CN104204278B - 粒子膜层积装置及使用该装置的粒子膜层积方法 - Google Patents

粒子膜层积装置及使用该装置的粒子膜层积方法 Download PDF

Info

Publication number
CN104204278B
CN104204278B CN201380017086.2A CN201380017086A CN104204278B CN 104204278 B CN104204278 B CN 104204278B CN 201380017086 A CN201380017086 A CN 201380017086A CN 104204278 B CN104204278 B CN 104204278B
Authority
CN
China
Prior art keywords
particle
nano
film
room
lamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380017086.2A
Other languages
English (en)
Other versions
CN104204278A (zh
Inventor
内山直树
金井友美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsumitec Co Ltd
Original Assignee
Atsumitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsumitec Co Ltd filed Critical Atsumitec Co Ltd
Publication of CN104204278A publication Critical patent/CN104204278A/zh
Application granted granted Critical
Publication of CN104204278B publication Critical patent/CN104204278B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/12Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种粒子膜层积装置及使用该装置的粒子膜层积方法。本发明的粒子膜层积装置(1)具有:生成金属材料(9)的纳米粒子(12)的纳米粒子生成室(2);生成树脂材料(11)的纳米纤维(13)的纳米纤维生成室(3);在基板(18)上将纳米粒子(12)及纳米纤维(13)成膜并层积的层积室(4);在成膜室(4)内将纳米粒子(12)成膜的纳米粒子成膜区域(15);在成膜室(4)内将纳米纤维(13)成膜的纳米纤维成膜区域(16);使基板(18)在纳米粒子成膜区域(15)与纳米纤维成膜区域(16)之间移动的移动单元(17);对层积室(4)进行排气的排气单元(5);将冷却气体分别导入纳米粒子生成室(2)及纳米纤维生成室(3)的冷却气体导入单元(8)。

Description

粒子膜层积装置及使用该装置的粒子膜层积方法
技术领域
本发明涉及粒子膜层积装置及使用该装置的粒子膜层积方法。
背景技术
在专利文献1中记载有超微粒子膜形成方法及超微粒子膜形成装置。该装置由材料生成蒸气原子并使其与惰性气体一同在搬运管中移动而在基板上形成超微粒子膜。对这样的粒子膜形成装置及方法以一般的表现换言之,将腔室上下设置而利用细管使其连通。而且,对上部腔室抽真空而使冷却气体流向下部腔室。蒸发后的金属被冷却并且由于压力差而向上部腔室移动。而且,以粒子状态被捕捉到上部腔室的基板上。冷却气体例如为氦气或氩气,通过在其中流动而防止粒子在移动中的凝集及粒子成长。
但是,这样的现有的粒子膜形成装置仅使粒子在基板上堆积。因此,例如作为粒子而使用吸收氢这样的Mg及Mg-N i合金等形成氢传感器的情况下,氢的扩散性(气体的透过性)差,吸氢速度变慢。另外,这样的现有的粒子膜形成装置将金属纳米粒子作为对象而使用,但若在基板上堆积金属纳米粒子,则会再凝聚化,不能够维持细微的纳米粒子状态。
专利文献1:(日本)特开2000-297361号公报
发明内容
本发明是考虑了上述现有技术而设立的,其目的在于提供一种粒子膜层积装置及使用该装置的粒子膜层积方法,在蒸发而得到的纳米粒子由吸氢合金生成的情况下,氢的扩散性提高,另外,能够防止被捕捉到基板上的纳米粒子的再凝聚化。
为了实现上述目的,在本发明中提供一种粒子膜层积装置,其具有:纳米粒子生成室,其配设应被加热的金属材料,生成所述金属材料的纳米粒子;纳米构造体生成室,其配设应被加热的树脂材料,生成所述树脂材料的纳米构造体;层积室,其经由粒子连通管及构造体连通管分别与所述纳米粒子生成室及所述纳米构造体生成室连接,在基板上将所述纳米粒子及所述纳米构造体成膜并层积;纳米粒子成膜区域,其在所述成膜室内将所述纳米粒子成膜;纳米构造体成膜区域,其在所述成膜室内将所述纳米构造体成膜;移动单元,其使所述基板在所述纳米粒子成膜区域与所述纳米构造体成膜区域之间移动;排气单元,其对所述层积室进行排气;冷却气体导入单元,其向所述纳米粒子生成室及所述纳米构造体生成室分别导入冷却气体。
优选的是,由所述纳米粒子生成室、所述粒子连通管及所述纳米粒子成膜区域形成纳米粒子成膜单元,该纳米粒子成膜单元设有多个。
优选的是,所述移动单元具有一对辊,其由分别配设在所述纳米粒子成膜区域及所述纳米构造体成膜区域的辊构成,将环状的所述基板卷绕在所述一对辊上。
另外,在本发明中提供一种粒子膜层积方法,包括:纳米构造体生成工序,通过在所述纳米构造体生成室将所述树脂材料加热并使其蒸发而生成所述纳米构造体;纳米构造体成膜工序,利用所述排气单元对所述层积室进行排气而在所述层积室与所述纳米构造体生成室之间设置压力差,将所述纳米构造体通过所述构造体连通管导入所述纳米构造体成膜区域并将其在配设于所述纳米构造体成膜区域的所述基板上成膜而形成纳米构造体膜;行进工序,利用所述移动单元使将所述纳米构造体成膜的所述基板向所述纳米粒子成膜区域移动;纳米粒子生成工序,通过在所述纳米粒子生成室将所述金属材料加热并使其蒸发而生成所述纳米粒子;纳米粒子成膜工序,利用所述排气单元对所述层积室进行排气而在所述层积室与所述纳米粒子生成室之间设置压力差,将所述纳米粒子通过所述粒子连通管导入所述纳米粒子成膜区域,在配设于所述纳米粒子成膜区域的所述基板上成膜的所述纳米构造体上成膜而形成纳米粒子膜;复位工序,利用所述移动单元使形成有所述纳米粒子膜及所述纳米构造体膜的所述基板向所述纳米构造体成膜区域移动。
根据本发明,能够利用纳米构造体成膜区域在基板上使纳米构造体成膜,并且利用移动单元使基板向纳米粒子成膜区域移动而使纳米粒子在纳米构造体上成膜,再次利用移动单元使基板向纳米构造体成膜区域移动而使纳米构造体在纳米粒子上成膜。通过反复进行,能够利用纳米构造体夹持纳米粒子。因此,由于纳米粒子层状地排列并成膜,故而在由吸氢合金生成纳米粒子的情况下,若将层积有纳米粒子的构造用作氢传感器,则氢的扩散性提高。另外,利用纳米构造体膜夹持纳米粒子膜的层积体在纳米粒子为纳米粒子的状态下是稳定的,故而防止引起粒子成长。
另外,形成由将移动单元分别配设在纳米粒子成膜区域及纳米构造体成膜区域的由辊形成的一对辊,若在该一对辊上卷绕环状的基板,则能够连续地将纳米粒子及纳米构造体成膜,故而作业效率提高。
附图说明
图1是本发明的粒子膜层积装置的概略图;
图2是使用本发明的粒子膜层积装置制造的层积体的概略剖面图;
图3是本发明的另一粒子膜层积装置的概略图;
图4是使用图3的粒子膜层积装置制造的层积体的概略断面图。
标记说明
1、1a:粒子膜层积装置
2、2a:纳米粒子生成室
3:纳米纤维生成室(纳米构造体生成室)
4:层积室
5:排气单元
6、6a:粒子连通管
7:纤维连通管(构造体连通管)
8:冷却气体导入单元
9、9a:金属材料
10:加热器
11:树脂材料
12、12a:纳米粒子
13:纳米纤维(纳米构造体)
14、14a:分隔壁
15、15a:纳米粒子成膜区域
16:纳米纤维成膜区域(纳米构造体成膜区域)
17:移动单元
18:基板
19:辊
20:纳米纤维膜(纳米构造体膜)
21、21a:纳米粒子膜
22、22a:层积体
23:纳米粒子成膜单元
具体实施方式
如图1所示,本发明的粒子膜层积装置1具有纳米粒子生成室2、纳米纤维生成室3以及层积室4。在层积室4上安装有排气单元5,通过该排气单元5将层积室4抽真空。纳米粒子生成室2及纳米纤维生成室3分别经由粒子连通管6及纤维连通管7而与层积室4连接。作为粒子连通管6及纤维连通管7,例如能够使用1/8管。在纳米粒子生成室2及纳米纤维生成室3上安装有导入冷却气体的冷却气体导入单元8。纳米粒子生成室2、纳米纤维生成室3及层积室4除了与排气单元5及冷却气体导入单元8的连通部分之外被密闭。
在纳米粒子生成室2配设金属材料9。该金属材料9例如可使用镁、镍或其合金构成的金属线。另外,在纳米粒子生成室2配设有加热器10。该加热器10用于加热金属材料9。作为加热器10,可使用坩锅或等离子体发生装置等。通过利用加热器10将金属材料9加热,金属材料9蒸发而生成纳米粒子12。
另一方面,在纳米纤维生成室3配设有树脂材料11。该树脂材料9例如可使用尼龙类树脂及聚乙烯吡咯烷酮(PVP)、聚环氧乙烷(PEO)等。另外,在纳米纤维生成室3配设有与纳米粒子生成室2同样的加热器10。通过利用加热器10将树脂材料11加热,树脂材料11蒸发而生成纳米纤维13。
在层积室4形成有分隔壁14,经由该分隔壁14分成纳米粒子成膜区域15和纳米纤维成膜区域16。在层积室4配置有移动单元17,利用该移动单元17使应将纳米粒子12及纳米纤维13成膜的基板18在纳米粒子成膜区域15与纳米纤维成膜区域16之间往复。具体地,移动单元17由一对辊19形成。各个辊19配设在纳米粒子成膜区域15及纳米纤维成膜区域16。通过在该一对辊19上卷绕环状的基板18,通过辊19的旋转使基板18连续地在纳米粒子成膜区域15及纳米纤维成膜区域16之间往复。
以下表示使用这样的构造的粒子膜层积装置1形成粒子膜时的顺序。
首先,进行纳米构造体生成工序。该工序在纳米纤维生成室3进行。具体地,通过加热器10将树脂材料11加热并使其蒸发,生成纳米纤维13。纳米纤维13在气相环境下生成。此时,利用冷却气体导入单元8向纳米纤维生成室3导入包含氦气或氩气的冷却气体(图1的箭头标记E)。
接着,进行纳米构造体成膜工序。该工序在配设于层积室4的纳米纤维成膜区域16的基板18上将纳米纤维13成膜,形成纳米纤维膜20。具体地,首先将在纳米构造体生成工序中生成的纳米纤维13导向纳米纤维成膜区域16。因此,利用排气单元5将层积室4内抽真空(图1的箭头标记G),在层积室4与纳米纤维生成室3之间设置压力差。利用纤维连通管7连接的两室4、3由于该压力差而产生从纳米纤维生成室3向层积室4的空气流动(图1的箭头标记A)。通过该流动,纳米纤维13从纳米纤维生成室3通过纤维连通管7并被导向层积室4的纳米纤维成膜区域16。而且,在配设于纳米纤维成膜区域16的基板18上成膜。
与纳米构造体成膜工序同时地进行往复工序。基板18利用移动单元17在纳米纤维成膜区域16与纳米粒子成膜区域15之间往复,故而配设于纳米纤维成膜区域16的基板18向纳米粒子成膜区域15移动。即,基板18从纳米纤维成膜区域16向纳米粒子成膜区域15的移动为行进工序(图1的箭头标记B)。在该移动期间,由于纳米纤维13在基板18上成膜,故而在基板18上一边形成膜状的纳米纤维膜20一边移动。
而且,进行纳米粒子生成工序。该工序在纳米粒子生成室2进行。具体地,利用加热器10将金属材料9加热使其蒸发,生成纳米粒子12。纳米粒子12在气相环境下生成。此时,利用冷却气体导入单元8向纳米粒子生成室2中导入含有氦气或氩气的冷却气体(图1的箭头标记F)。由此,即使在金属材料为镁等容易氧化的金属的情况下,也能够通过气相下的制造来防止不需要的氧化。
接着,进行纳米粒子成膜工序。该工序在配设于层积室4的纳米粒子成膜区域15的基板18上将纳米粒子12成膜,形成纳米粒子膜21。具体地,将在纳米粒子生成工序中生成的纳米粒子12导向纳米粒子成膜区域15。通过在上述的纳米构造体成膜工序中的排气单元5进行的层积室4内的抽真空,在层积室4与纳米粒子生成室2之间也设有压力差。利用粒子连通管6连接的两室4、2由于该压力差而产生从纳米粒子生成室2向层积室4的空气的流动(图1的箭头标记C)。通过该流动,纳米粒子12从纳米粒子生成室2通过粒子连通管6并被导向层积室4的纳米粒子成膜区域15。而且,在配设于纳米粒子成膜区域15的基板18上成膜。此时,在基板18上已经由纳米构造体成膜工序形成纳米纤维膜20。因此,实际上,纳米粒子膜21在形成于基板18的纳米纤维膜20上层积。
与纳米粒子成膜工序同时进行复位工序。如上所述,基板18由移动单元17在纳米纤维成膜区域16与纳米粒子成膜区域15之间往复,故而配设于纳米粒子成膜区域15的基板18向纳米纤维成膜区域16移动。即,基板18从纳米粒子成膜区域15向纳米纤维成膜区域16的移动为复位工序(图1的箭头标记D)。在该移动期间,由于纳米粒子12在成膜于基板18的纳米纤维13上成膜,故而在基板1上形成纳米纤维膜20和纳米粒子膜21并移动。
而且,在再次向纳米纤维成膜区域16移动的基板18上将纳米纤维13成膜。此时,在纳米粒子膜21上层积纳米纤维膜20。而且,基板18再次向纳米粒子成膜区域15移动并形成纳米粒子膜21。因此,使辊19连续旋转而使基板18在纳米纤维成膜区域16与纳米粒子成膜区域15之间反复往复,由此,如图2所示地,基板18交替地层积纳米纤维膜20和纳米粒子膜21而制造层积体22。在将层积体22例如作为氢传感器使用时,切断成适当的长度。
如以上说明地,在纳米纤维成膜区域16使纳米纤维13在基板18上成膜,利用移动单元17使基板18向纳米粒子成膜区域15移动而在纳米纤维13上将纳米粒子12成膜,再次由移动单元17使基板18向纳米纤维成膜区域16移动而在纳米粒子12上将纳米纤维13成膜。通过反复进行,能够利用纳米纤维13夹持纳米粒子12。换言之,本发明能够利用纳米纤维膜20层积纳米粒子膜21。因此,由于纳米粒子12层状地排列而成膜,故而在由吸氢合金生成纳米粒子12的情况下,若将层积体22用作氢传感器,则氢的扩散性提高。另外,利用纳米纤维膜20夹持纳米粒子膜21的层积体22在纳米粒子12为纳米粒子的状态下是稳定的,故而防止引起粒子成长。
另外,由于粒子连通管6的直径非常细,故而在层积室4与纳米粒子生成室2之间产生的压力差大幅变大,因此,产生的流速也大。因此,抑制纳米粒子12彼此在移动中碰撞,故而在此也防止引起粒子成长。
图3表示本发明的另一粒子膜层积装置1a。该装置1a在上述的装置1上层积两层纳米粒子。即,在纳米粒子成膜区域15的旁边进一步设置纳米粒子成膜区域15a,区域15及15a被分隔壁14a分隔。在纳米粒子成膜区域15a,将与纳米粒子12不同的纳米粒子12a成膜而成为纳米粒子膜21a。纳米粒子12a的制造工艺与上述的纳米粒子12同样。具体地,从冷却气体导入单元8对纳米粒子生成室2a导入冷却气体(图3的箭头标记H)并由纳米粒子生成室2a内的加热器10将金属线9a加热而生成。生成的纳米粒子12a移动(图3的箭头标记I)并通过粒子连通管6a而流入层积室4内的纳米粒子成膜区域15a。通过这样的构造,在基板18上的纳米纤维膜20层积纳米粒子膜21和21a,通过反复进行成膜而能够将其进一步层积。这样得到的层积体22a如图4所示地在纳米纤维膜20上层积纳米粒子膜21及纳米粒子膜21a,这些层反复形成。
另外,在欲进一步层积其他纳米粒子膜的情况下,只要由纳米粒子生成室、粒子连通管和纳米粒子成膜区域形成纳米粒子成膜单元23,将该纳米粒子成膜单元23设有多个即可。另外,在本实施例中,作为由树脂材料11形成的纳米构造体,以纳米纤维13为例进行了说明,但也可以将树脂材料11的纳米粒子作为纳米构造体而形成,利用该纳米粒子形成多孔质膜,在该多孔质膜将纳米粒子膜21成膜。即,作为上述的纳米纤维说明的部分作为由树脂生成的纳米粒子(纳米构造体)而能够置换。

Claims (7)

1.一种粒子膜层积装置,其特征在于,具有:
纳米粒子生成室,其配设应被加热的金属材料,生成所述金属材料的纳米粒子;
纳米构造体生成室,其配设应被加热的树脂材料,生成所述树脂材料的纳米构造体;
层积室,其经由粒子连通管及构造体连通管分别与所述纳米粒子生成室及所述纳米构造体生成室连接,在基板上将所述纳米粒子及所述纳米构造体成膜并层积;
纳米粒子成膜区域,其在所述成膜室内将所述纳米粒子成膜;
纳米构造体成膜区域,其在所述成膜室内将所述纳米构造体成膜;
移动单元,其使所述基板在所述纳米粒子成膜区域与所述纳米构造体成膜区域之间移动;
排气单元,其对所述层积室进行排气;
冷却气体导入单元,其向所述纳米粒子生成室及所述纳米构造体生成室分别导入冷却气体,
在所述粒子连通管中防止所述金属材料的纳米粒子的粒子成长。
2.如权利要求1所述的粒子膜层积装置,其特征在于,
所述排气单元对所述层积室进行排气,以使当所述纳米粒子在所述例子连通管移动时产生的所述纳米粒子生成室与所述层积室的压力差成为防止所述金属材料的纳米粒子的粒子成长的压力差。
3.如权利要求1所述的粒子膜层积装置,其特征在于,
所述粒子连通管仅自所述纳米粒子生成室的一端部至所述层积室的一端部进行连接。
4.如权利要求1所述的粒子膜层积装置,其特征在于,
所述粒子连通管的直径及长度被在能够防止所述纳米粒子的粒子成长的范围内进行调整。
5.如权利要求1所述的粒子膜层积装置,其特征在于,
由所述纳米粒子生成室、所述粒子连通管及所述纳米粒子成膜区域形成纳米粒子成膜单元,该纳米粒子成膜单元设有多个。
6.如权利要求5所述的粒子膜层积装置,其特征在于,
所述移动单元具有一对辊,其由分别配设在所述纳米粒子成膜区域及所述纳米构造体成膜区域的辊构成,将环状的所述基板卷绕在所述一对辊上。
7.一种粒子膜层积方法,使用权利要求1所述的粒子膜层积装置进行粒子膜层积,其特征在于,包括:
纳米构造体生成工序,通过在所述纳米构造体生成室将所述树脂材料加热并使其蒸发而生成所述纳米构造体;
纳米构造体成膜工序,利用所述排气单元对所述层积室进行排气而在所述层积室与所述纳米构造体生成室之间设置压力差,将所述纳米构造体通过所述构造体连通管导入所述纳米构造体成膜区域并将其在配设于所述纳米构造体成膜区域的所述基板上成膜而形成纳米构造体膜;
行进工序,利用所述移动单元使将所述纳米构造体成膜的所述基板向所述纳米粒子成膜区域移动;
纳米粒子生成工序,通过在所述纳米粒子生成室将所述金属材料加热并使其蒸发而生成所述纳米粒子;
纳米粒子成膜工序,利用所述排气单元对所述层积室进行排气而在所述层积室与所述纳米粒子生成室之间设置压力差,将所述纳米粒子通过所述粒子连通管导入所述纳米粒子成膜区域,在配设于所述纳米粒子成膜区域的所述基板上成膜的所述纳米构造体上成膜而形成纳米粒子膜;
复位工序,利用所述移动单元使形成有所述纳米粒子膜及所述纳米构造体膜的所述基板向所述纳米构造体成膜区域移动,
在所述粒子连通管中防止所述金属材料的纳米粒子的粒子成长。
CN201380017086.2A 2012-03-26 2013-01-31 粒子膜层积装置及使用该装置的粒子膜层积方法 Active CN104204278B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-069775 2012-03-26
JP2012069775A JP5940335B2 (ja) 2012-03-26 2012-03-26 粒子膜積層装置及びこれを用いた粒子膜積層方法
PCT/JP2013/052196 WO2013145847A1 (ja) 2012-03-26 2013-01-31 粒子膜積層装置及びこれを用いた粒子膜積層方法

Publications (2)

Publication Number Publication Date
CN104204278A CN104204278A (zh) 2014-12-10
CN104204278B true CN104204278B (zh) 2018-01-23

Family

ID=49259133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380017086.2A Active CN104204278B (zh) 2012-03-26 2013-01-31 粒子膜层积装置及使用该装置的粒子膜层积方法

Country Status (7)

Country Link
US (1) US9993841B2 (zh)
EP (1) EP2832894B1 (zh)
JP (1) JP5940335B2 (zh)
KR (1) KR102138769B1 (zh)
CN (1) CN104204278B (zh)
CA (1) CA2866573C (zh)
WO (1) WO2013145847A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312541B2 (en) * 2015-07-30 2019-06-04 Triad National Security, Llc Polyol-based compositions comprising cationic group-functionalized polyphenylene polymers
EP3279364B1 (en) * 2016-08-03 2021-10-06 IHI Hauzer Techno Coating B.V. Apparatus for coating substrates

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759634A (en) * 1994-03-11 1998-06-02 Jet Process Corporation Jet vapor deposition of nanocluster embedded thin films
JP3398563B2 (ja) * 1997-04-01 2003-04-21 松下電器産業株式会社 複合薄膜の製造方法及び製造装置
MY119154A (en) 1996-05-21 2005-04-30 Matsushita Electric Ind Co Ltd Thin film, method and apparatus for forming the same, and electronic component incorporating the same
JP2000297361A (ja) * 1999-04-09 2000-10-24 Canon Inc 超微粒子膜形成方法及び超微粒子膜形成装置
JP2003321765A (ja) 2002-04-30 2003-11-14 Sanyo Shinku Kogyo Kk 有機物の蒸着方法及びこの方法に用いられる蒸着装置ならびに蒸発源
EP1787742B1 (en) * 2004-08-20 2014-10-15 Ishihara Sangyo Kaisha, Ltd. A process for producing copper microparticle
JP4941754B2 (ja) * 2007-09-05 2012-05-30 ソニー株式会社 蒸着装置

Also Published As

Publication number Publication date
JP2013199696A (ja) 2013-10-03
CA2866573A1 (en) 2013-10-03
JP5940335B2 (ja) 2016-06-29
CA2866573C (en) 2019-09-24
EP2832894A4 (en) 2015-09-09
KR102138769B1 (ko) 2020-07-28
EP2832894A1 (en) 2015-02-04
EP2832894B1 (en) 2020-08-12
WO2013145847A1 (ja) 2013-10-03
US20150030765A1 (en) 2015-01-29
US9993841B2 (en) 2018-06-12
KR20140138244A (ko) 2014-12-03
CN104204278A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
Vinokurov et al. Formation of metal clusters in halloysite clay nanotubes
Song et al. Developing graphene‐based nanohybrids for electrochemical sensing
Xu et al. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant
Mao et al. A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: a CO-promoted O2 activation
Chuah et al. Graphene-based membranes for H2 separation: recent progress and future perspective
Ye et al. Magnetic nanotubes: synthesis, properties, and applications
JP2014509933A5 (zh)
Ni et al. A novel chemical reduction route towards the synthesis of crystalline nickel nanoflowers from a mixed source
Kura et al. Synthesis and growth mechanism of long ultrafine gold nanowires with uniform diameter
CN104204278B (zh) 粒子膜层积装置及使用该装置的粒子膜层积方法
CN105499561B (zh) 一种磁性碳纳米管的制备方法
Chen et al. Fluorination induced half metallicity in two-dimensional few zinc oxide layers
Zhu et al. Fe 3 O 4–Au and Fe 2 O 3–Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties
Matli et al. Fabrication, characterization, and magnetic behavior of porous ZnFe 2 O 4 hollow microspheres
Qayyum et al. Boron nitride nanoscrolls: Structure, synthesis, and applications
TWI342027B (en) Method for making twisted yarn
Ren et al. Morphology selective preparation and formation mechanism of graphene nanoribbons from graphite by liquid-phase pulsed laser ablation
Zhang et al. Chemical segregation in metallic glass nanowires
Li et al. Fabrication and magnetic properties of FeCo alloy nanotube array
CN104999088A (zh) 基于石墨烯自组装多层膜快速还原制备金纳米粒子方法
Liu et al. A novel solution-phase route for the synthesis of crystalline silver nanowires
Li et al. Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions
CN106145082A (zh) 窄手性分布单壁碳纳米管水平阵列及其制备方法
Wang et al. General in situ chemical etching synthesis of ZnO nanotips array
Alahmadi et al. Graphene-assisted magnetic iron carbide nanoparticle growth

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant