CN104200449A - 一种基于压缩感知的fpm算法 - Google Patents

一种基于压缩感知的fpm算法 Download PDF

Info

Publication number
CN104200449A
CN104200449A CN201410420927.0A CN201410420927A CN104200449A CN 104200449 A CN104200449 A CN 104200449A CN 201410420927 A CN201410420927 A CN 201410420927A CN 104200449 A CN104200449 A CN 104200449A
Authority
CN
China
Prior art keywords
led
image
fpm
compressed sensing
time shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410420927.0A
Other languages
English (en)
Other versions
CN104200449B (zh
Inventor
张永兵
蒋伟鑫
戴琼海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201410420927.0A priority Critical patent/CN104200449B/zh
Publication of CN104200449A publication Critical patent/CN104200449A/zh
Application granted granted Critical
Publication of CN104200449B publication Critical patent/CN104200449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Studio Devices (AREA)

Abstract

一种基于压缩感知的FPM算法,包括以下步骤:1)用FPM平台采集不同光照下的低分辨率的图像ri(x,y);2)基于不同角度光照下所得到的图像其实是正射下的图像在频域进行平移得到的特点,对采集到的图像ri(x,y)建立约束,基于该约束,根据压缩感知构造求解最优问题的优化问题;3)通过迭代的方法求解所述优化问题得到稀疏系数α,将α与过完备字典相乘得到最终结果。本算法利用压缩感知技术的优势,将原有的FPM算法进行了数学抽象,将频域迭代的方法抽象成求解最优解的问题,从一个新的角度来解决图像超分辨率重建问题,提高了算法的重建效果。

Description

一种基于压缩感知的FPM算法
技术领域
本发明属于显微成像、计算机视觉、计算机图形学领域,尤其是立体图形学领域,特别涉及一种利用基于压缩感知的FPM算法的图像超分辨率重建的技术。
技术背景
压缩感知作为一个新的采样理论,通过开发信号的稀疏特性,在远小于Nyquist采样频率的情况下,用随机采样获取信号的离散样本,再通过非线性重建的算法完美地重建信号。这一理论的提出,抛弃了信号的冗余信息,在信息论、图像处理、光学成像和模式识别等领域得到了广泛地应用。
Fourier ptychographic microscopy(FPM)是一种基于显微镜平台的图像超分辨率重建的方法,可以有效克服空间带宽积(space bandwidth product)受限的矛盾问题。常见的光学成像平台都会受到空间带宽积的限制,即如果我们观察的视野范围比较广,那么观测物体的放大倍数就会偏小;反之,如果我们观测物体的放大倍数比较大,那么视野的范围就会缩小。而FPM算法很好地解决了这一问题,让我们能够获取广视野、高分辨率的图像,由此,突破了光学成像系统的物理极限。
发明内容
本发明的目的在于提供一种基于压缩感知的FPM算法。
本发明提供的基于压缩感知的FPM算法包括以下步骤:
1)用FPM平台采集不同光照下的低分辨率的图像ri(x,y),包括:控制LED阵列中LED逐点发光,成像装置选择当前LED对应的曝光时间采集图像ri(x,y);
2)基于不同角度光照下所得到的图像其实是正射下的图像在频域进行平移得到的特点,对采集到的图像ri(x,y)建立约束
r i ( x , y ) = | | F - 1 { C i * F { H ( x , y ) } * C i T } | | 2
其中,H(x,y)为最终结果,Ci为提取矩阵,为提取矩阵Ci的转置;
基于该约束,根据压缩感知构造求解最优问题的优化问题:
min | | α | | 1 s . t . r 1 ( x , y ) = | | F - 1 { C 1 * F { φα } * C 1 T } | | 2 r 2 ( x , y ) = | | F - 1 { C 2 * F { φα } * C 2 T } | | 2 · · · r L ( x , y ) = | | F - 1 { C L * F { φα } * C L T } | | 2
其中,L等于LED阵列中LED的数量,φ为过完备字典,α是稀疏系数;
3)通过迭代的方法求解所述优化问题得到稀疏系数α,将α与过完备字典相乘得到最终结果。
本发明的优点在于充分利用了压缩感知技术的优势,将原有的FPM算法进行了数学抽象,将频域迭代的方法抽象成求解最优解的问题,从一个新的角度来解决图像超分辨率重建问题,提高了算法的重建效果。
附图说明
图1为一些实施例使用的FPM平台;
图2为FPM平台使用的可编程LED阵列;
图3为FPM实验原理图;
图4为FPM的流程图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
图1示出了一些实施例使用的FPM平台,图2示出了FPM平台使用的可编程LED阵列。参照图1-2,该FPM平台包括显微镜,显微镜设置有相机(即成像装置),显微镜的光源采用可编程的LED阵列,LED阵列的规模为32X32,LED阵列的相邻两个LED之间的距离为4mm,LED阵列与载物台之间的距离一般选择7~8cm。由图1可见,该FPM平台主要是基于显微镜,相比于传统显微镜,在光源位置放置了一个可编程LED阵列来代替原有的光源。
在一些实施例中,基于压缩感知的FPM算法包括以下步骤:
1)用FPM平台采集不同光照下的低分辨率的图像ri(x,y):
利用计算机控制LED阵列的发光和相机的图像采集,实验原理如图3所示:
i.首先校准LED的位置,确定LED阵列中各个LED对应的相机曝光时间。一种较佳方法如下:
1.确定样本正下方的LED(即中心LED)的位置:固定一个曝光时间,LED阵列上的灯逐点发光,用相机采集每一张图像。计算图像的亮度分布,估计中心LED的位置。
2.确定不同区域的曝光时间:选定几个不同的曝光时间,LED阵列上的灯逐点发光,用相机采集每一张图像,筛选每个LED对应的图像,确定每个LED对应需要的曝光时间。主要的原则是:
a)曝光时间尽可能选择短的,但是一定保证基本保留了图像信息。
b)与中心LED距离相同LED所需要的曝光时间应该一样。
最终确定的中心14X14 LED的曝光时间如下:
30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 10 10 10 10 30 30 30 30 30
30 30 30 30 10 5 5 5 5 10 30 30 30 30
30 30 30 10 5 1 1 1 1 5 10 30 30 30
30 30 30 10 5 1 1 1 1 5 10 30 30 30
30 30 30 10 5 1 1 1 1 5 1O 30 30 30
30 30 30 10 5 1 1 1 1 5 1O 30 30 30
30 30 30 30 10 5 5 5 5 10 30 30 30 30
30 30 30 30 30 1O 10 10 10 30 30 30 30 30
3O 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30
30 30 30 30 30 30 30 30 30 30 30 30 30 30
ii.采集低分辨率图像:用计算机控制LED阵列中LED逐点发光,同时相机选取对应的曝光时间来采集图像。
2)数学模型
FPM算法(流程如图4所示)基于一个假设:不同角度的光照所得到的图像,其实是正射下的图像在频域进行平移得到的。那么基于这个假设,我们可以得到图像间存在的关系:
g ( x , y ) e j 2 π ( u 0 x M + v 0 y N ) ⇔ G ( u - u 0 , v - v 0 )
其中,g(x,y)表示空间域的图像,G(u,v)表示傅里叶域的图像,(我们定义小写字母表示空间域的结果,大写字母表示傅里叶域的结果。)M、N表示图像的尺寸。而图像的傅里叶变换满足二维离散傅里叶变换:
G ( u , v ) = F { g ( x , y ) } = Σ x = 0 M - 1 Σ y = 0 N - 1 g ( x , y ) e - j 2 π ( ux M + vy N )
而图像的傅里叶逆变换则满足二维离散傅里叶逆变换:
g ( x , y ) = F - 1 { G ( u , v ) } = Σ u = 0 M - 1 Σ v = 0 N - 1 G ( u , v ) e j 2 π ( ux M + vy N )
假设我们对于最终结果(重建的图像)的估计为H(x,y),那么对于每一张采集到的图像ri(x,y),则有
r i ( x , y ) = | | F - 1 { C i * F { H ( x , y ) } * C i T } | | 2
其中Ci表示提取矩阵,即从MxN(恢复结果)的矩阵中提取mxn(采集图像)的矩阵,为提取矩阵Ci的转置。
基于这个约束,我们可以根据压缩感知构造求解最优问题的优化问题:
min | | α | | 1 s . t . r 1 ( x , y ) = | | F - 1 { C 1 * F { φα } * C 1 T } | | 2 r 2 ( x , y ) = | | F - 1 { C 2 * F { φα } * C 2 T } | | 2 · · · r L ( x , y ) = | | F - 1 { C L * F { φα } * C L T } | | 2
其中,C1、C2、……、CL分别为与LED阵列的第1个LED、第2个LED、……、第L个LED对应的提取矩阵,L等于LED矩阵中LED的数量,φ为过完备字典(先验知识),α则是我们要求解的稀疏系数。
3)求解数学模型:
通过迭代的方法可以求解优化问题,获得稀疏系数α,然后将α与过完备字典相乘,即可得到最终结果(重建的图像)。

Claims (3)

1.一种基于压缩感知的FPM算法,其特征在于包括以下步骤:
1)用FPM平台采集不同光照下的低分辨率的图像ri(x,y),包括:控制LED阵列中LED逐点发光,成像装置选择当前LED对应的曝光时间采集图像ri(x,y);
2)基于不同角度光照下所得到的图像其实是正射下的图像在频域进行平移得到的特点,对采集到的图像ri(x,y)建立约束
r i ( x , y ) = | | F - 1 { C i * F { H ( x , y ) } * C i T } | | 2
其中,H(x,y)为最终结果,Ci为提取矩阵,为提取矩阵Ci的转置;
基于该约束,根据压缩感知构造求解最优问题的优化问题:
min | | α | | 1 s . t . r 1 ( x , y ) = | | F - 1 { C 1 * F { φα } * C 1 T } | | 2 r 2 ( x , y ) = | | F - 1 { C 2 * F { φα } * C 2 T } | | 2 · · · r L ( x , y ) = | | F - 1 { C L * F { φα } * C L T } | | 2
其中,L等于LED阵列中LED的数量,φ为过完备字典,α是稀疏系数;
3)通过迭代的方法求解所述优化问题得到稀疏系数α,将α与过完备字典相乘得到最终结果。
2.根据权利要求1所述的基于压缩感知的FPM算法,其特征在于,所述FPM平台包括显微镜,显微镜设置有成像装置,显微镜的光源采用可编程的LED阵列,LED阵列的相邻两个LED之间的距离为4mm,LED阵列与载物台之间的距离为7~8cm。
3.根据权利要求1所述的基于压缩感知的FPM算法,其特征在于,采用以下方法确定LED阵列中各个LED对应的成像装置曝光时间:
首先确定中心LED的位置:固定一个曝光时间,LED阵列上的灯逐点发光,用成像装置采集每一张图像,计算图像的亮度分布,估计中心LED的位置;
然后确定不同区域的曝光时间:选定几个不同的曝光时间,LED阵列上的灯逐点发光,用成像装置采集每一张图像,筛选每个LED对应的图像,确定每个LED对应需要的曝光时间;主要的原则是:a)曝光时间尽可能选择短的,但是一定保证基本保留了图像信息;b)与中心LED距离相同的LED所需要的曝光时间应该一样;
所述中心LED为样本正下方的LED。
CN201410420927.0A 2014-08-25 2014-08-25 一种基于压缩感知的fpm方法 Active CN104200449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410420927.0A CN104200449B (zh) 2014-08-25 2014-08-25 一种基于压缩感知的fpm方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410420927.0A CN104200449B (zh) 2014-08-25 2014-08-25 一种基于压缩感知的fpm方法

Publications (2)

Publication Number Publication Date
CN104200449A true CN104200449A (zh) 2014-12-10
CN104200449B CN104200449B (zh) 2016-05-25

Family

ID=52085735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410420927.0A Active CN104200449B (zh) 2014-08-25 2014-08-25 一种基于压缩感知的fpm方法

Country Status (1)

Country Link
CN (1) CN104200449B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105139361A (zh) * 2015-09-18 2015-12-09 清华大学深圳研究生院 一种基于非线性优化的fpm算法的图像超分辨率重建方法
CN105225202A (zh) * 2015-09-23 2016-01-06 清华大学深圳研究生院 一种基于fpm算法的图像超分辨率重建的方法
WO2016101007A1 (en) * 2014-12-23 2016-06-30 Canon Kabushiki Kaisha Reconstruction algorithm for fourier ptychographic imaging
CN106199941A (zh) * 2016-08-30 2016-12-07 浙江大学 一种移频光场显微镜以及三维超分辨微观显示方法
CN107209362A (zh) * 2015-01-21 2017-09-26 加州理工学院 傅立叶重叠关联断层摄影
US20170371141A1 (en) 2014-12-23 2017-12-28 Canon Kabushiki Kaisha Illumination systems and devices for fourier ptychographic imaging
CN108351504A (zh) * 2015-11-11 2018-07-31 斯科皮奥实验室有限公司 用于在不同照射条件下生成图像的计算显微镜及方法
US10401609B2 (en) 2012-10-30 2019-09-03 California Institute Of Technology Embedded pupil function recovery for fourier ptychographic imaging devices
US10419665B2 (en) 2013-08-22 2019-09-17 California Institute Of Technology Variable-illumination fourier ptychographic imaging devices, systems, and methods
CN110579871A (zh) * 2019-09-05 2019-12-17 杭州电子科技大学 基于傅里叶叠层显微成像的led照明优化方法及装置
US10568507B2 (en) 2016-06-10 2020-02-25 California Institute Of Technology Pupil ptychography methods and systems
US10606055B2 (en) 2013-07-31 2020-03-31 California Institute Of Technology Aperture scanning Fourier ptychographic imaging
US10652444B2 (en) 2012-10-30 2020-05-12 California Institute Of Technology Multiplexed Fourier ptychography imaging systems and methods
US10679763B2 (en) 2012-10-30 2020-06-09 California Institute Of Technology Fourier ptychographic imaging systems, devices, and methods
US10684458B2 (en) 2015-03-13 2020-06-16 California Institute Of Technology Correcting for aberrations in incoherent imaging systems using fourier ptychographic techniques
US10718934B2 (en) 2014-12-22 2020-07-21 California Institute Of Technology Epi-illumination Fourier ptychographic imaging for thick samples
US10732396B2 (en) 2015-01-26 2020-08-04 California Institute Of Technology Array level Fourier ptychographic imaging
US10754140B2 (en) 2017-11-03 2020-08-25 California Institute Of Technology Parallel imaging acquisition and restoration methods and systems
US11092795B2 (en) 2016-06-10 2021-08-17 California Institute Of Technology Systems and methods for coded-aperture-based correction of aberration obtained from Fourier ptychography
US11468557B2 (en) 2014-03-13 2022-10-11 California Institute Of Technology Free orientation fourier camera

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750677A (zh) * 2012-06-12 2012-10-24 清华大学 基于同尺度结构自相似与压缩感知的单图像超分辨率方法
CN103020909A (zh) * 2012-12-06 2013-04-03 清华大学 基于多尺度结构自相似与压缩感知的单图像超分辨率方法
CN103632359A (zh) * 2013-12-13 2014-03-12 清华大学深圳研究生院 一种视频超分辨率处理方法
CN103884427A (zh) * 2014-03-11 2014-06-25 清华大学 高光谱高空间分辨率的图像获取方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750677A (zh) * 2012-06-12 2012-10-24 清华大学 基于同尺度结构自相似与压缩感知的单图像超分辨率方法
CN103020909A (zh) * 2012-12-06 2013-04-03 清华大学 基于多尺度结构自相似与压缩感知的单图像超分辨率方法
CN103632359A (zh) * 2013-12-13 2014-03-12 清华大学深圳研究生院 一种视频超分辨率处理方法
CN103884427A (zh) * 2014-03-11 2014-06-25 清华大学 高光谱高空间分辨率的图像获取方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUOAN ZHENG ET AL: "Wide-field, high-resolution Fourier ptychographic microscopy", 《NAT. PHOTONICS》, vol. 7, no. 9, 1 September 2013 (2013-09-01), XP055181687, DOI: doi:10.1038/nphoton.2013.187 *
樊博等: "基于压缩感知的超分辨率图像重建", 《计算机应用》, vol. 33, no. 2, 1 February 2013 (2013-02-01) *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401609B2 (en) 2012-10-30 2019-09-03 California Institute Of Technology Embedded pupil function recovery for fourier ptychographic imaging devices
US10679763B2 (en) 2012-10-30 2020-06-09 California Institute Of Technology Fourier ptychographic imaging systems, devices, and methods
US10652444B2 (en) 2012-10-30 2020-05-12 California Institute Of Technology Multiplexed Fourier ptychography imaging systems and methods
US10606055B2 (en) 2013-07-31 2020-03-31 California Institute Of Technology Aperture scanning Fourier ptychographic imaging
US10419665B2 (en) 2013-08-22 2019-09-17 California Institute Of Technology Variable-illumination fourier ptychographic imaging devices, systems, and methods
US11468557B2 (en) 2014-03-13 2022-10-11 California Institute Of Technology Free orientation fourier camera
US10718934B2 (en) 2014-12-22 2020-07-21 California Institute Of Technology Epi-illumination Fourier ptychographic imaging for thick samples
US20170371141A1 (en) 2014-12-23 2017-12-28 Canon Kabushiki Kaisha Illumination systems and devices for fourier ptychographic imaging
US10859809B2 (en) 2014-12-23 2020-12-08 Canon Kabushiki Kaisha Illumination systems and devices for Fourier Ptychographic imaging
WO2016101007A1 (en) * 2014-12-23 2016-06-30 Canon Kabushiki Kaisha Reconstruction algorithm for fourier ptychographic imaging
CN107209362A (zh) * 2015-01-21 2017-09-26 加州理工学院 傅立叶重叠关联断层摄影
US10665001B2 (en) 2015-01-21 2020-05-26 California Institute Of Technology Fourier ptychographic tomography
US10754138B2 (en) 2015-01-26 2020-08-25 California Institute Of Technology Multi-well fourier ptychographic and fluorescence imaging
US10732396B2 (en) 2015-01-26 2020-08-04 California Institute Of Technology Array level Fourier ptychographic imaging
US10684458B2 (en) 2015-03-13 2020-06-16 California Institute Of Technology Correcting for aberrations in incoherent imaging systems using fourier ptychographic techniques
CN105139361A (zh) * 2015-09-18 2015-12-09 清华大学深圳研究生院 一种基于非线性优化的fpm算法的图像超分辨率重建方法
CN105139361B (zh) * 2015-09-18 2017-12-19 清华大学深圳研究生院 一种基于非线性优化的fpm算法的图像超分辨率重建方法
CN105225202B (zh) * 2015-09-23 2018-06-29 清华大学深圳研究生院 一种基于fpm算法的图像超分辨率重建的方法
CN105225202A (zh) * 2015-09-23 2016-01-06 清华大学深圳研究生院 一种基于fpm算法的图像超分辨率重建的方法
CN108351504A (zh) * 2015-11-11 2018-07-31 斯科皮奥实验室有限公司 用于在不同照射条件下生成图像的计算显微镜及方法
US10568507B2 (en) 2016-06-10 2020-02-25 California Institute Of Technology Pupil ptychography methods and systems
US11092795B2 (en) 2016-06-10 2021-08-17 California Institute Of Technology Systems and methods for coded-aperture-based correction of aberration obtained from Fourier ptychography
CN106199941A (zh) * 2016-08-30 2016-12-07 浙江大学 一种移频光场显微镜以及三维超分辨微观显示方法
US10754140B2 (en) 2017-11-03 2020-08-25 California Institute Of Technology Parallel imaging acquisition and restoration methods and systems
CN110579871B (zh) * 2019-09-05 2021-08-03 杭州电子科技大学 基于傅里叶叠层显微成像的led照明优化方法及装置
CN110579871A (zh) * 2019-09-05 2019-12-17 杭州电子科技大学 基于傅里叶叠层显微成像的led照明优化方法及装置

Also Published As

Publication number Publication date
CN104200449B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
CN104200449B (zh) 一种基于压缩感知的fpm方法
Setzer et al. Deblurring Poissonian images by split Bregman techniques
CN102930518B (zh) 基于改进的稀疏表示的图像超分辨率方法
KR101723738B1 (ko) 딕셔너리 학습 기반 해상도 향상 장치 및 방법
CN105335972B (zh) 基于小波轮廓波变换与视觉显著性的经编织物疵点检测方法
CN104680502B (zh) 基于稀疏字典和非下采样Contourlet变换的红外图像超分辨重建方法
CN101865673B (zh) 一种微观光场采集与三维重建方法及装置
CN110313016B (zh) 一种基于稀疏正源分离模型的图像去模糊算法
CN103279935A (zh) 基于map算法的热红外遥感图像超分辨率重建方法及系统
Liu et al. Infrared image super-resolution reconstruction based on quaternion fractional order total variation with Lp quasinorm
CN107392855B (zh) 基于稀疏自编码网络与极速学习的图像超分辨重建方法
CN104463822B (zh) 基于多尺度全局滤波的多聚焦图像融合方法及其装置
CN102609920B (zh) 一种基于压缩感知的彩色数字图像修复方法
Ponti et al. Image restoration using gradient iteration and constraints for band extrapolation
CN114298950A (zh) 一种基于改进的GoDec算法的红外与可见光图像融合方法
CN110223243A (zh) 基于张量的非局部自相似和低秩正则的张量修复方法
CN105139361A (zh) 一种基于非线性优化的fpm算法的图像超分辨率重建方法
CN107154061B (zh) 一种分块压缩感知的正则化解码方法
Pan et al. Rotation invariant texture classification by ridgelet transform and frequency–orientation space decomposition
Karimi et al. A survey on super-resolution methods for image reconstruction
Solanki et al. An efficient satellite image super resolution technique for shift-variant images using improved new edge directed interpolation
Xian-chuan et al. Remote sensing image fusion based on integer wavelet transformation and ordered nonnegative independent component analysis
CN103236041A (zh) 一种基于Contourlet变换的图像超分辨率重建方法
Yang et al. Chef: convex hull of elliptic features for 3d blob detection
Huang et al. Gradient-based image deconvolution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant