条件(例如含HBr较多、功率较大、气压低等)垂直刻蚀,并用聚合物(例如常用的低k材料)钝化硅材质鳍片的侧墙,然后用高各向同性的刻蚀条件(例如含HBr较少、含Cl较多、功率较小、气压高等)进行各向同性刻蚀,在垂直与水平方向同时刻蚀,上部的硅侧墙由于聚合物保护不会横向刻蚀,如此反复形成级联的纳米线(NW)结构。通过调整两步刻蚀的转换时机与刻蚀条件可以使得级联的各个NW相切或者相交,形成图2所示的堆叠结构。
参照图3,在纳米线堆叠1N之间的沟槽1G中通过PECVD、HDPCVD、RTO(快速热氧化)等工艺沉积填充材质例如为氧化硅、氮氧化硅、碳氧化硅、low--k等的绝缘隔离介质层,从而构成了浅沟槽隔离(STI)2。优选地,随后采用CMP、回刻等工艺平坦化STI2直至暴露硬掩模层HM。
参照图4,回刻STI2,暴露纳米线堆叠1N的大部分,例如仅留下底部的若干(例如1个或2个)纳米线1Nj~1Nm埋设在STI2内。对于氧化硅材质的STI2,可以采用HF基腐蚀液湿法去除,也可以采用氟基等离子体干法刻蚀,向下刻蚀STI2以暴露出纳米线堆叠,该暴露的纳米线堆叠将用作稍后器件的沟道区,最底部将被刻蚀而作为器件的隔离区。优选地,随后通过湿法腐蚀去除硬掩模层HM。
参照图5,在多个纳米线堆叠1N之间的再次暴露的沟槽1G中,填充假栅极堆叠层。首先在STI2以及纳米线堆叠1N上通过LPCVD、PECVD、HDPCVD、RTO、化学氧化等方法沉积形成氧化硅材质的垫氧化层3,用于保护纳米线堆叠1N不在后续刻蚀过程中被过刻蚀。在垫氧化层3上通过PECVD、HDPCVD、MOCVD、MBE、ALD、蒸发、溅射等沉积方法形成假栅极层4,材质可以是多晶硅、非晶硅、微晶硅、非晶碳、多晶锗、非晶锗等等及其组合。以上各层的厚度不必按照图示的比例,而是根据具体的器件尺寸以及电学性能需求而合理设定。假栅极堆叠3/4完全环绕包围了各个纳米线1N1~1Nm等等。
参照图6,刻蚀假栅极堆叠层3/4,形成沿第二方向跨越纳米线堆叠1N的假栅极堆叠结构。例如,采用现有公知的图形化方法,刻蚀假栅极堆叠3/4直至暴露纳米堆叠(顶部的1N1),去除纳米堆叠1N的第一方向两侧的部分层3/4,仅在纳米堆叠1N之上留下多个假栅极堆叠结构(图中仅显示一个)。
参照图7,在纳米线堆叠1N沿第一方向的两侧形成源漏区1S/1D。在本发明一个优选实施例中,刻蚀纳米线堆叠1N,直至暴露衬底1,通过UHVCVD、MOCVD、ALD、MBE、常压外延等选择性外延形成抬升的源漏区1S和1D,其材质可以与衬底1相同均为Si;或者对于PMOS而言,源漏区可以是SiGe、SiSn、GeSn、Si等及其组合,从而向沟道区1C施加压应力,提高空穴迁移率;而对于NMOS而言,源漏区可以是Si:C、Si:H、SiGe:C、Si等及其组合,从而向沟道区1C施加张应力,提高电子迁移率。优选地,在外延同时原位掺杂或者在外延之后注入掺杂并退火激活,使得源漏区1S/D具有与衬底1不同的掺杂类型、浓度,以控制器件的电学特性。源漏区1S/D的顶部可以高于纳米线堆叠1N的顶部。优选地,可以在纳米线1N沿第一方向的侧面形成侧墙5,并利用侧墙5形成轻掺杂的源漏扩展区与重掺杂的源漏区(均未分别示出)。
参照图8,采用后栅工艺,完成后续制造。在整个器件上形成层间介质层(ILD)6,湿法刻蚀去除假栅极堆叠3/4,在ILD6中留下栅极沟槽(未示出),在栅极沟槽中依次沉积高k材料的栅极绝缘层7以及金属材料的栅极导电层8,构成栅极堆叠结构。CMP平坦化栅极堆叠结构直至暴露ILD6。此后,依照标准工艺,在ILD10中刻蚀源漏接触孔(未示出)直达源漏区1S/D,在源漏接触孔中沉积金属氮化物的阻挡层以及金属材料的导电层,形成源漏接触塞(未示出)。
最后形成的器件结构的立体图如图9所示,包括:衬底上沿第一方向延伸的多个纳米线堆叠,沿第二方向延伸并且跨越了每个纳米线堆叠的多个金属栅极,沿第一方向延伸的纳米线堆叠两侧的多个源漏区,位于多个源漏区之间的纳米线堆叠构成多个沟道区,其中纳米线堆叠为级联的多个纳米线构成的堆叠,相邻的纳米线相切。或者。相邻纳米线具有连接部,并且连接部的尺寸小于纳米线自身尺寸的5%。上述这些结构的材料和几何形状已在方法描述中详述,因此在此不再赘述。
依照本发明的堆叠纳米线MOS晶体管及其制作方法,通过多次回刻、侧向刻蚀沟槽并填充,形成了质量良好的级联的纳米线堆叠,以较低的成本充分增大导电沟道有效宽度,并且提高了有效导电总截面面积,从而提高驱动电流。
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对器件结构做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。

Claims (13)

1.一种堆叠纳米线MOS晶体管制作方法,包括:
在衬底上形成沿第一方向延伸的多个鳍片;
在每个鳍片中形成由多个纳米线级联构成的纳米线堆叠;
在纳米线堆叠上形成沿第二方向延伸的栅极堆叠结构;
在栅极堆叠结构两侧形成源漏区,源漏区之间的纳米线构成沟道区。
2.如权利要求1的方法,其中,在每个鳍片中形成由多个纳米线级联构成的纳米线堆叠的步骤进一步包括:
步骤a,侧向刻蚀鳍片,在鳍片沿第二方向的侧面形成凹槽;
步骤b,沉积保护层,填充凹槽;以及
重复步骤a和步骤b,形成多个纳米线。
3.如权利要求2的方法,相邻的纳米线在平行于衬底表面的平面内相切或者相交。
4.如权利要求3的方法,其中,相邻的纳米线的相交部分的尺寸小于纳米线自身尺寸的5%。
5.如权利要求2的方法,其中,凹槽和/或纳米线截面的形状包括矩形、梯形、倒梯形、圆形、椭圆形、Σ形、D形、C形及其组合。
6.如权利要求2的方法,侧向刻蚀鳍片的步骤包括具有横向刻蚀深度的各向同性的等离子体干法刻蚀,或者各向同性刻蚀与各向异性刻蚀的组合方法。
7.如权利要求2的方法,侧向刻蚀鳍片的步骤包括利用不同晶向上选择腐蚀的湿法腐蚀方法。
8.如权利要求2的方法,其中,形成多个纳米线之后进一步包括:去除保护层,露出多个纳米线;对纳米线堆叠进行表面处理、圆化工艺。
9.如权利要求1的方法,其中,栅极堆叠结构为适用于后栅工艺的假栅极堆叠结构,并且形成源漏区之后进一步包括:沉积层间介质层;刻蚀去除假栅极堆叠结构,留下栅极沟槽;在栅极沟槽中沉积栅极堆叠结构。
10.一种堆叠纳米线MOS晶体管,包括:
多个纳米线堆叠,在衬底上沿第一方向延伸;
多个栅极堆叠,沿第二方向延伸并且跨越了每个纳米线堆叠;
多个源漏区,位于每个栅极堆叠沿第二方向两侧;
多个沟道区,由位于多个源漏区之间的纳米线堆叠构成;
其中多个纳米线堆叠为级联的多个纳米线构成的堆叠。
11.如权利要求10所述堆叠纳米线MOS晶体管,其中,相邻的纳米线在平行于衬底表面的平面内相切或者相交。
12.如权利要求11所述堆叠纳米线MOS晶体管,其中,相邻的纳米线的相交部分的尺寸小于纳米线自身尺寸的5%。
13.如权利要求10所述堆叠纳米线MOS晶体管,其中,纳米线截面的形状包括矩形、梯形、倒梯形、圆形、椭圆形、Σ形、D形、C形及其组合。
CN201310274977.8A 2013-07-02 2013-07-02 级联堆叠纳米线mos晶体管制作方法 Active CN104282560B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201310274977.8A CN104282560B (zh) 2013-07-02 2013-07-02 级联堆叠纳米线mos晶体管制作方法
US14/387,830 US10068990B2 (en) 2013-07-02 2013-08-06 Method of manufacturing MOS transistor with stack of cascaded nanowires
PCT/CN2013/080893 WO2015000205A1 (zh) 2013-07-02 2013-08-06 级联堆叠纳米线mos晶体管制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310274977.8A CN104282560B (zh) 2013-07-02 2013-07-02 级联堆叠纳米线mos晶体管制作方法

Publications (2)

Publication Number Publication Date
CN104282560A true CN104282560A (zh) 2015-01-14
CN104282560B CN104282560B (zh) 2018-07-27

Family

ID=52143055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310274977.8A Active CN104282560B (zh) 2013-07-02 2013-07-02 级联堆叠纳米线mos晶体管制作方法

Country Status (3)

Country Link
US (1) US10068990B2 (zh)
CN (1) CN104282560B (zh)
WO (1) WO2015000205A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633167A (zh) * 2015-12-07 2016-06-01 中国科学院微电子研究所 具有高质量外延层的半导体器件及其制造方法
CN105679662A (zh) * 2016-01-19 2016-06-15 中国科学院微电子研究所 一种堆叠式围栅纳米线器件假栅电极制备方法
CN107039274A (zh) * 2016-02-03 2017-08-11 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其形成方法
CN109962107A (zh) * 2017-12-14 2019-07-02 中国科学院半导体研究所 硅晶面依赖的纳米结构晶体管及制备方法
CN110968975A (zh) * 2019-11-29 2020-04-07 电子科技大学 一种单粒子辐照效应仿真方法
CN111029407A (zh) * 2019-11-25 2020-04-17 长江存储科技有限责任公司 场效应晶体管及其制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362386B2 (en) * 2013-02-27 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. FETs and methods for forming the same
US9136332B2 (en) * 2013-12-10 2015-09-15 Taiwan Semiconductor Manufacturing Company Limited Method for forming a nanowire field effect transistor device having a replacement gate
EP3353812A4 (en) * 2015-09-25 2019-05-08 Intel Corporation ARCHITECTURES OF NANOFIL TRANSISTOR DEVICES
US10032678B2 (en) 2015-10-15 2018-07-24 Qualcomm Incorporated Nanowire channel structures of continuously stacked nanowires for complementary metal oxide semiconductor (CMOS) devices
US9899387B2 (en) * 2015-11-16 2018-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-gate device and method of fabrication thereof
US10069015B2 (en) 2016-09-26 2018-09-04 International Business Machines Corporation Width adjustment of stacked nanowires
US11367783B2 (en) 2018-08-17 2022-06-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device
US11222950B2 (en) 2019-04-24 2022-01-11 National Technology & Engineering Solutions Of Sandia, Llc Method for fabricating embedded nanostructures with arbitrary shape

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231997A1 (en) * 2006-03-31 2007-10-04 Doyle Brian S Stacked multi-gate transistor design and method of fabrication
US20100164102A1 (en) * 2008-12-30 2010-07-01 Willy Rachmady Isolated germanium nanowire on silicon fin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151001A1 (ja) * 2008-06-09 2009-12-17 独立行政法人産業技術総合研究所 ナノワイヤ電界効果トランジスタ及びその作製方法、並びにこれを含む集積回路
KR101654443B1 (ko) * 2011-12-23 2016-09-05 인텔 코포레이션 비평면 게이트 올어라운드 장치 및 그의 제조 방법
CN102569409B (zh) 2012-02-28 2014-07-16 上海华力微电子有限公司 双层隔离纵向堆叠式半导体纳米线mosfet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231997A1 (en) * 2006-03-31 2007-10-04 Doyle Brian S Stacked multi-gate transistor design and method of fabrication
US20100164102A1 (en) * 2008-12-30 2010-07-01 Willy Rachmady Isolated germanium nanowire on silicon fin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RICKY M.Y.NG: "Vertically Stacked Silicon Nanowire Transistors Fabricated by Inductive Plasma Etching and Stress-Limited Oxidation", 《IEEE ELECTRON DEVICE LETTERS》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633167A (zh) * 2015-12-07 2016-06-01 中国科学院微电子研究所 具有高质量外延层的半导体器件及其制造方法
US10043909B2 (en) 2015-12-07 2018-08-07 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor devices having high-quality epitaxial layer and methods of manufacturing the same
CN105633167B (zh) * 2015-12-07 2019-10-01 中国科学院微电子研究所 具有高质量外延层的半导体器件及其制造方法
CN105679662A (zh) * 2016-01-19 2016-06-15 中国科学院微电子研究所 一种堆叠式围栅纳米线器件假栅电极制备方法
CN105679662B (zh) * 2016-01-19 2018-11-27 中国科学院微电子研究所 一种堆叠式围栅纳米线器件假栅电极制备方法
CN107039274A (zh) * 2016-02-03 2017-08-11 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其形成方法
CN109962107A (zh) * 2017-12-14 2019-07-02 中国科学院半导体研究所 硅晶面依赖的纳米结构晶体管及制备方法
CN111029407A (zh) * 2019-11-25 2020-04-17 长江存储科技有限责任公司 场效应晶体管及其制造方法
CN111029407B (zh) * 2019-11-25 2023-10-03 长江存储科技有限责任公司 场效应晶体管及其制造方法
CN110968975A (zh) * 2019-11-29 2020-04-07 电子科技大学 一种单粒子辐照效应仿真方法
CN110968975B (zh) * 2019-11-29 2022-03-04 电子科技大学 一种单粒子辐照效应仿真方法

Also Published As

Publication number Publication date
WO2015000205A1 (zh) 2015-01-08
US20160233317A1 (en) 2016-08-11
CN104282560B (zh) 2018-07-27
US10068990B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
US10535757B2 (en) Structure of a fin field effect transistor (FinFET)
CN103730366B (zh) 堆叠纳米线mos晶体管制作方法
CN104282560A (zh) 级联堆叠纳米线mos晶体管制作方法
US10388767B2 (en) Fin field effect transistor having angled fin sidewall
CN104282559A (zh) 堆叠纳米线mos晶体管及其制作方法
CN104282561B (zh) FinFET器件及其制作方法
JP4745663B2 (ja) ダブルゲートFin−FETデバイスを形成する方法
CN103839816B (zh) 半导体器件及其制造方法
TWI688044B (zh) 半導體裝置、鰭式場效電晶體裝置及其製造方法
CN111106176B (zh) 半导体器件及其制造方法及包括该半导体器件的电子设备
TW201803113A (zh) 金氧半導體與形成方法
CN103839820A (zh) 半导体器件制造方法
CN103839819A (zh) 半导体器件及其制造方法
CN103681329B (zh) 半导体器件及其制造方法
CN103839818B (zh) 半导体器件制造方法
CN106531632A (zh) 堆叠纳米线mos晶体管制作方法
CN103579315A (zh) 半导体器件及其制造方法
CN105336786A (zh) 半导体器件及其制造方法
CN113130311B (zh) 半导体结构及其形成方法
CN105405881A (zh) 半导体器件及其制造方法
US20230335645A1 (en) Device scaling by isolation enhancement
TW202240892A (zh) 半導體元件
TW202349504A (zh) 半導體裝置及其製造方法
CN115985945A (zh) 一种半导体器件及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant