CN104253031B - 进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法 - Google Patents

进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法 Download PDF

Info

Publication number
CN104253031B
CN104253031B CN201310267826.XA CN201310267826A CN104253031B CN 104253031 B CN104253031 B CN 104253031B CN 201310267826 A CN201310267826 A CN 201310267826A CN 104253031 B CN104253031 B CN 104253031B
Authority
CN
China
Prior art keywords
processing procedure
redeposited
sheet resistance
flow
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310267826.XA
Other languages
English (en)
Other versions
CN104253031A (zh
Inventor
田守卫
姜国伟
孙洪福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201310267826.XA priority Critical patent/CN104253031B/zh
Publication of CN104253031A publication Critical patent/CN104253031A/zh
Application granted granted Critical
Publication of CN104253031B publication Critical patent/CN104253031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法,在沉积制程中断后的多晶硅薄膜上通H2气流,再进行再沉积制程,直到完成多晶硅薄膜的沉积,然后依序进行后续制程。本发明能够缩小沉积制程和再沉积制程中形成的多晶硅薄膜的片电阻阻值差异,减少制程中断产生的不良影响,获得片电阻较为一致的多晶硅薄膜。

Description

进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法
技术领域
本发明涉及半导体制造领域,尤其涉及一种进行再沉积制程时降低掺杂多晶硅片电阻阻值的方法。
背景技术
在使用低压化学气相沉积设备来掺杂作为双极型互补金属氧化物半导体的射极器件的多晶硅时,片电阻Rs是这一制程中非常关键的参数。如果沉积设备的腔室发生了硬件出错报警,则沉积制程会被迫中断,当修复了硬件问题之后,再次进行多晶硅的沉积制程,但是在该再沉积制程中,多晶硅薄膜的片电阻Rs的阻值会发生变化,阻值会增大很多,举一个测试例,在正常沉积制程中,得到的片电阻Rs的阻值为365.5Ω(电流为2400A),中断沉积制程,在经过30分钟的暂停之后,进行再沉积,在进行再沉积制程中,得到的片电阻Rs的阻值为390.2Ω(电流为2400A),再沉积制程中的片电阻Rs的阻值大大超过了正常沉积制程中的片电阻Rs的阻值,如图1所示,在衬底101上沉积多晶硅102,由于制程被迫中断,沉积制程和再沉积制程中的片电阻Rs的阻值有较大差异,导致沉积制程和再沉积制程中形成的多晶硅之间存在较明显的分界线103,这会极大地影响到器件的性能。
发明内容
本发明提供的一种进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法,能够缩小沉积制程和再沉积制程中形成的多晶硅薄膜的片电阻阻值差异,减少制程中断产生的不良影响,获得片电阻较为一致的多晶硅薄膜。
为了达到上述目的,本发明提供一种进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法,该方法用于沉积制程遭到中断后,该方法包含以下步骤:
步骤1、判断沉积制程遭到中断,转到步骤2;
步骤2、在沉积制程中断后的多晶硅薄膜上通H2气流;
步骤3、进行再沉积制程,直到完成多晶硅薄膜的沉积,然后依序进行后续制程。
所述的步骤2中,H2气流为99%摩尔比氢气。
所述的步骤2中,通过流量控制器控制H2气流的流量。
所述的步骤2中,H2气流的流量为0~200立方厘米/分钟。
所述的步骤2中,H2气流的通气时间为10-15S。
本发明能够缩小沉积制程和再沉积制程中形成的多晶硅薄膜的片电阻阻值差异,减少制程中断产生的不良影响,获得片电阻较为一致的多晶硅薄膜。
附图说明
图1是背景技术中沉积制程中断后进行再沉积制程后形成的多晶硅薄膜的结构示意图。
图2是采用本发明的方法制成的多晶硅薄膜的结构示意图。
具体实施方式
以下根据图2具体说明本发明的较佳实施例。
本发明提供一种进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法,该方法用于沉积制程遭到中断后,该方法包含以下步骤:
步骤1、判断沉积制程遭到中断,转到步骤2;
步骤2、在沉积制程中断后的多晶硅薄膜上通H2气流;
该H2气流为99%摩尔比氢气 ,通过MFC(流量控制器)控制流量为0~200立方厘米/分钟,通气时间为10-15S;
步骤3、进行再沉积制程,直到完成多晶硅薄膜的沉积,然后依序进行后续制程。
举一个测试例,在正常沉积制程中,得到的片电阻Rs的阻值为365.5Ω(电流为2400A),中断沉积制程,在经过30分钟的暂停之后,直接进行再沉积,在进行再沉积制程中,得到的片电阻Rs的阻值为390.2Ω(电流为2400A),相比于正常沉积制程的片电阻Rs,阻值增加了6.8%,利用本发明的方法,在沉积制程中断后的多晶硅薄膜上通99%摩尔比的H2气流,持续通10S时间后,进行再沉积,在进行再沉积制程中,得到的片电阻Rs的阻值下降为371.3Ω(电流为2400A),相比于正常沉积制程的片电阻Rs,阻值仅仅增加了1.8%,大大缩小了沉积制程和再沉积制程中形成的多晶硅薄膜的片电阻阻值差异,如图2所示,在衬底101上沉积得到的多晶硅102,内部较为均匀,看到不由于制程中断而形成的界限。
本发明缩小了沉积制程和再沉积制程中形成的多晶硅薄膜的片电阻阻值差异,减少了制程中断产生的不良影响,能够获得片电阻较为一致的多晶硅薄膜。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (2)

1.一种进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法,该方法用于沉积制程遭到中断后,其特征在于,该方法包含以下步骤:
步骤1、判断沉积制程遭到中断,转到步骤2;
步骤2、在沉积制程中断后的多晶硅薄膜上通H2气流;
步骤3、进行再沉积制程,直到完成多晶硅薄膜的沉积,然后依序进行后续制程;
所述的步骤2中,H2气流为99%摩尔比氢气;
所述的步骤2中,H2气流的流量为0~200立方厘米/分钟;
所述的步骤2中,H2气流的通气时间为10-15S。
2.如权利要求1所述的进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法,其特征在于,所述的步骤2中,通过流量控制器控制H2气流的流量。
CN201310267826.XA 2013-06-28 2013-06-28 进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法 Active CN104253031B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310267826.XA CN104253031B (zh) 2013-06-28 2013-06-28 进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310267826.XA CN104253031B (zh) 2013-06-28 2013-06-28 进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法

Publications (2)

Publication Number Publication Date
CN104253031A CN104253031A (zh) 2014-12-31
CN104253031B true CN104253031B (zh) 2017-07-28

Family

ID=52187831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310267826.XA Active CN104253031B (zh) 2013-06-28 2013-06-28 进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法

Country Status (1)

Country Link
CN (1) CN104253031B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651094A (zh) * 2008-08-15 2010-02-17 中芯国际集成电路制造(上海)有限公司 多晶硅薄膜及栅极的形成方法
CN101764155A (zh) * 2009-11-18 2010-06-30 上海宏力半导体制造有限公司 沟槽式场效应管及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410090B1 (en) * 1998-09-29 2002-06-25 Applied Materials, Inc. Method and apparatus for forming insitu boron doped polycrystalline and amorphous silicon films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651094A (zh) * 2008-08-15 2010-02-17 中芯国际集成电路制造(上海)有限公司 多晶硅薄膜及栅极的形成方法
CN101764155A (zh) * 2009-11-18 2010-06-30 上海宏力半导体制造有限公司 沟槽式场效应管及其制备方法

Also Published As

Publication number Publication date
CN104253031A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
CN107768467B (zh) 一种硅基太阳能电池及其制备方法
CN109273557A (zh) 一种太阳能电池用硅片的处理方法
CN104882516A (zh) 一种高温低压的硅片扩散方法
CN106486568A (zh) 一种perc电池的退火处理工艺
CN103165754A (zh) 一种抗电势诱导衰减的太阳能电池的制备工艺
CN105244326B (zh) 一种功率器件的钝化层结构及其制造方法
CN104966760A (zh) 一种太阳能电池生产工艺
CN101752458A (zh) 一种太阳能电池单晶硅片的界面钝化方法
CN106373874A (zh) 基于AlGaN/GaN HEMT的欧姆接触电极的制造方法
CN104253031B (zh) 进行再沉积制程时改善掺杂多晶硅片电阻阻值差异的方法
CN102184868A (zh) 提高沟槽栅顶角栅氧可靠性的方法
CN104037264B (zh) 一种pecvd沉积低表面复合太阳电池介电层的方法
CN102956748A (zh) 一种一次形成太阳能电池选择性发射极的扩散方法
CN104701390A (zh) 太阳能电池背面钝化方法
CN102157626B (zh) 一种降低太阳能电池发射极和埋栅电极间接触电阻的方法
CN105633175A (zh) 一种可以降低抗pid电池外观不良率的工艺
CN102856438B (zh) 一种提高太阳能电池表面钝化的方法
CN102610493B (zh) 一种去除无定形碳薄膜循环利用硅片的方法
CN104600159A (zh) 抗pid晶体硅电池的高频放电制备法
CN104425248A (zh) 重掺杂p型衬底背封工艺方法
CN102789969A (zh) 沉积氮化硅膜的方法、晶硅太阳能电池及其制作方法
CN101241853B (zh) 一种可改善多晶硅栅极侧面轮廓的栅极制作方法
CN103021801B (zh) 掺氧半绝缘多晶硅膜及其制作方法
CN105575785A (zh) 栅极结构的形成方法
CN101924077B (zh) 缩小sonos存储器单元面积的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant