CN104197823B - 射频四极场电极极头三维空间曲面的测量方法 - Google Patents

射频四极场电极极头三维空间曲面的测量方法 Download PDF

Info

Publication number
CN104197823B
CN104197823B CN201410486562.1A CN201410486562A CN104197823B CN 104197823 B CN104197823 B CN 104197823B CN 201410486562 A CN201410486562 A CN 201410486562A CN 104197823 B CN104197823 B CN 104197823B
Authority
CN
China
Prior art keywords
point
plane
cartridge
measurement
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410486562.1A
Other languages
English (en)
Other versions
CN104197823A (zh
Inventor
孙国平
李学敏
孙国珍
谢春安
雷海亮
张小奇
徐大宇
王丰
王文进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Modern Physics of CAS
Original Assignee
Institute of Modern Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Modern Physics of CAS filed Critical Institute of Modern Physics of CAS
Priority to CN201410486562.1A priority Critical patent/CN104197823B/zh
Publication of CN104197823A publication Critical patent/CN104197823A/zh
Application granted granted Critical
Publication of CN104197823B publication Critical patent/CN104197823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

本发明涉及三坐标测量机测量复杂三维空间曲面技术领域,尤其是涉及一种利用三坐标测量射频四极场电极极头三维空间曲面的测量方法。其对RFQ电极建立三维空间数学模型,将数学模型导入到测量软件中编制测量程序。将RFQ电极放到三坐标测量机,先手动找正,之后利用程序找正,编制测量程序,利用扫描测头测量RFQ电极极头曲线,测量极头曲线最高点,采用矢量点的方法测量极头曲面点。其采用三坐标测量机,不仅能够完成对复杂三维空间曲面的测量,而且测量精度高,测量效率快,大大提高RFQ电极极头的加工检测水平。其保证了产品加工精度,提高工作效率,直观形象的反应出加工误差。

Description

射频四极场电极极头三维空间曲面的测量方法
技术领域
本发明涉及三坐标测量机测量复杂三维空间曲面技术领域,尤其是涉及一种利用三坐标测量射频四极场电极极头三维空间曲面的测量方法。
背景技术
射频四极场(RFQ)电极的制造水平是影响RFQ腔体性能参数的关键之一。极头承载着射频高电压,其稳定可靠性对RFQ腔体非常重要,因此,能否通过良好的测量技术保证RFQ电极极头加工质量,关系RFQ腔体品质因数的高低及谐振频率的稳定性。目前,用常规测量手段时,由于RFQ电极极头是一个三维空间曲面,所以很难实现测量,是极头加工检测的难点所在。
发明内容
本发明的目的在于避免现有技术的不足提供一种射频四极场电极极头三维空间曲面的测量方法,从而有效解决现有技术的问题。
为实现上述目的,本发明采取的技术方案为:所述的射频四极场电极极头三维空间曲面的测量方法,采用三坐标测量机,其特点是包括如下步骤:
(1)、单翼形位公差及极头波浪线测量采用红宝石球型测针,每次在测量前要进行测针的校准,结果形状误差小于0.015mm,名义直径与理论值的差值小于1%为接受范围;
(2)、测量室温度应控制在20℃±2℃,测量室湿度控制在40%~65%RH;
(3)、采用UG制图软件建立射频四极场电极三维数学CAD模型,选用右手直角坐标系,以底面长度方向中心线为X轴,底面宽度方向为Y轴方向,高度方向为Z轴,坐标原点位于底平面X方向中心线和极头Z轴方向中心线在单翼端面的交点处;
(4)、通过测量软件对比极头数学模型曲线与理论曲线是否一致,确保数学模型的准确性;理论曲线是通过束流动力学程序计算的一组数据,类似 一条谐振曲线,呈波浪线形状,测量人员通过三坐标测量软件在三维CAD数学模型上截取出测量点,测量数据的拟合曲线和理论曲线之间的对比通过三坐标测量软件中的曲线对比功能来实现,测量曲线和原始理论曲线误差控制在1.0μm以内;
(5)、将射频四极场电极放置到三坐标测量机平台上,为了能够准确测量将射频四极场电极放置在测量工装上;工装与工件接触面要保证平整,无受力变形,工装表面磨加工,平面度为0.02mm;
(6)、产品在进入测量室后要放置24小时以上才能开始测量工作;
(7)、在测量软件中采用右手直角坐标系,采用确定两个坐标系方向和一个坐标系原点的方法建立工件坐标系,手动模式下,在左右两端基准面A上采集4点,构建基准面AM,在基准面B上采集4点构建基准面BM,在基准面B和C上各采集一点:点-BM,点-CM,根据工艺在基准面D或者E上采集4点建基准面DM或者EM,用平面AM法向定义坐标系空间第一方向Z+,用平面BM法向的反向定义坐标系平面第二旋转方向X+,做点-BM,点-CM的对称中心点M置坐标系X零点,平面AM延Z+方向偏移至曲线坐标系原点置坐标系Z零点,平面DM延Y+方向偏移至曲线坐标系原点置坐标系Y零点平面EM延Y-方向偏移至曲线坐标系原点置坐标系Y零点,测量坐标系建立完成;AL,AR,B,C为基准要素,A1,A2,A3,A4,B2,B3等为主要测量尺寸,根据这些要求编制测量机程序,测量每个元素的点数,运行的最优化路径,自动整理计算和评价结果;
(8)、坐标系建立完成后在CNC模式下重新测量各基准平面:
a)平面AL,均匀分布采集20点;平面AR、均匀分布采集20点;平面B、均匀分布采集20点;平面C、均匀分布采集20点;平面D、均匀分布采集6点;平面E、均匀分布采集6点;极头两侧平面,均匀分布采集12点;
b)在平面B、平面C的前中后:前后离端面5mm,高度在平面B、C的中心的位置各采集三个矢量点,评价这三组对称点相互之间的距离;
c)在极头左侧平面和极头右侧平面的前中后:前后离端面5mm,高度在极头侧面的中心位置各采集三组对称点,评价这三组对称点相互之间的距离A2前,A2中,A2后的点到点距离,评价极头左侧面前中后点与平面B前中后对应点之间沿坐标系X方向的点到点距离A3前,A3中,A3后,评价极头右侧面前中后点与平面C前中后对应点之间沿坐标系X方向的点到点距离A4前,A4中,A4后;
d)在平面AL、平面AR的前中后中心位置:前后离端面5mm,左右位于AL、AR的中心各采集三个矢量点,在左右圆弧底平面前中后位置:左右离圆弧与底面切点向中心偏5mm各采集三个矢量点,评价左右两侧单点之间的Z向距离;
e)在平面D、平面E上离任意侧面偏移5mm按上下左右均分采集左上、左下、中上、右上、右下五个位置的对称点,评价前后两侧面单点之间的Y向距离;
(9)、在数模上抽取射频四极场极头波浪线,包括分圆弧端部分和调制线端部分,按步距≤0.25mm间距采点测量点坐标,通过扫描模式采集曲线点坐标,在曲线评定模块下得出轮廓度结果;
(10)、射频四极场电极检测过程由设备根据编制好的程序:测量软件AC-DIMS编写,通过在CAD模型上抽取元素,得到元素的理论值,输入测量参数,点数,路径参数,生成程序字节,由专门的DIMS语言来控制运行,设备运行原理类似于数控机床CNC,自动计算和评价图纸要求尺寸和形位公差结果;
(11)、将三维CAD模型里的坐标系和实际测量时建立的坐标系模型对应起来,测量时建立的坐标系模型原点偏移到CAD模型中曲线原点的位置,通过测量软件截取出极头部分曲线上的点坐标,根据步距小于0.25mm的要求,等距离在曲线上取出测量点,三坐标测量机根据测量点在工件表面进行扫描测量,得到实际工件上点的空间坐标(X,Y,Z),将实测点和理论测量点 一一对比,得到测量结果:负偏差最大的点和正偏差最大的点;
(12)、测量极头曲面上最高点,根据设计人员提供的点坐标,找出其中Z坐标数值最大的点为最高点,得到这个点的坐标值;实际测量出的点和这个点比较空间距离,即为最高点的实际偏差;
(13)、测量极头空间三维曲面截面线,此截面线是一条三维空间曲线,截面线在CAD模型上射频四极场工件两端面25mm左右的位置和射频四极场中心的位置上截取,点数为63个,曲线测量结束后将所有的点采用最小二乘法拟合成一个圆弧,实测圆心坐标值与理论圆圆心坐标值的差值来评价极头的曲面是否相对于基准对称;
(14)、对测量结果数据保存备份。
本发明的有益效果是:所述的射频四极场电极极头三维空间曲面的测量方法,采用三坐标测量机,不仅能够完成对复杂三维空间曲面的测量,而且测量精度高,测量效率快,大大提高RFQ电极极头的加工检测水平。其保证了产品加工精度,运用了多种CAD/CAM技术,以及计量检测知识,提高工作效率,直观形象的反映出加工误差。
附图说明
图1是本发明的RFQ射频四极场电极三维数学CAD模型;
图2是本发明对测量基准示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
如图1和2所示,所述的射频四极场电极极头三维空间曲面的测量方法,采用三坐标测量机,其特点是包括如下步骤:
(1)、单翼形位公差及极头波浪线测量采用SP25测量模块接Φ5x21红宝石球型测针组合,翼板装配后及焊接前后尺寸采用SP25测头模块加M2螺纹转接器加Φ5x50红宝石球型测针,每次在测量前要进行测针的校准,结 果形状误差小于0.015mm,名义直径与理论值的差值小于1%为接受范围;
(2)、测量室温度应控制在20℃±2℃,测量室湿度控制在40%~65%RH;
(3)、采用UG制图软件建立射频四极场电极三维数学CAD模型,选用右手直角坐标系,以底面长度方向中心线为X轴,底面宽度方向为Y轴方向,高度方向为Z轴,坐标原点位于底平面X方向中心线和极头Z轴方向中心线在单翼端面的交点处;
(4)、通过测量软件对比极头数学模型曲线与理论曲线是否一致,确保数学模型的准确性;理论曲线是通过束流动力学程序计算的一组数据,类似一条谐振曲线,呈波浪线形状,测量人员通过三坐标测量软件AC-DIMS在三维CAD数学模型上截取出测量点,测量数据的拟合曲线和理论曲线之间的对比通过三坐标测量软件AC-DIMS中的曲线对比功能来实现,测量曲线和原始理论曲线误差控制在1.0μm以内;
(5)、将射频四极场电极放置到三坐标测量机平台上,为了能够准确测量将射频四极场电极放置在测量工装上;工装与工件接触面要保证平整,无受力变形,工装表面磨加工,平面度为0.02mm;
(6)、产品在进入测量室后要放置24小时以上才能开始测量工作;
(7)、在测量软件中采用右手直角坐标系,采用确定两个坐标系方向和一个坐标系原点的方法建立工件坐标系,手动模式下,在左右两端基准面A上采集4点,构建基准面AM,在基准面B上采集4点构建基准面BM,在基准面B和C上各采集一点:点-BM,点-CM,根据工艺在基准面D或者E上采集4点建基准面DM或者EM,用平面AM法向定义坐标系空间第一方向Z+,用平面BM法向的反向定义坐标系平面第二旋转方向X+,做点-BM,点-CM的对称中心点M置坐标系X零点,平面AM延Z+方向偏移至曲线坐标系原点置坐标系Z零点,平面DM延Y+方向偏移至曲线坐标系原点置坐标系Y零点平面EM延Y-方向偏移至曲线坐标系原点置坐标系Y零点,测量坐标系建立完成;AL,AR,B,C为基准要素,A1,A2,A3,A4,B2,B3等为主要测量尺寸,根据 这些要求编制测量机程序,测量每个元素的点数,运行的最优化路径,自动整理计算和评价结果;
(8)、坐标系建立完成后在CNC模式下重新测量各基准平面:
a)平面AL,均匀分布采集20点;平面AR、均匀分布采集20点;平面B、均匀分布采集20点;平面C、均匀分布采集20点;平面D、均匀分布采集6点;平面E、均匀分布采集6点;极头两侧平面,均匀分布采集12点;
b)在平面B、平面C的前中后:前后离端面5mm,高度在平面B、C的中心的位置各采集三个矢量点,评价这三组对称点相互之间的距离;
c)在极头左侧平面和极头右侧平面的前中后:前后离端面5mm,高度在极头侧面的中心位置各采集三组对称点,评价这三组对称点相互之间的距离A2前,A2中,A2后的点到点距离,评价极头左侧面前中后点与平面B前中后对应点之间沿坐标系X方向的点到点距离A3前,A3中,A3后,评价极头右侧面前中后点与平面C前中后对应点之间沿坐标系X方向的点到点距离A4前,A4中,A4后;
d)在平面AL、平面AR的前中后中心位置:前后离端面5mm,左右位于AL、AR的中心各采集三个矢量点,在左右圆弧底平面前中后位置:左右离圆弧与底面切点向中心偏5mm各采集三个矢量点,评价左右两侧单点之间的Z向距离;
e)在平面D、平面E上离任意侧面偏移5mm按上下左右均分采集左上、左下、中上、右上、右下五个位置的对称点,评价前后两侧面单点之间的Y向距离;
(9)、在数模上抽取射频四极场极头波浪线,包括分圆弧端部分和调制线端部分,按步距≤0.25mm间距采点测量点坐标,通过扫描模式采集曲线点坐标,在曲线评定模块下得出轮廓度结果;
(10)、射频四极场电极检测过程由设备根据编制好的程序:测量软件AC-DIMS编写,通过在CAD模型上抽取元素,得到元素的理论值,输入测量 参数,点数,路径参数,生成程序字节,由专门的DIMS语言来控制运行,设备运行原理类似于数控机床CNC,自动计算和评价图纸要求尺寸和形位公差结果;
(11)、将三维CAD模型里的坐标系和实际测量时建立的坐标系模型对应起来,测量时建立的坐标系模型原点偏移到CAD模型中曲线原点的位置,通过测量软件截取出极头部分曲线上的点坐标,根据步距小于0.25mm的要求,等距离在曲线上取出测量点,三坐标测量机根据测量点在工件表面进行扫描测量,得到实际工件上点的空间坐标(X,Y,Z),将实测点和理论测量点一一对比,得到测量结果:负偏差最大的点和正偏差最大的点;
(12)、测量极头曲面上最高点,根据设计人员提供的点坐标,找出其中Z坐标数值最大的点为最高点,得到这个点的坐标值;实际测量出的点和这个点比较空间距离,即为最高点的实际偏差;
(13)、测量极头空间三维曲面截面线,此截面线是一条三维空间曲线,截面线在CAD模型上射频四极场工件两端面25mm左右的位置和射频四极场中心的位置上截取,点数为63个,曲线测量结束后将所有的点采用最小二乘法拟合成一个圆弧,实测圆心坐标值与理论圆圆心坐标值的差值来评价极头的曲面是否相对于基准对称;
(14)、对测量结果数据保存备份。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种射频四极场电极极头三维空间曲面的测量方法,采用三坐标测量机,其特点是包括如下步骤:
(1)、单翼形位公差及极头波浪线测量采用红宝石球型测针,每次在测量前要进行测针的校准,结果形状误差小于0.015mm,名义直径与理论值的差值小于1%为接受范围;
(2)、测量室温度应控制在20℃±2℃,测量室湿度控制在40%~65%RH;
(3)、采用UG制图软件建立射频四极场电极三维数学CAD模型,选用右手直角坐标系,以底面长度方向中心线为X轴,底面宽度方向为Y轴方向,高度方向为Z轴,坐标原点位于底平面X方向中心线和极头Z轴方向中心线在单翼端面的交点处;
(4)、通过三坐标测量软件对比极头数学模型曲线与理论曲线是否一致,确保数学模型的准确性;理论曲线是通过束流动力学程序计算的一组数据,类似一条谐振曲线,呈波浪线形状,测量人员通过三坐标测量软件在三维CAD数学模型上截取出测量点,测量数据的拟合曲线和理论曲线之间的对比通过三坐标测量软件中的曲线对比功能来实现,测量曲线和原始理论曲线误差控制在1.0μm以内;
(5)、将射频四极场电极放置到三坐标测量机平台上,为了能够准确测量将射频四极场电极放置在测量工装上;工装与工件接触面要保证平整,无受力变形,工装表面磨加工,平面度为0.02mm;
(6)、产品在进入测量室后要放置24小时以上才能开始测量工作;
(7)、在测量软件中采用右手直角坐标系,采用确定两个坐标系方向和一个坐标系原点的方法建立工件坐标系,手动模式下,在左右两端基准面A上采集4点,构建基准面AM,在基准面B上采集4点构建基准面BM,在基准面B和C上各采集一点:点-BM,点-CM,根据工艺在基准面D或者E上采集4点建基准面DM或者EM,用平面AM法向定义坐标系空间第一方向Z+,用平面BM法向的反向定义坐标系平面第二旋转方向X+,做点-BM,点-CM的对称中心点M置坐标系X零点,平面AM延Z+方向偏移至曲线坐标系原点置坐标系Z零点,平面DM延Y+方向偏移至曲线坐标系原点置坐标系Y零点平面EM延Y-方向偏移至曲线坐标系原点置坐标系Y零点,测量坐标系建立完成;AL,AR,B,C为基准要素,A1,A2,A3,A4,B2,B3为主要测量尺寸,根据这些要求编制测量机程序,测量每个元素的点数,运行的最优化路径,自动整理计算和评价结果;
(8)、坐标系建立完成后在CNC模式下重新测量各基准平面;
(9)、在数模上抽取射频四极场极头波浪线,包括分圆弧端部分和调制线端部分,按步距≤0.25mm间距采点测量点坐标,通过扫描模式采集曲线点坐标,在曲线评定模块下得出轮廓度结果;
(10)、射频四极场电极检测过程由设备根据编制好的程序:测量软件编写,通过在CAD模型上抽取元素,得到元素的理论值,输入测量参数,点数,路径参数,生成程序字节,自动计算和评价图纸要求尺寸和形位公差结果;
(11)、将三维CAD模型里的坐标系和实际测量时建立的坐标系模型对应,测量时建立的坐标系模型原点偏移到CAD模型中曲线原点的位置,通过测量软件截取出极头部分曲线上的点坐标,根据步距小于0.25mm的要求,等距离在曲线上取出测量点,三坐标测量机根据测量点在工件表面进行扫描测量,得到实际工件上点的空间坐标(X,Y,Z),将实测点和理论测量点一一对比,得到测量结果:负偏差最大的点和正偏差最大的点;
(12)、测量极头曲面上最高点,根据设计人员提供的点坐标,找出其中Z坐标数值最大的点为最高点,得到这个点的坐标值;实际测量出的点和这个点比较空间距离,即为最高点的实际偏差;
(13)、测量极头空间三维曲面截面线,此截面线是一条三维空间曲线,截面线在CAD模型上射频四极场工件两端面25mm左右的位置和射频四极场中心的位置上截取,点数为63个,曲线测量结束后将所有的点采用最小二乘法拟合成一个圆弧,实测圆心坐标值与理论圆圆心坐标值的差值来评价极头的曲面是否相对于基准对称;
(14)、对测量结果数据保存备份。
2.根据权利要求1所述的射频四极场电极极头三维空间曲面的测量方法,其特征在于:所述的第八步骤包括:
a)平面AL,均匀分布采集20点;平面AR、均匀分布采集20点;平面B、均匀分布采集20点;平面C、均匀分布采集20点;平面D、均匀分布采集6点;平面E、均匀分布采集6点;极头两侧平面,均匀分布采集12点;
b)在平面B、平面C的前中后:前后离端面5mm,高度在平面B、C的中心的位置各采集三个矢量点,评价这三组对称点相互之间的距离;
c)在极头左侧平面和极头右侧平面的前中后:前后离端面5mm,高度在极头侧面的中心位置各采集三组对称点,评价这三组对称点相互之间的距离A2前,A2中,A2后的点到点距离,评价极头左侧面前中后点与平面B前中后对应点之间沿坐标系X方向的点到点距离A3前,A3中,A3后,评价极头右侧面前中后点与平面C前中后对应点之间沿坐标系X方向的点到点距离A4前,A4中,A4后;
d)在平面AL、平面AR的前中后中心位置:前后离端面5mm,左右位于AL、AR的中心各采集三个矢量点,在左右圆弧底平面前中后位置:左右离圆弧与底面切点向中心偏5mm各采集三个矢量点,评价左右两侧单点之间的Z向距离;
e)在平面D、平面E上离任意侧面偏移5mm按上下左右均分采集左上、左下、中上、右上、右下五个位置的对称点,评价前后两侧面单点之间的Y向距离。
CN201410486562.1A 2014-07-17 2014-09-22 射频四极场电极极头三维空间曲面的测量方法 Active CN104197823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410486562.1A CN104197823B (zh) 2014-07-17 2014-09-22 射频四极场电极极头三维空间曲面的测量方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2014103428478 2014-07-17
CN201410342847.8 2014-07-17
CN201410342847 2014-07-17
CN201410486562.1A CN104197823B (zh) 2014-07-17 2014-09-22 射频四极场电极极头三维空间曲面的测量方法

Publications (2)

Publication Number Publication Date
CN104197823A CN104197823A (zh) 2014-12-10
CN104197823B true CN104197823B (zh) 2016-08-31

Family

ID=52083151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410486562.1A Active CN104197823B (zh) 2014-07-17 2014-09-22 射频四极场电极极头三维空间曲面的测量方法

Country Status (1)

Country Link
CN (1) CN104197823B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346412B (zh) * 2017-12-22 2021-07-27 湖北大学 弦枕弦码点三维建模的钢琴弦码铣削加工方法
CN109916299A (zh) * 2019-03-11 2019-06-21 东莞市凯融光学科技有限公司 一种接触式测量自由曲面结构产品偏心的方法
CN112013784B (zh) * 2019-05-28 2021-09-28 深圳中科飞测科技股份有限公司 一种检测方法和检测系统
CN113409464B (zh) * 2021-06-15 2022-12-02 中国科学院近代物理研究所 一种逆向测绘回旋加速器电极零件的方法
CN113758458B (zh) * 2021-08-31 2022-08-19 南京茂莱光学科技股份有限公司 一种复曲面镜的面形测量方法
CN113983977B (zh) * 2021-10-26 2024-05-17 深圳模德宝科技有限公司 基于ugnx的模具电极检测方法、装置和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034865A1 (de) * 1999-03-08 2000-09-13 ABB Alstom Power (Schweiz) AG Fräsverfahren
CN101566461A (zh) * 2009-05-18 2009-10-28 西安交通大学 大型水轮机叶片快速测量方法
CN101692257A (zh) * 2009-09-25 2010-04-07 华东理工大学 一种复杂曲面的配准方法
CN101745845A (zh) * 2009-12-07 2010-06-23 哈尔滨工业大学 一种金属零件外轮廓形状的测量方法及加工精度的检测方法
CN101750043A (zh) * 2008-11-28 2010-06-23 红塔烟草(集团)有限责任公司 一种在测量机上用触发式测头测量3d轮廓面的方法
CN103644860A (zh) * 2013-12-09 2014-03-19 二重集团(德阳)重型装备股份有限公司 大型空间自由曲面测量方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4421628B2 (ja) * 2007-04-20 2010-02-24 本田技研工業株式会社 金属リングの湾曲度を測定する方法およびその装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034865A1 (de) * 1999-03-08 2000-09-13 ABB Alstom Power (Schweiz) AG Fräsverfahren
CN101750043A (zh) * 2008-11-28 2010-06-23 红塔烟草(集团)有限责任公司 一种在测量机上用触发式测头测量3d轮廓面的方法
CN101566461A (zh) * 2009-05-18 2009-10-28 西安交通大学 大型水轮机叶片快速测量方法
CN101692257A (zh) * 2009-09-25 2010-04-07 华东理工大学 一种复杂曲面的配准方法
CN101745845A (zh) * 2009-12-07 2010-06-23 哈尔滨工业大学 一种金属零件外轮廓形状的测量方法及加工精度的检测方法
CN103644860A (zh) * 2013-12-09 2014-03-19 二重集团(德阳)重型装备股份有限公司 大型空间自由曲面测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RFQ 加速器电极参数的计算;吴 瑜;《北京大学学报(自然科学版)》;19990531;第35卷(第3期);第351-355页 *

Also Published As

Publication number Publication date
CN104197823A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104197823B (zh) 射频四极场电极极头三维空间曲面的测量方法
CN102944163A (zh) 一种测量任意轴剖面环形燕尾槽轮廓度的装置及方法
CN106875439B (zh) 基于三维点云模型的单晶硅棒外形尺寸测量方法
CN202974225U (zh) 一种用于汽车玻璃检测的三坐标测量机的定位夹具
CN103264318B (zh) 一种立体型面的在线检测方法
CN207050614U (zh) 精梳机前牵伸罗拉定位规综合误差校验装置
CN104374333A (zh) 一种激光跟踪仪测量大型模具型面的方法
CN103575189B (zh) 一种快速检测接头零件耳片外形的方法和测量夹具
CN103852032B (zh) 圆柱形轴类零件的特征参数提取方法
CN107063132B (zh) 一种航天阀门产品形位尺寸测量方法
CN104279972A (zh) 一种燃料组件管座的精密测量系统及其测量方法
CN103808262A (zh) 多孔位产品孔位的模拟修模方法
CN107063330A (zh) 用于多传感器测量系统的多孔板标准器及联合误差检测法
CN203964815U (zh) 一种快速检测孔位置检具
CN107414602A (zh) 用于立式加工中心触发式测量系统的标定装置和标定方法
CN203534468U (zh) 一种盘槽中心距尺寸的检测装置
CN206425903U (zh) 一种用于立式加工中心的工件测头误差标定装置
US10132623B2 (en) Method for measuring slant wall thickness dimension of hub
CN102927890B (zh) 一种低锥度圆锥面的检测方法及专用止通卡规
CN104751005A (zh) 一种基于正交实验的平面度误差评定方法
CN108444433B (zh) 基于面型基准的转台转角误差检测方法
CN105571435A (zh) 一种行星架销孔位置度的在线检测方法
CN103292655B (zh) 一种有基准约束的圆柱体的作用尺寸的计算方法
CN107588725B (zh) 钛合金旋翼机机架龙骨的加工及检测方法
CN104596417A (zh) 一种可调节光标座

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant