CN104241420A - 一种铜锌锡硫薄膜太阳电池器件及其制备方法 - Google Patents

一种铜锌锡硫薄膜太阳电池器件及其制备方法 Download PDF

Info

Publication number
CN104241420A
CN104241420A CN201410528237.7A CN201410528237A CN104241420A CN 104241420 A CN104241420 A CN 104241420A CN 201410528237 A CN201410528237 A CN 201410528237A CN 104241420 A CN104241420 A CN 104241420A
Authority
CN
China
Prior art keywords
zinc
copper
tin
sulfur
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410528237.7A
Other languages
English (en)
Inventor
薛玉明
刘浩
宋殿友
李鹏海
潘洪刚
刘君
郭晓倩
朱亚东
冯少君
尹富红
航伟
高林
乔在祥
魏少帅
李鹏宇
范浩然
王玉昆
曲慧楠
田雨仙
李宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201410528237.7A priority Critical patent/CN104241420A/zh
Publication of CN104241420A publication Critical patent/CN104241420A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明是一种基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池器件。聚酰亚胺柔性衬底薄膜太阳电池具有较高的重量比功率(W/Kg),即单位重量的太阳电池能发出更多的电量;对于地面光伏建筑物的曲面造型和移动式的光伏电站,柔性衬底薄膜太阳电池具有柔性、可折叠性和不怕摔碰的优势;柔性衬底电池具有降低成本的最大潜能,适合大规模生产的卷-卷(roll-to-roll)工艺。铜锌锡硫各组成元素储量丰富且对环境无污染,制备成本低;铜锌锡硫的禁带宽度在1.45eV左右,非常接近光伏电池的理想带隙1.4eV;铜锌锡硫是一种直接带隙p型半导体材料,光学吸收系数超过104cm-1,非常适合作为薄膜太阳电池的吸收层材料;电池转换效率高,从理论上将可达到单结电池的最高转换效率。

Description

一种铜锌锡硫薄膜太阳电池器件及其制备方法
技术领域
本发明涉及薄膜太阳电池领域技术,特别是一种基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池器件及其制备。
背景技术
铜锌锡硫材料(CZTS)属于I2-III-IV-VI4族四元化合物半导体,主要具有锌黄锡矿、黄锡矿和铜金合金结构。其中,锌黄锡矿结构比起其他结构类型在热力学上有着更好的稳定性。
铜锌锡硫电池的特点:铜锌锡硫各组成元素储量丰富且对环境无污染,制备成本低;铜锌锡硫的禁带宽度在1.45eV左右,非常接近光伏电池的理想带隙1.4eV;铜锌锡硫是一种直接带隙p型半导体材料,光学吸收系数超过104cm-1,非常适合作为薄膜太阳电池的吸收层材料;电池转换效率高,从理论上将可达到单结电池的最高转换效率。2013年Solar Frontier公司与IBM、东京应化工业(TOK)合组的共同研发的CZTS薄膜太阳电池转换效率提高至12.6%(电池尺寸0.42cm2)。
航空航天领域需要太阳电池有较高的质量比功率,即希望单位质量的太阳电池能发出更多的电量。对于地面光伏建筑物的曲面造型和移动式的光伏电站等要求太阳电池具有柔性、可折叠性和不怕摔碰,这就促进了柔性太阳电池的发展。由于相对较强的耐高温能力和较为适合的膨胀系数,聚酰亚胺(PI)在其中脱颖而出。
发明内容:
本发明提供了一种基于聚酰亚胺衬底的铜锌锡硫薄膜太阳电池器件的制备方案。以柔性的聚酰亚胺膜作为衬底,在其表面依次制备背接触层、铜锌锡硫吸收层、硫化镉缓冲层、透明窗口层和铝上电极。
本发明的技术方案
一种基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池,所用聚酰亚胺膜的厚度为25-30μm;钼背接触层生长于聚酰亚胺膜衬底之上,分为高阻层和低阻层,其中高阻层的厚度为80-120nm,低阻层的厚度为600-700nm,采用直流磁控溅射系统制备;铜锌锡硫吸收层生长于钼薄膜之上,化学分子式为Cu2ZnSnS4,导电类型为p型,厚度为1-2μm,采用DM-700型镀膜机,应用共蒸发制备工艺;硫化镉缓冲层生长于铜锌锡硫吸收层表面,化学分子式为CdS,导电类型为n型,厚度为45-50nm,采用化学水浴法制备工艺;透明窗口层生长于硫化镉缓冲层之上,分为高阻本征氧化锌薄膜和低阻氧化锌铝薄膜,导电类型为n型,其中本征氧化锌薄膜的厚度为50-100nm,氧化锌铝薄膜的厚度为0.4-0.6μm,分别采用射频磁控溅射制备系统和直流磁控溅射制备系统制备;铝上电极薄膜生长于透明窗口层之上,其厚度为0.8-1.5μm,采用共蒸发制备系统制备。
钼背接触层的制备步骤如下:
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的Mo为靶材,采用射频磁控溅射制备系统在衬底表面分别沉积一层高阻和低阻的钼薄膜。
所述在衬底表面沉积一层高阻薄膜的工艺参数为:本底真空:3.0×10-4Pa,工作气压为1-2Pa,衬底温度为室温25-50℃,射频功率为500-700W,Ar气流量为30-50sccm,基靶行走速度为4-6mm/s,沉积时间(基靶的往复次数)为2-4次。
所述在衬底表面沉积一层低阻薄膜的工艺参数为:工作气压为0-0.5Pa,衬底温度为室温25-50℃,射频功率为1500-2000W,Ar气流量为15-20sccm,基靶行走速度为4-6mm/s,沉积时间(基靶的往复次数)为4-6次。
铜锌锡硫吸收层薄膜的制备步骤如下:
本底真空为3.0×10-4Pa,衬底温度为450-500℃,Cu蒸发源温度为1100-1200℃,ZnS蒸发源温度为1000-1100℃,Sn蒸发源温度为1000-1100℃,依次蒸发ZnS、Cu、Sn三种元素,制备CZTS薄膜,蒸发时间为30-50min;
②保持衬底温度不变,将薄膜用H2S气体硫化30-60min,得到的薄膜为p型直接带隙半导体,锌黄锡矿结构。通过调整衬底、各蒸发源温度及共蒸时间,控制铜锌锡硫薄膜贫铜富锌,其中Cu/(Zn+Sn)=0.8-1.0,Zn/Sn=1.0-1.2,S/(Cu+Zn+Sn)约等于1;
③将各蒸发源冷却到室温,同时将衬底冷却,当蒸发Sn和Se的同时将衬底冷却到300-350℃时,关闭Sn和Se蒸发源,再将衬底冷却到室温。
硫化镉缓冲层的制备步骤如下:
1)配置溶液,制备硫脲SC(NH2)2溶液1L,浓度为0.01mol/L;醋酸镉(CH3COO)2Cd和醋酸氨CH3COONH4混合溶液1L,其中醋酸镉溶液浓度为0.001mol/L,醋酸氨溶度为0.003mol/L;氨水NH3·H2O溶度为1.3×10-3mol/L。
2)配置反应溶液1L,取第一步中所配置的各种溶液;其中硫脲溶液25mL,醋酸镉和醋酸氨混合溶液25mL,氨水溶液4滴。搅拌均匀。
3)将样品放入烧杯中,并将烧杯放入水浴锅内。水浴温度设置为78-80℃,制备时间为50-60min。
4)制备完成后,将样品用去离子水冲洗干净。
本征氧化锌薄膜的制备步骤如下:
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的i-ZnO为靶材,采用射频磁控溅射制备系统在衬底表面沉积一层本征氧化锌薄膜。
所述在衬底表面沉积一层氧化锌铝薄膜的工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温25-50℃,射频功率为800-1000W,Ar气流量为10-20sccm,O2气流量为2-6sccm,基靶行走速度为2-6mm/s,沉积时间(基靶的往复次数)为6-10次。
氧化锌铝薄膜的制备步骤如下:
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用直流磁控溅射工艺在衬底表面沉积一层ZnO:Al薄膜。
所述在衬底表面沉积一层氧化锌铝薄膜的工艺参数为:本底真空:3.0×10-4Pa,衬底温度为25-50℃,直流功率为1000-1200W,Ar气流量为12-18sccm,基靶行走速度为2-6mm/s,沉积时间(基靶的往复次数)为10-15次。
铝上电极的制备步骤如下:
1)本底真空:3.0×10-4Pa,给予加热丝20A电流,持续1-2min;给予加热丝50A电流,持续1-2min;给予加热丝80A电流,持续1-2min;给予加热丝120A电流,持续5-8min。
2)待观察窗玻璃被铝膜完全覆盖之后,停止加热,缓慢降低给予加热丝电流,之后冷却。
附图说明
附图1为基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池器件结构的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。
实施例1
基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池的制备,其制备步骤如下:
1)钼背接触层的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的Mo为靶材,采用射频磁控溅射制备系统在衬底表面分别沉积一层高阻和低阻的钼薄膜。①本底真空:3.0×10-4Pa,工作气压为1Pa,衬底温度为室温25℃,射频功率为600W,Ar气流量为40sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为2次。②工作气压为0.1Pa,衬底温度为室温25℃,射频功率为1500W,Ar气流量为15sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为6次。
2)铜锌锡硫吸收层的制备
本底真空为3.0×10-4Pa,衬底温度为450℃,Cu蒸发源温度为1100℃,ZnS蒸发源温度为1000℃,Sn蒸发源温度为1000℃,依次蒸发ZnS、Cu、Sn三种元素制备CZTS薄膜,蒸发时间为30min;
②保持衬底温度不变,将薄膜用H2S气体硫化30min,得到的薄膜为p型直接带隙半导体,锌黄锡矿结构。通过调整衬底、各蒸发源温度及共蒸时间,控制铜锌锡硫薄膜贫铜富锌,其中Cu/(Zn+Sn)=0.8-1.0,Zn/Sn=1.0-1.2,S/(Cu+Zn+Sn)约等于1;
③将各蒸发源冷却到室温,同时将衬底冷却,当蒸发Sn和Se的同时将衬底冷却到300℃时,关闭Sn和Se蒸发源,再将衬底冷却到室温。
3)硫化镉缓冲层薄膜的制备
①配置溶液,制备硫脲SC(NH2)2溶液1L,浓度为0.01mol/L;醋酸镉(CH3COO)2Cd和醋酸氨CH3COONH4混合溶液1L,其中醋酸镉溶液浓度为0.001mol/L,醋酸氨溶度为0.003mol/L;氨水NH3·H2O溶度为1.3×10-3mol/L。
②配置反应溶液1L,取第一步中所配置的各种溶液;其中硫脲溶液25mL,醋酸镉和醋酸氨混合溶液25mL,氨水溶液4滴。搅拌均匀。③将样品放入烧杯中,并将烧杯放入水浴锅内。水浴温度设置为78℃,制备时间为60min。④制备完成后,将样品用去离子水冲洗干净。
4)本征氧化锌薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的i-ZnO为靶材,采用射频磁控溅射制备系统在衬底表面沉积一层本征氧化锌薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温35℃,射频功率为800W,Ar气流量为10sccm,O2气流量为3sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为8次。
5)氧化锌铝薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用直流磁控溅射工艺在衬底表面沉积一层ZnO:Al薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温25℃,直流功率为1000W,Ar气流量为15sccm,基靶行走速度为6mm/s,沉积时间(基靶的往复次数)为10次。
6)铝上电极的制备
①本底真空:3.0×10-4Pa,给予加热丝20A电流,持续2min;给予加热丝50A电流,持续2min;给予加热丝80A电流,持续2min;给予加热丝120A电流,持续6min。②待观察窗玻璃被铝膜完全覆盖之后,停止加热,缓慢降低给予加热丝电流,之后冷却。
附图1为基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池器件结构的示意图
实施例2
基于聚酰亚胺柔性衬底的铜锌锡硫薄膜太阳电池的制备,其制备步骤如下:
1)钼背接触层的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的Mo为靶材,采用射频磁控溅射制备系统在衬底表面分别沉积一层高阻和低阻的钼薄膜。①本底真空:3.0×10-4Pa,工作气压为1Pa,衬底温度为室温25℃,射频功率为600W,Ar气流量为40sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为2次。②工作气压为0.1Pa,衬底温度为室温25℃,射频功率为1500W,Ar气流量为15sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为6次。
2)铜锌锡硫吸收层的制备
①本底真空为3.0×10-4Pa,衬底温度为500℃,Cu蒸发源温度为1200℃,ZnS蒸发源温度为1100℃,Sn蒸发源温度为1100℃,依次蒸发ZnS、Cu、Sn三种元素,制备CZTS薄膜,蒸发时间为60min;
②保持衬底温度不变,将薄膜用H2S气体硫化30-60min,得到的薄膜为p型直接带隙半导体,锌黄锡矿结构。通过调整衬底、各蒸发源温度及共蒸时间,控制铜锌锡硫薄膜贫铜富锌,其中Cu/(Zn+Sn)=0.8-1.0,Zn/Sn=1.0-1.2,S/(Cu+Zn+Sn)约等于1;
③将各蒸发源冷却到室温,同时将衬底冷却,当蒸发Sn和Se的同时将衬底冷却到300-350℃时,关闭Sn和Se蒸发源,再将衬底冷却到室温。
3)硫化镉缓冲层薄膜的制备
①配置溶液,制备硫脲SC(NH2)2溶液1L,浓度为0.01mol/L;醋酸镉(CH3COO)2Cd和醋酸氨CH3COONH4混合溶液1L,其中醋酸镉溶液浓度为0.001mol/L,醋酸氨溶度为0.003mol/L;氨水NH3·H2O溶度为1.3×10-3mol/L。
②配置反应溶液1L,取第一步中所配置的各种溶液;其中硫脲溶液25mL,醋酸镉和醋酸氨混合溶液25mL,氨水溶液4滴。搅拌均匀。③将样品放入烧杯中,并将烧杯放入水浴锅内。水浴温度设置为78℃,制备时间为60min。④制备完成后,将样品用去离子水冲洗干净。
4)本征氧化锌薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的i-ZnO为靶材,采用射频磁控溅射制备系统在衬底表面沉积一层本征氧化锌薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温35℃,射频功率为800W,Ar气流量为10sccm,O2气流量为3sccm,基靶行走速度为4mm/s,沉积时间(基靶的往复次数)为8次。
5)氧化锌铝薄膜的制备
在直流磁控溅射沉积系统的沉积室中,以纯度为99.99%的ZnO:Al为靶材,采用直流磁控溅射工艺在衬底表面沉积一层ZnO:Al薄膜。工艺参数为:本底真空:3.0×10-4Pa,衬底温度为室温25℃,直流功率为1000W,Ar气流量为15sccm,基靶行走速度为6mm/s,沉积时间(基靶的往复次数)为10次。
6)铝上电极的制备
①本底真空:3.0×10-4Pa,给予加热丝20A电流,持续2min;给予加热丝50A电流,持续2min;给予加热丝80A电流,持续2min;给予加热丝120A电流,持续6min。②待观察窗玻璃被铝膜完全覆盖之后,停止加热,缓慢降低给予加热丝电流,之后冷却。
检测结果与实施例1相同。
综上所述,本发明提供了一种基于聚酰亚胺柔性衬底铜锌锡硫薄膜太阳电池器件的制备方案,以柔性的聚酰亚胺膜作为衬底,在其表面依次制备背接触层、铜锌锡硫吸收层、硫化镉缓冲层、透明窗口层和铝上电极。该制备方法工艺条件方便易行,有利于大规模的推广应用,尤其在太空及特殊场合中具有极其重要的应用前景。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种聚酰亚胺柔性衬底的铜锌锡硫薄膜的制备方法,其特征在于:采用蒸发薄膜制备系统,应用蒸发后硫化的制备工艺。
2.根据权利要求1所述的铜锌锡硫薄膜的制备方法,其特征在于:
①本底真空为3.0×10-4Pa,衬底温度为450-500℃,Cu蒸发源温度为1100-1200℃,ZnS蒸发源温度为1000-1100℃,Sn蒸发源温度为1000-1100℃,依次蒸发ZnS、Cu、Sn三种元素,制备CZTS薄膜,蒸发时间为30-50min;
②保持衬底温度不变,将薄膜用H2S气体硫化30-60min,得到的薄膜为p型直接带隙半导体,锌黄锡矿结构。通过调整衬底、各蒸发源温度及共蒸时间,控制铜锌锡硫薄膜贫铜富锌,其中Cu/(Zn+Sn)=0.8-1.0,Zn/Sn=1.0-1.2,S/(Cu+Zn+Sn)约等于1;
③将各蒸发源冷却到室温,同时将衬底冷却,当蒸发Sn和Se的同时将衬底冷却到300-350℃时,关闭Sn和Se蒸发源,再将衬底冷却到室温。
3.根据权利要求2所述的铜锌锡硫薄膜的制备方法,其特征在于:优选的衬底温度为500℃,Cu蒸发源温度为1200℃。
CN201410528237.7A 2014-09-30 2014-09-30 一种铜锌锡硫薄膜太阳电池器件及其制备方法 Pending CN104241420A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410528237.7A CN104241420A (zh) 2014-09-30 2014-09-30 一种铜锌锡硫薄膜太阳电池器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410528237.7A CN104241420A (zh) 2014-09-30 2014-09-30 一种铜锌锡硫薄膜太阳电池器件及其制备方法

Publications (1)

Publication Number Publication Date
CN104241420A true CN104241420A (zh) 2014-12-24

Family

ID=52229165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410528237.7A Pending CN104241420A (zh) 2014-09-30 2014-09-30 一种铜锌锡硫薄膜太阳电池器件及其制备方法

Country Status (1)

Country Link
CN (1) CN104241420A (zh)

Similar Documents

Publication Publication Date Title
CN109148625A (zh) 铜锌锡硫硒薄膜太阳能电池及其制备方法
CN104716217A (zh) 一种掺钠铜铟镓硒太阳电池器件及其制备方法
CN103762257A (zh) 铜锌锡硫吸收层薄膜及铜锌锡硫太阳能电池的制备方法
CN110112062A (zh) IIIA族元素掺杂CdS的CZTS太阳电池制备方法
CN102637755A (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
KR20130052476A (ko) 태양전지 및 이의 제조방법
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN104409559A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN104409535A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN103346194A (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN105489672A (zh) 一种氯化物体系两步法制备铜铟硒光电薄膜的方法
CN103296092B (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN102610690A (zh) 一种铜铟镓硒薄膜太阳能电池缓冲层材料制备方法
CN105655421A (zh) 一种硫化亚锡和硫化铟薄膜太阳能电池及其制备方法
CN105552166A (zh) 一种硝酸盐体系两步法制备铜铟硒光电薄膜的方法
CN104393071A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN104485369A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN104465822A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN104425655A (zh) 三步法吸收层后掺钠柔性太阳电池的制备方法
CN104485372A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN103311357A (zh) 一种铜铟镓硒太阳电池器件及其制备方法
CN104241420A (zh) 一种铜锌锡硫薄膜太阳电池器件及其制备方法
CN105529243A (zh) 一种硫酸盐体系两步法制备铜铟硒光电薄膜的方法
CN106024934A (zh) 一种后掺钠铜铟镓硒太阳电池器件及其制备方法
CN105932081A (zh) 一种由氯化铜制备铜铟硫光电薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141224

WD01 Invention patent application deemed withdrawn after publication