CN104197935B - 一种基于移动智能终端的室内定位方法 - Google Patents

一种基于移动智能终端的室内定位方法 Download PDF

Info

Publication number
CN104197935B
CN104197935B CN201410450119.9A CN201410450119A CN104197935B CN 104197935 B CN104197935 B CN 104197935B CN 201410450119 A CN201410450119 A CN 201410450119A CN 104197935 B CN104197935 B CN 104197935B
Authority
CN
China
Prior art keywords
people
walking
intelligent terminal
value
mobile intelligent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410450119.9A
Other languages
English (en)
Other versions
CN104197935A (zh
Inventor
刘力为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Qi Ke Science And Technology Ltd
Original Assignee
Chengdu Qi Ke Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Qi Ke Science And Technology Ltd filed Critical Chengdu Qi Ke Science And Technology Ltd
Priority to CN201410450119.9A priority Critical patent/CN104197935B/zh
Publication of CN104197935A publication Critical patent/CN104197935A/zh
Application granted granted Critical
Publication of CN104197935B publication Critical patent/CN104197935B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Abstract

本发明公开了一种基于移动智能终端的室内定位方法,先利用移动智能终端中的三轴加速度传感器获取到人行走时产生的三轴加速度,利用特征匹配的算法,检测人行走的步伐;再根据移动智能终端中的方向传感器获取检测到步伐时,人行走的方向,然后根据相邻步伐之间的时间差计算步频,并估算步长;结合人行走的方向和步伐的步长,计算出人走过每一步后位置坐标的变化值,得到人的实时行走轨迹;这样仅仅利用移动智能终端自带的三轴加速度传感器及方向传感器,即可达到较高精度的室内定位,因此具有成本低,实用性强的特点。

Description

一种基于移动智能终端的室内定位方法
技术领域
本发明属于移动通信技术领域,更为具体地讲,涉及一种基于移动智能终端的室内定位方法。
背景技术
随着社会经济的高速发展,各种大型、特大型室内场馆、商场越来越多,而借助于移动智能终端中的GPS定位功能又极大的方便了人们的出行购物,包括智能手机、平板电脑在内的移动智能终端的功能也越来越强大。
目前常用的解决方法是利用人们随身携带的移动智能终端的内置传感器来实现室内定位,利用移动智能终端的内置传感器实现室内定位的技术主要又分为两类:(1)利用移动智能终端中的陀螺仪和三轴加速度传感器获取手机的角速度和加速度,结合传统的惯性导航算法计算手机的位移,但是由于移动智能终端中的陀螺仪和三轴加速度传感器的精度达不到惯性导航要求的精度,其计算结果精度较低,且随着行走距离的增加会产生较大的累积误差;(2)利用移动智能终端中的三轴加速度传感器获取人行走产生的加速度,判断人行走的步伐,记录人行走的步数;并且利用移动智能终端中的方向传感器获取人行走的方向;利用人行走的步数、方向,再结合人行走的步长,即可计算出人行走的轨迹;这种方法的可靠性较高,计算难度小于前一种方法。然而同样存在以下问题:
(1)计步不精确。传统的计算人行走的位移的方法是,使用一个固定的阈值来判断移动智能终端三轴加速度传感器读数的波峰或波谷来计步,但是由于人的动作行为很复杂且不确定,因此其计算出的步数通常比实际步数大;
(2)步长估计不准确。传统的计算步长的方法是,使用一个固定的步长来估计人的位移,这忽略了人的个体差异以及人行走的步频导致的步长变化,计算出的位移与实际值相差较大。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于移动智能终端的室内定位方法,通过移动智能终端中的方向传感器获取行人的实际行走轨迹,具有定位精准、成本低和实用性强的优点。
为实现上述发明目的,本发明一种基于移动智能终端的室内定位方法,其特征在于,包括以下步骤:
K1)、根据移动智能终端中的三轴加速度传感器获取人行走时产生的三轴加速度值,再利用特征匹配的计步算法,检测出人行走的步伐,并记录该步伐的时间戳;
K2)、根据移动智能终端中的方向传感器获取检测到人行走步伐时的方向;
K3)、根据检测到人行走相邻步伐的时间戳的差值,计算人行走时的步频,再根据人行走时的步频和身高的关系表,估算人行走时的步长;
K4)、根据人行走时的步长以及人行走的方向,计算出人行走后的实际位置的坐标变化值,从而定位到人的实时行走轨迹。
其中,利用特征匹配的计步算法检测人行走的步伐和对应时间戳的方法为:
K2.1)、将移动智能终端中的三轴加速度传感器获得的人行走时产生的三轴加速度以及每个读数对应的时间戳,分别记作:
x轴加速度:Ax={x1,x2,…,xn},
y轴加速度:Ay={y1,y2,…,yn},
z轴加速度:Az={z1,z2,…,zn},
对应的时间戳:Ta={t1,t2,…,tn};
K2.2)、比较Ax、Ay、Az的绝对值的和,即找出绝对值和最大的一组轴加速度,并记为A={a1,a2,…,an};
K2.3)、找出A中所有满足条件ap>ap-1且ap>ap+1的值,其中,2≤p≤n-1,将满足该条件的值及该值对应的时间戳分别记为:Ma和Mt,Ma={ma1,ma2,…,mak},Mt={mt1,mt2,…,mtk},其中,k为满足条件ap>ap-1且ap>ap+1的个数;
K2.4)、将Ma中每三个相邻的值记为一组,即{maj-1,maj,maj+1},以及该组值对应的时间戳记为:{mtj-1,mtj,mtj+1},其中,j={2,3,…k-1};当{maj-1,maj,maj+1}和{mtj-1,mtj,mtj+1}满足人行走时轴加速度的变化特征:maj>maj-1且maj>maj+1且mtj+1-mtj-1<0.5秒时,则判定行人走了一步,对应的时间戳记为mtj
进一步地,所述步骤K2)中获取人行走步伐方向的方法为:
K3.1)、记录人行走过程中移动智能终端中的方向传感器的读数以及每个读数对应的时间戳,分别记作:
方向:D={D1,D2,…,Dh};每个方向值对应的时间戳:Td={t′1,t′2,…,t′h};其中,所有方向值的取值范围为0°~359°,且延逆时针方向增大,当计算过程中出现超出该范围的方向值时,则将该方向值转换到规定范围内,具体转换方法为:
当D>360°时,则D=D-360°;
当D<0°时,则D=D+360°;
K3.2)、在Td中找出与步骤K2.4)中所述的mtj时刻最接近的时间戳,记作t′g,其中,1≤g≤h;
K3.3)、在D中找出与t′g对应的方向值,记作Dg,其中,1≤g≤h;
K3.4)、通过对Dg进行校正,获取到人在行走步伐时的方向;
K3.4.1)、在进行定位导航之前,针对不同的环境、地域,记录移动智能终端分别朝向正东、正南、正西、正北四个方向时方向传感器的读数,分别记作:正东De、正南Ds、正西Dw、正北Dn
K3.4.2)、根据De、Ds、Dw和Dn,分别计算出De与Dn、Ds与De、Dw与Ds、Dn与Dw之间包含的角度值,分别记作:Den、Dse、Dws、Dnw
K3.4.3)、在进行定位时,根据De、Ds、Dw、Dn、Den、Dse、Dws和Dnw,来校正Dg,将校正后的方向值作为行人在mtj时刻的行走方向,记作D′。
其中,所述Dg的校正方法为:
当Dg位于正东与正北之间,则D′=Dg*90/Den-De
当Dg位于正南与正东之间,则D′=90+(Dg-Den)*90/Dse-De
当Dg位于正西与正南之间,则D′=180+(Dg-Dse-Den)*90/Dws-De
当Dg位于正北与正西之间,则D′=270+(Dg-Dws-Dse-Den)*90/Dnw-De
更进一步地,所述的步骤K4)中,定位人行走时的实际轨迹的方法为:
K4.1)、当行人走的第N步时,其中N为正整数,根据步骤K1)可以获取到第N步的时间戳与第N-1步的时间戳的差值,记作Δt;再根据步骤K2)可以获取到第N步的行走方向,记作D′N
K4.2)、根据Δt计算出第N步的步频,记为FS;根据步频和身高的关系表,计算出人行走时第N步的步长,记作LN
K4.3)、根据第N-1步的坐标,再结合第N步的步长LN和方向D′N,可以计算出第N步的坐标,若第N-1步坐标为(XN-1,YN-1),则第N步的坐标(XN,YN)为:
X N = X N - 1 + L N * cos D N ′ Y N = Y N - 1 - L N * sin D N ′
进一步,若人行走的起点坐标为(X0,Y0),则第N步的坐标(XN,YN)为:
X N = X 0 + Σ k = 1 N L k * cos D k ′ Y N = Y 0 - Σ k = 1 N L k * sin D k ′
其中,Lk为第k步的步长,D′k为第k步的方向,k={1,2,3,…,N},根据坐标值的变换量定位到人的实时行走轨迹。
本发明的发明目的是这样实现的:
本发明基于移动智能终端的室内定位方法,先利用移动智能终端中的三轴加速度传感器获取到人行走时产生的三轴加速度,利用特征匹配的算法,检测人行走的步伐;再根据移动智能终端中的方向传感器获取检测到步伐时,人行走的方向,然后根据相邻步伐之间的时间差计算步频,并估算步长;结合人行走的方向和步伐的步长,计算出人走过每一步后位置坐标的变化值,得到人的实时行走轨迹;这样仅仅利用移动智能终端自带的三轴加速度传感器及方向传感器,即可达到较高精度的室内定位,因此具有成本低,实用性强的特点。
同时,本发明基于移动智能终端的室内定位方法还具有以下有益效果:
(1)、本发明只需利用移动智能终端自带的三轴加速度传感器及方向传感器来进行室内定位,具有高实用性和低成本的优点;
(2)、通过相邻步伐时间戳的差值计算人行走时的步频,再结合人行走时的步频和身高的关系表,估算人行走时的步长,这样保证了室内定位的精准度。
附图说明
图1是本发明基于移动智能终端的室内定位方法的流程图;
图2是图1所示移动智能手机的坐标系示意图;
图3是本发明基于移动智能终端的室内定位方法的效果图;
表1是行人步频与身高的关系表。
具体实施方式
下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明基于移动智能终端的室内定位方法的流程图。
在本实施例中,在室内以移动智能手机定位为例,如图1所示,本发明一种基于移动智能手机的室内定位方法,包括以下步骤:
S1)、根据移动智能手机中的三轴加速度传感器获取人行走时产生的三轴加速度值,再利用特征匹配的计步算法,检测出人行走的步伐,并记录该步伐的时间戳;
S1.1)、将移动智能手机中的三轴加速度传感器获得的人行走时产生的三轴加速度以及每个读数对应的时间戳,分别记作:
x轴加速度:Ax={x1,x2,…,xn},
y轴加速度:Ay={y1,y2,…,yn},
z轴加速度:Az={z1,z2,…,zn},
对应的时间戳:Ta={t1,t2,…,tn};
其中,n为三轴加速度传感器从开始定位到当前定位的读数个数;
S1.2)、比较Ax、Ay、Az的绝对值的和,即找出绝对值和最大的一组轴加速度,并记为A={a1,a2,…,an};
S1.3)、找出A中所有满足条件ap>ap-1且ap>ap+1的值,其中,2≤p≤n-1,将满足该条件的值及该值对应的时间戳分别记为:Ma和Mt,Ma={ma1,ma2,…,mak},Mt={mt1,mt2,…,mtk},其中,k为满足条件ap>ap-1且ap>ap+1的个数;
S1.4)、将Ma中每三个相邻的值记为一组,即{maj-1,maj,maj+1},以及该组值对应的时间戳记为:{mtj-1,mtj,mtj+1},其中,j={2,3,…k-1};当{maj-1,maj,maj+1}和{mtj-1,mtj,mtj+1}满足人行走时轴加速度的变化特征:maj>maj-1且maj>maj+1且mtj+1-mtj-1<0.5秒时,则判定行人走了一步,对应的时间戳为mtj
S2)、根据移动智能手机中的方向传感器获取检测到人行走步伐时的方向;
S2.1)、记录人行走过程中移动智能手机中的方向传感器的读数以及每个读数对应的时间戳,分别记作:
方向:D={D1,D2,…,Dh};每个方向值对应的时间戳:Td={t′1,t′2,…,t′h};其中,h为方向传感器从开始定位到当前定位的读数个数;所有方向值的取值范围为0°~359°,且延逆时针方向增大,当计算过程中出现超出该范围的方向值时,则将该方向值转换到规定范围内,具体转换方法为:
当D>360°时,则D=D-360°;
当D<0°时,则D=D+360°;
如:当计算时出现D=-20°时,则需要转换成D=D+360°=-20°+360°=340°;
S2.2)、在Td中找出与步骤S1.4)中所述的mtj时刻最接近的时间戳,记作t′g,其中,1≤g≤h;
S2.3)、在D中找出与t′g对应的方向值,记作Dg,其中,1≤g≤h;
S2.4)、通过对Dg进行校正,获取到人在行走步伐时的方向;
S2.4.1)、在进行定位导航之前,针对不同的环境、地域,记录移动智能手机分别朝向正东、正南、正西、正北四个方向时方向传感器的读数,分别记作:正东De、正南Ds、正西Dw、正北Dn
S2.4.2)、根据De、Ds、Dw和Dn,分别计算出De与Dn、Ds与De、Dw与Ds、Dn与Dw之间包含的角度值,分别记作:Den、Dse、Dws、Dnw
在本实施例中,De=85°,Ds=183°,Dw=277°,Dn=358°,则Den=87°,Dse=98°,Dws=94°,Dnw=81°;
S2.4.3)、在进行定位时,根据De、Ds、Dw、Dn、Den、Dse、Dws和Dnw,来校正Dg,将校正后的方向值作为行人在mtj时刻的行走方向,记作D′;其中,Dg的校正方法为:
当Dg位于正东与正北之间,则D′=Dg*90/Den-De
当Dg位于正南与正东之间,则D′=90+(Dg-Den)*90/Dse-De
当Dg位于正西与正南之间,则D′=180+(Dg-Dse-Den)*90/Dws-De
当Dg位于正北与正西之间,则D′=270+(Dg-Dws-Dse-Den)*90/Dnw-De
S3)、根据检测到人行走相邻步伐的时间戳的差值,计算人行走时的步频,再根据人行走时的步频和身高的关系表,如表1所示,估算人行走时的步长;
步频(步/2秒) 步长(米)
0<步频≤2 身高/5
2<步频≤3 身高/4
3<步频≤4 身高/3
4<步频≤5 身高/2
5<步频≤6 身高/1.2
6<步频≤8 身高
步频≥8 身高*1.2
表1
S4)、根据人行走时的步长以及人行走的方向,计算出人行走后的实际位置的坐标变化值,从而定位到人的实际行走轨迹;
S4.1)、当行人走的第N步时,其中N为正整数,根据步骤S1)可以获取到第N步的时间戳与第N-1步的时间戳的差值,记作Δt;再根据步骤S2)可以获取到第N步的行走方向,记作D′N
在本实施例中,第6步的时间戳为1401173360325毫秒,第7步的时间戳为1401173360932毫秒,则第7步的Δt=607毫秒;第7步的Dg=158°,则校正后的第7步的行走方向D′7=70°;
S4.2)、根据Δt计算出第N步的步频,记为FS;根据步频和身高的关系表,计算出人行走时第N步的步长,记作LN
在本实施例中,第7步的步频F7=2/Δt=3.3步/2秒;根据步频和身高的关系表,取身高为1.7米,计算出人行走时第7步的步长L7=0.57米;
S4.3)、根据第N-1步的坐标,再结合第N步的步长LN和方向D′N,可以计算出第N步的坐标,若第N-1步坐标为(XN-1,YN-1),则第N步的坐标(XN,YN)为:
X N = X N - 1 + L N * cos D N ′ Y N = Y N - 1 - L N * sin D N ′
在本实施例中,若第6步的坐标为(X6,Y6),则第7步的坐标(X7,Y7)为:
进一步,若人行走的起点坐标为(X0,Y0),则第N步的坐标(XN,YN)为:
X N = X 0 + Σ k = 1 N L k * cos D k ′ Y N = Y 0 - Σ k = 1 N L k * sin D k ′
其中,Lk为第k步的步长,D′k为第k步的方向,k={1,2,3,…,N},如图3所示,得到人行走时的实时轨迹。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

Claims (4)

1.一种基于移动智能终端的室内定位方法,其特征在于,包括以下步骤:
(1)、根据移动智能终端中的三轴加速度传感器获取人行走时产生的三轴加速度值,再利用特征匹配的计步算法,检测出人行走的步伐,并记录该步伐的时间戳;
(2)、根据移动智能终端中的方向传感器获取检测到人行走步伐时的方向;
(3)、根据检测到人行走相邻步伐的时间戳的差值,计算人行走时的步频,再根据人行走时的步频和身高的关系表,估算人行走时的步长;
(4)、根据人行走时的步长以及人行走的方向,计算出人行走后的实际位置的坐标变化值,从而定位到人的实时行走轨迹;
其中,所述的利用特征匹配的计步算法检测人行走的步伐和对应时间戳的方法为:
2.1)、将移动智能终端中的三轴加速度传感器获得的人行走时产生的三轴加速度以及每个读数对应的时间戳,分别记作:
x轴加速度:Ax={x1,x2,…,xn},
y轴加速度:Ay={y1,y2,…,yn},
z轴加速度:Az={z1,z2,…,zn},
对应的时间戳:Ta={t1,t2,…,tn};
其中,n为每轴加速度总数或时间戳总数;
2.2)、比较Ax、Ay、Az的绝对值的和,即找出绝对值和最大的一组轴加速度,并记为A={a1,a2,…,an};
2.3)、找出A中所有满足条件ap>ap-1且ap>ap+1的值,其中,2≤p≤n-1,将满足该条件的值及该值对应的时间戳分别记为:Ma和Mt,Ma={ma1,ma2,…,mak},Mt={mt1,mt2,…,mtk},其中,k为满足条件ap>ap-1且ap>ap+1的个数;
2.4)、将Ma中每三个相邻的值记为一组,即{maj-1,maj,maj+1},以及该组值对应的时间戳记为:{mtj-1,mtj,mtj+1},其中,j={2,3,…k-1};当{maj-1,ma,maj+1}和{mtj-1,mt,mtj+1}满足人行走时轴加速度的变化特征:maj>maj-1且maj>maj+1且mtj+1-mtj-1<0.5秒时,则判定行人走了一步,对应的时间戳记为mtj,其中,ma、mt分别代表轴加速度及该轴加速度对应的时间戳。
2.根据权利要求1所述的基于移动智能终端的室内定位方法,其特征在于,所述的步骤(2)中,利用方向传感器获取检测到人行走步伐时的方向的方法为:
3.1)、记录人行走过程中移动智能终端中的方向传感器的读数以及每个读数对应的时间戳,分别记作:
方向:D={D1,D2,…,Dh};每个方向值对应的时间戳:Td={t'1,t'2,…,t'h};其中,所有方向值的取值范围为0°~359°,且延逆时针方向增大;h代表方向值在0°~359°的范围内取值的总个数;当计算过程中出现超出该范围的方向值时,则将该方向值转换到规定范围内,具体转换方法为:
当D>360°时,则D=D-360°;
当D<0°时,则D=D+360°;
3.2)、在Td中找出与步骤2.4)中所述的mtj时刻最接近的时间戳,记作t'g,其中,1≤g≤h;
3.3)、在D中找出与t'g对应的方向值,记作Dg,其中,1≤g≤h;
3.4)、通过对Dg进行校正,获取到人在行走步伐时的方向;
3.4.1)、在进行定位导航之前,针对不同的环境、地域,记录移动智能终端分别朝向正东、正南、正西、正北四个方向时方向传感器的读数,分别记作:正东De、正南Ds、正西Dw、正北Dn
3.4.2)、根据De、Ds、Dw和Dn,分别计算出De与Dn、Ds与De、Dw与Ds、Dn与Dw之间包含的角度值,分别记作:Den、Dse、Dws、Dnw
3.4.3)、在进行定位时,根据De、Ds、Dw、Dn、Den、Dse、Dws和Dnw,来校正Dg,将校正后的方向值作为行人在mtj时刻的行走方向,记作D'。
3.根据权利要求2所述的基于移动智能终端的室内定位方法,其特征在于,所述Dg的校正方法为:
当Dg位于正东与正北之间,则D'=Dg*90/Den-De
当Dg位于正南与正东之间,则D'=90+(Dg-Den)*90/Dse-De
当Dg位于正西与正南之间,则D'=180+(Dg-Dse-Den)*90/Dws-De
当Dg位于正北与正西之间,则D'=270+(Dg-Dws-Dse-Den)*90/Dnw-De
4.根据权利要求1所述的基于移动智能终端的室内定位方法,其特征在于,所述的步骤(4)中,利用人行走后的实际位置的坐标变化值定位到人的实时行走轨迹的方法为:
5.1)、当行人走的第N步时,其中N为正整数,根据步骤(1)可以获取到第N步的时间戳与第N-1步的时间戳的差值,记作Δt;再根据步骤(2)可以获取到第N步的行走方向,记作D'N
5.2)、根据Δt计算出第N步的步频,记为FS;根据步频和身高的关系表,计算出人行走时第N步的步长,记作LN
5.3)、根据第N-1步的坐标,再结合第N步的步长LN和方向D'N,可以计算出第N步的坐标,若第N-1步坐标为(XN-1,YN-1),则第N步的坐标(XN,YN)为:
X N = X N - 1 + L N * cos D N ′ Y N = Y N - 1 - L N * s i n D N ′
进一步,若人行走的起点坐标为(X0,Y0),则第N步的坐标(XN,YN)为:
X N = X 0 + Σ k = 1 N L k * cos D k ′ Y N = Y 0 - Σ k = 1 N L k * s i n D k ′
其中,Lk为第k步的步长,D'k为第k步的方向,k={1,2,3,…,N},根据坐标值的变换量定位到人的实时行走轨迹。
CN201410450119.9A 2014-05-29 2014-09-05 一种基于移动智能终端的室内定位方法 Expired - Fee Related CN104197935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410450119.9A CN104197935B (zh) 2014-05-29 2014-09-05 一种基于移动智能终端的室内定位方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2014102329047 2014-05-29
CN201410232904.7 2014-05-29
CN201410232904 2014-05-29
CN201410450119.9A CN104197935B (zh) 2014-05-29 2014-09-05 一种基于移动智能终端的室内定位方法

Publications (2)

Publication Number Publication Date
CN104197935A CN104197935A (zh) 2014-12-10
CN104197935B true CN104197935B (zh) 2017-01-25

Family

ID=52083263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410450119.9A Expired - Fee Related CN104197935B (zh) 2014-05-29 2014-09-05 一种基于移动智能终端的室内定位方法

Country Status (1)

Country Link
CN (1) CN104197935B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634345B (zh) * 2015-01-28 2018-02-16 华侨大学 一种自适应步长的室内轨迹追踪方法
CN104864886B (zh) * 2015-05-20 2018-09-25 华南师范大学 基于微纳米级的三轴加速度传感器的运动监测方法及系统
CN105043393B (zh) * 2015-08-19 2017-10-10 厦门大学 一种基于传感器的行人室内定位方法
CN106485934B (zh) * 2015-08-25 2020-03-13 库天下(北京)信息技术有限公司 一种反向导航找寻目标车辆的方法及装置
CN105628028A (zh) * 2016-01-04 2016-06-01 成都卫士通信息产业股份有限公司 一种基于手机内置传感器的室内三维定位系统及定位方法
CN107195126A (zh) * 2017-05-08 2017-09-22 广州畅途汽车技术开发有限公司 一种控制储物终端进行物品存放的方法及系统
CN107991670B (zh) * 2017-11-21 2022-01-18 宇龙计算机通信科技(深圳)有限公司 导航方法及移动终端
CN116380059A (zh) * 2021-12-23 2023-07-04 中兴通讯股份有限公司 行走轨迹的确定方法、终端和计算机可读存储介质
CN114485647A (zh) * 2022-01-29 2022-05-13 宁波诺丁汉大学 一种运动轨迹确定方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226061A (zh) * 2008-02-21 2008-07-23 上海交通大学 适用于步行者的定位方法
CN102168986A (zh) * 2010-01-19 2011-08-31 精工爱普生株式会社 步幅推测方法、移动轨迹计算方法及步幅推测装置
CN102944240A (zh) * 2012-11-02 2013-02-27 清华大学 一种基于智能手机的惯性导航系统及方法
CN103591959A (zh) * 2013-09-28 2014-02-19 曹元� 室内人员的定位方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334131B2 (ja) * 2010-02-08 2013-11-06 Kddi株式会社 地磁気センサ及び加速度センサを用いて歩行者の進行方向を決定する携帯端末、プログラム及び方法
KR101250215B1 (ko) * 2012-05-31 2013-04-03 삼성탈레스 주식회사 칼만 필터와 보행 상태 추정 알고리즘을 이용한 보행자 관성항법 시스템 및 보행자 관성항법 시스템의 높이 추정 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226061A (zh) * 2008-02-21 2008-07-23 上海交通大学 适用于步行者的定位方法
CN102168986A (zh) * 2010-01-19 2011-08-31 精工爱普生株式会社 步幅推测方法、移动轨迹计算方法及步幅推测装置
CN102944240A (zh) * 2012-11-02 2013-02-27 清华大学 一种基于智能手机的惯性导航系统及方法
CN103591959A (zh) * 2013-09-28 2014-02-19 曹元� 室内人员的定位方法

Also Published As

Publication number Publication date
CN104197935A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104197935B (zh) 一种基于移动智能终端的室内定位方法
CN104061934B (zh) 基于惯性传感器的行人室内位置跟踪方法
CN104655137B (zh) 行人航迹推测辅助的Wi‑Fi信号指纹定位算法
CN102128625B (zh) 重力辅助惯性导航系统中重力图匹配的初始匹配方法
CN102944240B (zh) 一种基于智能手机的惯性导航系统及方法
CN109000642A (zh) 一种改进的强跟踪容积卡尔曼滤波组合导航方法
CN104977006A (zh) 一种基于模糊理论和多传感器融合的室内定位方法
CN107490378B (zh) 一种基于mpu6050与智能手机的室内定位与导航的方法
CN108225324B (zh) 一种基于智能终端的地磁匹配与pdr融合的室内定位方法
CN104613965B (zh) 一种基于双向滤波平滑技术的步进式行人导航方法
CN104121905A (zh) 一种基于惯性传感器的航向角获取方法
CN104713554A (zh) 一种基于mems惯性器件与安卓智能手机融合的室内定位方法
CN101793522B (zh) 基于抗差估计的稳健滤波方法
CN103776446A (zh) 一种基于双mems-imu的行人自主导航解算算法
CN103471586B (zh) 一种传感器辅助的终端组合定位方法及装置
CN108303043B (zh) 多传感器信息融合的植物叶面积指数检测方法及系统
CN106525043A (zh) 一种智能路线规划方法
CN102168979B (zh) 一种基于三角形约束模型的无源导航的等值线匹配方法
CN104251702A (zh) 一种基于相对位姿测量的行人导航方法
CN104359496A (zh) 基于垂线偏差补偿的高精度姿态修正方法
CN106643711A (zh) 一种基于手持设备的室内定位方法及系统
Huang et al. Smartphone-based indoor position and orientation tracking fusing inertial and magnetic sensing
CN109612463A (zh) 一种基于侧向速度约束优化的行人导航定位方法
Hong et al. Pocket mattering: Indoor pedestrian tracking with commercial smartphone
CN102435193A (zh) 一种捷联惯性导航系统的高精度初始对准方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170125

Termination date: 20190905