CN104190930A - Laser additive manufacturing method for homogeneous functionally graded material and structure - Google Patents
Laser additive manufacturing method for homogeneous functionally graded material and structure Download PDFInfo
- Publication number
- CN104190930A CN104190930A CN201410436443.5A CN201410436443A CN104190930A CN 104190930 A CN104190930 A CN 104190930A CN 201410436443 A CN201410436443 A CN 201410436443A CN 104190930 A CN104190930 A CN 104190930A
- Authority
- CN
- China
- Prior art keywords
- laser
- model
- gradient
- different
- homogeneity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000000463 material Substances 0.000 title claims abstract description 35
- 239000000654 additive Substances 0.000 title abstract description 19
- 230000000996 additive effect Effects 0.000 title abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 29
- 239000002356 single layer Substances 0.000 claims abstract description 14
- 238000013507 mapping Methods 0.000 claims abstract description 6
- 238000009826 distribution Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims 1
- 238000000110 selective laser sintering Methods 0.000 claims 1
- 238000010099 solid forming Methods 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Lasers (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种同质功能梯度材料及结构的激光增材制造方法,该方法包括以下步骤:将不同的功能映射为不同的温度,将不同的温度作为边界条件分别施加在三维模型的不同部位,利用三维有限元方法计算模型的热传导方程,获得内部的温度梯度分布,即模型的温度场;抽取模型的等温面获得具有不同温度标记的曲面集合;对曲面集合进行切片,得到每层与等温面的交线轮廓,即平面等温线;对单层切片进行处理,获得单层激光参数呈梯度变化的扫描路径;重复步骤直到切片完成获得模型的激光扫描路径;将生成的激光扫描路径输入到激光3D打印机控制增材制造过程,获得同质功能梯度结构。本方法可以增材制造同质的功能梯度材料和结构,这是目前激光增材制造方法无法做到的。
The invention relates to a method for laser additive manufacturing of homogeneous functionally graded materials and structures. The method includes the following steps: mapping different functions to different temperatures, and applying different temperatures as boundary conditions to different parts of a three-dimensional model , use the three-dimensional finite element method to calculate the heat conduction equation of the model, and obtain the internal temperature gradient distribution, that is, the temperature field of the model; extract the isothermal surface of the model to obtain a set of surfaces with different temperature marks; The contour of the intersection line of the surface, that is, the plane isotherm; process the single-layer slice to obtain the scanning path of the single-layer laser parameter with a gradient change; repeat the steps until the slice is completed to obtain the laser scanning path of the model; input the generated laser scanning path to A laser 3D printer controls the additive manufacturing process to obtain homogeneous functionally graded structures. This method can additively manufacture homogeneous functionally graded materials and structures, which cannot be achieved by current laser additive manufacturing methods.
Description
技术领域technical field
本发明属于激光增材制造技术领域,涉及一种同质功能梯度材料及结构的激光增材制造方法。The invention belongs to the technical field of laser additive manufacturing, and relates to a laser additive manufacturing method for homogeneous functionally graded materials and structures.
背景技术Background technique
从材料的结构角度来看,功能梯度材料是指选用两种(或多种)性能不同的材料,通过连续地改变这两种(或多种)材料的组成和结构,使其界面消失导致材料的性能随着材料的组成和结构的变化而缓慢变化。目前,比较典型的功能梯度材料如Ti/Al2O3由Ti和Al2O3两种材料构成,其结构的组分从纯金属Ti端连续过渡到纯陶瓷Al2O3端,使材料既具有金属Ti的优良性能,又具有Al2O3陶瓷的良好的耐热、隔热、高强及高温抗氧化性。From the perspective of material structure, functionally graded materials refer to selecting two (or more) materials with different properties, and continuously changing the composition and structure of the two (or more) materials to make the interface disappear and lead to material The performance of the material changes slowly with the composition and structure of the material. At present, typical functionally graded materials such as Ti/Al2O3 are composed of two materials, Ti and Al2O3. It has good heat resistance, heat insulation, high strength and high temperature oxidation resistance of Al2O3 ceramics.
目前,利用激光立体成形技术(LENS)可以增材制造功能梯度材料和结构,然而,目前所有报道的文献或专利都是利用两种及以上的材料来增材制造功能梯度材料或结构。Currently, laser stereolithography (LENS) can be used to additively manufacture functionally graded materials and structures. However, all the current reported literature or patents use two or more materials to additively manufacture functionally graded materials or structures.
同质的金属或陶瓷材料在应用中要求表现出功能呈现梯度变化,即同种材料的金相组织、晶粒大小及取向等根据功能(如硬度、强度、刚度、密度等)的要求逐步发生缓慢变化,形成功能梯度结构。实际上,几乎所有工业或自然结构都具有这种特质,如内柔外刚的齿轮,极硬的齿面用于抗击齿面接触冲击应力,较软的齿轮芯部用于缓减齿轮的振动;如骨骼,分布于骨表面高密度骨密质具有很强抗压抗扭曲性,分布于内部的低密度骨松质存储骨髓。然而,这类工业结构通常通过机械加工(减材制造,如车铣刨磨等)后进行特殊热处理、渗氮、渗碳等才能获得。这类自然结构是长期进化的产物。Homogeneous metal or ceramic materials are required to show a gradient change in function during application, that is, the metallographic structure, grain size and orientation of the same material gradually occur according to the requirements of functions (such as hardness, strength, stiffness, density, etc.) Slowly changing to form a functional gradient structure. In fact, almost all industrial or natural structures have this characteristic, such as gears that are soft on the inside and rigid on the outside, the extremely hard tooth surface is used to resist the contact impact stress of the tooth surface, and the softer gear core is used to reduce the vibration of the gear ; Such as bone, the high-density cortical bone distributed on the surface of the bone has strong resistance to compression and distortion, and the low-density cancellous bone distributed inside stores the bone marrow. However, this type of industrial structure is usually obtained by special heat treatment, nitriding, carburizing, etc. after machining (subtractive manufacturing, such as turning, milling, planing, etc.). Such natural structures are the product of long-term evolution.
目前,激光增材制造技术只能制造出多材料组分的梯度功能材料和结构,或者只能制造出同质的、不具有性能渐变的结构。由于激光增材制造技术具有净成形或近净成形的特点,可以制造几何与拓扑复杂的结构,因此寻找一种同质功能梯度材料及结构的激光增材制造方法具有重要的意义。At present, laser additive manufacturing technology can only produce gradient functional materials and structures with multi-material components, or can only produce homogeneous structures without performance gradients. Since the laser additive manufacturing technology has the characteristics of net shape or near net shape, it can manufacture geometrically and topologically complex structures, so it is of great significance to find a laser additive manufacturing method for homogeneous functionally graded materials and structures.
发明内容Contents of the invention
有鉴于此,本发明的目的在于提供一种同质功能梯度材料及结构的激光增材制造方法,该方法能够克服现有激光增材制造技术无法制造同质功能梯度材料及结构的问题。In view of this, the object of the present invention is to provide a laser additive manufacturing method for homogeneous functionally graded materials and structures, which can overcome the problem that the existing laser additive manufacturing technology cannot manufacture homogeneous functionally graded materials and structures.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种同质功能梯度材料及结构的激光增材制造方法,包括以下步骤:步骤一:将不同的功能映射为不同的温度,将不同的温度作为边界条件分别施加在三维模型S0的不同部位,利用三维有限元方法计算模型S0的热传导方程,获得内部的温度梯度分布,即模型S0的温度场S1;步骤二:抽取模型的等温面获得具有不同温度标记的曲面集合S2;步骤三:对曲面集合S2进行切片,得到每层与等温面的交线轮廓,即平面等温线S3;步骤四:对单层切片进行处理,获得单层激光参数呈梯度变化的扫描路径S6;步骤五:重复步骤三和步骤四,直到切片完成获得模型的激光扫描路径S7;步骤六:将生成的激光扫描路径输入到激光3D打印机控制增材制造过程,获得同质功能梯度结构S8。A laser additive manufacturing method for homogeneous functionally graded materials and structures, comprising the following steps: Step 1: Mapping different functions to different temperatures, applying different temperatures as boundary conditions to different parts of the three-dimensional model S0, Use the three-dimensional finite element method to calculate the heat conduction equation of the model S0, and obtain the internal temperature gradient distribution, that is, the temperature field S1 of the model S0; Step 2: Extract the isothermal surface of the model to obtain a surface set S2 with different temperature marks; Step 3: Align the curved surface The set S2 is sliced to obtain the contour of the intersection line between each layer and the isothermal surface, that is, the plane isotherm S3; Step 4: Process the single-layer slice to obtain the scanning path S6 with a gradient change in the laser parameters of the single layer; Step 5: Repeat the steps Step 3 and Step 4, until the slicing is completed to obtain the laser scanning path S7 of the model; Step 6: input the generated laser scanning path to the laser 3D printer to control the additive manufacturing process, and obtain a homogeneous functionally graded structure S8.
进一步,在步骤四中,所述的对单层切片进行处理具体包括以下步骤:1)在平面等温线S3中抽取相邻的等温线构造内外环,并在内外环所围成的区域成几何扫描路径S4;2)对由温度相同等温线所围成的区域生成的扫描路径S4赋予相同的激光工艺参数,获得激光扫描路径S5;由温度不同等温线所围成的区域生成的扫描路径S4赋予不同的激光工艺参数,即根据温度梯度变化调整激光工艺参数使得其呈梯度变化,使得其映射的功能也呈梯度变化;3)重复步骤1)和2),直到单层平面等温线处理完毕,获得单层激光参数呈梯度变化的扫描路径S6。Further, in Step 4, the processing of the single-layer slices specifically includes the following steps: 1) Extracting adjacent isotherms in the plane isotherm S3 to construct inner and outer rings, and geometrically forming the inner and outer rings in the area surrounded by the inner and outer rings. Scanning path S4; 2) The same laser process parameters are given to the scanning path S4 generated by the area surrounded by the same temperature isotherm to obtain the laser scanning path S5; the scanning path S4 generated by the area surrounded by different temperature isotherms Give different laser process parameters, that is, adjust the laser process parameters according to the temperature gradient so that it changes in a gradient, so that the function of its mapping also changes in a gradient; 3) Repeat steps 1) and 2) until the single-layer plane isotherm is processed , to obtain a scanning path S6 in which the single-layer laser parameters change in a gradient manner.
进一步,所述的材料包括金属和陶瓷,其中,金属包括钢、铝合金、钛合金以及高温合金等,陶瓷包括氧化铝、氧化锆、碳化硅等。Further, the materials include metals and ceramics, wherein metals include steel, aluminum alloys, titanium alloys and high-temperature alloys, etc., and ceramics include alumina, zirconia, silicon carbide, etc.
进一步,所述的功能包括硬度、刚度、强度、韧性等。Further, the functions include hardness, rigidity, strength, toughness and the like.
进一步,所述的激光增材制造方法包括激光选区烧结(SLS)、激光选区熔融(SLM)以及激光立体成形(LENS);所述的激光参数包括:激光功率、曝光时间、点距、行距、扫描速度和光斑直径。Further, the laser additive manufacturing method includes laser selective sintering (SLS), laser selective melting (SLM) and laser stereolithography (LENS); the laser parameters include: laser power, exposure time, point pitch, row pitch, Scan speed and spot diameter.
进一步,所述的激光功率为0.1mW~10kW,曝光时间为0.001ms~30s,点距为0.1um~200um,行距为0.1um~400um。Further, the laser power is 0.1 mW-10 kW, the exposure time is 0.001 ms-30 s, the spot pitch is 0.1 um-200 um, and the line pitch is 0.1 um-400 um.
本发明的有益效果在于:本发明所采用的方法能够克服现有激光增材制造技术无法制造同质功能梯度材料及结构的问题,可以增材制造同质的功能梯度材料和结构,这是目前激光增材制造方法无法做到的。The beneficial effects of the present invention are: the method adopted in the present invention can overcome the problem that the existing laser additive manufacturing technology cannot manufacture homogeneous functionally graded materials and structures, and can additively manufacture homogeneous functionally graded materials and structures, which is currently Laser additive manufacturing methods can not do.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:
图1为本发明所述方法的流程示意图。Fig. 1 is a schematic flow chart of the method of the present invention.
具体实施方式Detailed ways
下面将结合附图,对本发明的优选实施例进行详细的描述。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1为本发明所述方法的流程示意图,如图所示,本发明所述的激光增材制造方法,包括以下步骤:步骤一:将不同的功能映射为不同的温度,将不同的温度作为边界条件分别施加在三维模型S0的不同部位,利用三维有限元方法计算模型S0的热传导方程,获得内部的温度梯度分布,即模型S0的温度场S1;步骤二:抽取模型的等温面获得具有不同温度标记的曲面集合S2;步骤三:对曲面集合S2进行切片,得到每层与等温面的交线轮廓,即平面等温线S3;步骤四:对单层切片进行处理,获得单层激光参数呈梯度变化的扫描路径S6;步骤五:重复步骤三和步骤四,直到切片完成获得模型的激光扫描路径S7;步骤六:将生成的激光扫描路径输入到激光3D打印机控制增材制造过程,获得同质功能梯度结构S8。Figure 1 is a schematic flow chart of the method of the present invention, as shown in the figure, the laser additive manufacturing method of the present invention includes the following steps: Step 1: Map different functions to different temperatures, and use different temperatures as Boundary conditions are applied to different parts of the three-dimensional model S0, and the heat conduction equation of the model S0 is calculated using the three-dimensional finite element method to obtain the internal temperature gradient distribution, that is, the temperature field S1 of the model S0; Step 2: Extract the isothermal surface of the model to obtain The temperature-marked surface set S2; Step 3: Slice the surface set S2 to obtain the contour of the intersection line between each layer and the isothermal surface, that is, the plane isotherm S3; Step 4: Process the single-layer slice to obtain the single-layer laser parameters. Gradient scanning path S6; step five: repeat steps three and four until the slicing is completed to obtain the laser scanning path S7 of the model; step six: input the generated laser scanning path to the laser 3D printer to control the additive manufacturing process, and obtain the same Mass-functional gradient structure S8.
其中,在步骤四中,所述的对单层切片进行处理具体包括以下步骤:1)在平面等温线S3中抽取相邻的等温线构造内外环,并在内外环所围成的区域成几何扫描路径S4;2)对由温度相同等温线所围成的区域生成的扫描路径S4赋予相同的激光工艺参数,获得激光扫描路径S5;由温度不同等温线所围成的区域生成的扫描路径S4赋予不同的激光工艺参数,即根据温度梯度变化调整激光工艺参数使得其呈梯度变化,使得其映射的功能也呈梯度变化;3)重复步骤1)和2),直到单层平面等温线处理完毕,获得单层激光参数呈梯度变化的扫描路径S6。Wherein, in step 4, the processing of the single-layer slices specifically includes the following steps: 1) Extracting adjacent isotherms in the plane isotherm S3 to construct an inner and outer ring, and forming a geometric shape in the area surrounded by the inner and outer rings. Scanning path S4; 2) The same laser process parameters are given to the scanning path S4 generated by the area surrounded by the same temperature isotherm to obtain the laser scanning path S5; the scanning path S4 generated by the area surrounded by different temperature isotherms Give different laser process parameters, that is, adjust the laser process parameters according to the temperature gradient so that it changes in a gradient, so that the function of its mapping also changes in a gradient; 3) Repeat steps 1) and 2) until the single-layer plane isotherm is processed , to obtain a scanning path S6 in which the single-layer laser parameters change in a gradient manner.
在本实施例中,所述的材料包括金属和陶瓷,其中,金属包括钢、铝合金、钛合金以及高温合金等,陶瓷包括氧化铝、氧化锆、碳化硅等。所述的功能包括硬度、刚度、强度、韧性等。所述的激光增材制造方法包括激光选区烧结(SLS)、激光选区熔融(SLM)以及激光立体成形(LENS);所述的激光参数包括:激光功率、曝光时间、点距、行距、扫描速度和光斑直径,其中,激光功率为0.1mW~10kW,曝光时间为0.001ms~30s,点距为0.1um~200um,行距为0.1um~400um。In this embodiment, the material includes metal and ceramics, wherein the metal includes steel, aluminum alloy, titanium alloy, and superalloy, etc., and the ceramic includes alumina, zirconia, silicon carbide, and the like. Said functions include hardness, rigidity, strength, toughness and the like. The laser additive manufacturing method includes laser selective sintering (SLS), laser selective melting (SLM) and laser stereolithography (LENS); the laser parameters include: laser power, exposure time, point pitch, line pitch, scanning speed and spot diameter, wherein, the laser power is 0.1mW-10kW, the exposure time is 0.001ms-30s, the spot pitch is 0.1um-200um, and the line spacing is 0.1um-400um.
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410436443.5A CN104190930B (en) | 2014-08-29 | 2014-08-29 | The laser gain material manufacture method of a kind of homogeneity FGM and structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410436443.5A CN104190930B (en) | 2014-08-29 | 2014-08-29 | The laser gain material manufacture method of a kind of homogeneity FGM and structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104190930A true CN104190930A (en) | 2014-12-10 |
CN104190930B CN104190930B (en) | 2016-03-02 |
Family
ID=52076377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410436443.5A Active CN104190930B (en) | 2014-08-29 | 2014-08-29 | The laser gain material manufacture method of a kind of homogeneity FGM and structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104190930B (en) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104959604A (en) * | 2015-07-23 | 2015-10-07 | 华中科技大学 | High energy beam area-selecting fusing method and device capable of controlling temperature gradient in shaping area |
CN104959598A (en) * | 2015-06-08 | 2015-10-07 | 中国人民解放军国防科学技术大学 | Rapid manufacturing method for laser sintering blocks decomposed and filled based on stress characteristics |
CN105177273A (en) * | 2015-09-30 | 2015-12-23 | 江苏大学 | Laser shock enchantment method for improving fatigue strength of key and important member |
CN105618755A (en) * | 2016-03-23 | 2016-06-01 | 韶关学院 | Powder supplying and spreading method and device for multi-material part 3D printing |
CN105728722A (en) * | 2016-03-08 | 2016-07-06 | 广州有色金属研究院 | 3D printing method of ceramic titanium alloy composite biological implanting product |
CN105945280A (en) * | 2016-05-05 | 2016-09-21 | 清华大学 | Additive manufacturing method for multi-material heterogeneous part |
CN106021795A (en) * | 2016-06-03 | 2016-10-12 | 南昌航空大学 | Solidification temperature gradient controllable method for 3D printing of metal material |
CN106584832A (en) * | 2015-10-12 | 2017-04-26 | 黎世彬 | Light source adjusting method of 3D laser printer |
CN106618804A (en) * | 2016-12-28 | 2017-05-10 | 嘉思特华剑医疗器材(天津)有限公司 | Bone induction differentiated metal bone trabecula knee joint prosthesis and preparation method thereof |
CN106682299A (en) * | 2016-12-22 | 2017-05-17 | 西安交通大学 | Design and manufacturing method used for selective laser sintering sand mould regional strength change |
CN106670455A (en) * | 2017-02-17 | 2017-05-17 | 哈尔滨工业大学 | 3D printing forming manufacturing method for ceramic-metal heterostructure |
CN106825574A (en) * | 2017-04-18 | 2017-06-13 | 广东工业大学 | A kind of metal gradient material laser impact forges compound increasing material manufacturing method and device |
WO2017141697A1 (en) * | 2016-02-18 | 2017-08-24 | セイコーエプソン株式会社 | Ceramic component and three-dimensional production method for ceramic component |
EP3318352A1 (en) * | 2016-11-03 | 2018-05-09 | Amsis GmbH | Method for simulation-based detection of thermally critical component areas and method for component-specific adaption of local heat generation during additive production |
CN109514069A (en) * | 2018-11-15 | 2019-03-26 | 中国航空制造技术研究院 | The stress deformation control method and device of electron beam fuse increasing material manufacturing technique |
CN109514075A (en) * | 2018-10-23 | 2019-03-26 | 上海航天设备制造总厂有限公司 | A kind of functionally gradient stirring friction welding agitator head laser near-net-shape method |
CN110023057A (en) * | 2016-09-27 | 2019-07-16 | 物化股份有限公司 | Energy density mapping in increasing material manufacturing environment |
CN110465657A (en) * | 2018-05-09 | 2019-11-19 | 中国科学院金属研究所 | A kind of control shape deposition method of laser gain material manufacture steel alloy |
CN111069602A (en) * | 2019-12-30 | 2020-04-28 | 浙江大学 | Gradient forming design method for selective laser melting |
CN111151747A (en) * | 2019-12-31 | 2020-05-15 | 浙江大学 | Gradient performance forming design method for selective laser melting |
US10832753B2 (en) | 2017-07-31 | 2020-11-10 | General Electric Company | Components including structures having decoupled load paths |
US10850346B2 (en) | 2015-12-04 | 2020-12-01 | Raytheon Company | Composition and method for fusion processing aluminum alloy |
CN112317761A (en) * | 2020-10-10 | 2021-02-05 | 北京隆源自动成型系统有限公司 | Intelligent SLM (selective laser melting) forming process for linear gradient alloy |
CN112888517A (en) * | 2018-10-17 | 2021-06-01 | 株式会社神户制钢所 | Method for laminating hardened layer and method for manufacturing laminated molded article |
CN113681894A (en) * | 2020-05-18 | 2021-11-23 | 广东汉邦激光科技有限公司 | Scanning line quality optimization method, scanning line quality optimization device and printer |
CN115335786A (en) * | 2020-02-26 | 2022-11-11 | 威斯康星校友研究基金会 | System and method for controlling an additive manufacturing system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017107362A1 (en) * | 2017-04-06 | 2018-10-11 | Amsis Gmbh | Method for the additive production of a three-dimensional component and method for calculating a scanning strategy for the purpose of corresponding activation of a system for the additive production of a three-dimensional component |
CN110340358B (en) * | 2019-07-09 | 2020-02-18 | 南京中科煜宸激光技术有限公司 | Method for gradient regulation of process parameters in additive manufacturing process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1411942A (en) * | 2002-03-21 | 2003-04-23 | 西北工业大学 | Component and tissue controllable laser stereoforming method |
JP2004168610A (en) * | 2002-11-21 | 2004-06-17 | Toyota Motor Corp | Method for producing three-dimensionally shaped sintered body and three-dimensionally shaped sintered body |
CN102000821A (en) * | 2010-11-19 | 2011-04-06 | 浙江工业大学 | Preparation method for part made of controllable heterogeneous materials based on SLS (selective laser sintering) forming process |
CN102962452A (en) * | 2012-12-14 | 2013-03-13 | 沈阳航空航天大学 | Metal laser deposition manufactured scan route planning method based on infrared temperature measurement images |
CN102962451A (en) * | 2012-10-22 | 2013-03-13 | 华中科技大学 | Electromagnetic flexible composite deposition direct preparation forming method of multifunctional gradient component |
-
2014
- 2014-08-29 CN CN201410436443.5A patent/CN104190930B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1411942A (en) * | 2002-03-21 | 2003-04-23 | 西北工业大学 | Component and tissue controllable laser stereoforming method |
JP2004168610A (en) * | 2002-11-21 | 2004-06-17 | Toyota Motor Corp | Method for producing three-dimensionally shaped sintered body and three-dimensionally shaped sintered body |
CN102000821A (en) * | 2010-11-19 | 2011-04-06 | 浙江工业大学 | Preparation method for part made of controllable heterogeneous materials based on SLS (selective laser sintering) forming process |
CN102962451A (en) * | 2012-10-22 | 2013-03-13 | 华中科技大学 | Electromagnetic flexible composite deposition direct preparation forming method of multifunctional gradient component |
CN102962452A (en) * | 2012-12-14 | 2013-03-13 | 沈阳航空航天大学 | Metal laser deposition manufactured scan route planning method based on infrared temperature measurement images |
Non-Patent Citations (1)
Title |
---|
陈光霞: ""功能梯度材料零件激光快速成型的实现方法"", 《制造业自动化》 * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104959598A (en) * | 2015-06-08 | 2015-10-07 | 中国人民解放军国防科学技术大学 | Rapid manufacturing method for laser sintering blocks decomposed and filled based on stress characteristics |
CN104959604A (en) * | 2015-07-23 | 2015-10-07 | 华中科技大学 | High energy beam area-selecting fusing method and device capable of controlling temperature gradient in shaping area |
CN104959604B (en) * | 2015-07-23 | 2017-03-08 | 华中科技大学 | A high-energy beam selective melting method and equipment with controllable temperature gradient in the forming area |
CN105177273A (en) * | 2015-09-30 | 2015-12-23 | 江苏大学 | Laser shock enchantment method for improving fatigue strength of key and important member |
CN105177273B (en) * | 2015-09-30 | 2017-07-18 | 江苏大学 | A kind of laser shock peening method for improving crucial important component fatigue strength |
CN106584832A (en) * | 2015-10-12 | 2017-04-26 | 黎世彬 | Light source adjusting method of 3D laser printer |
US11141809B2 (en) | 2015-12-04 | 2021-10-12 | Raytheon Company | Electron beam additive manufacturing |
US10850346B2 (en) | 2015-12-04 | 2020-12-01 | Raytheon Company | Composition and method for fusion processing aluminum alloy |
WO2017141697A1 (en) * | 2016-02-18 | 2017-08-24 | セイコーエプソン株式会社 | Ceramic component and three-dimensional production method for ceramic component |
CN105728722A (en) * | 2016-03-08 | 2016-07-06 | 广州有色金属研究院 | 3D printing method of ceramic titanium alloy composite biological implanting product |
CN105618755A (en) * | 2016-03-23 | 2016-06-01 | 韶关学院 | Powder supplying and spreading method and device for multi-material part 3D printing |
CN105945280A (en) * | 2016-05-05 | 2016-09-21 | 清华大学 | Additive manufacturing method for multi-material heterogeneous part |
CN105945280B (en) * | 2016-05-05 | 2018-06-22 | 清华大学 | A kind of increasing material manufacturing method of the heterogeneous part of more materials |
CN106021795A (en) * | 2016-06-03 | 2016-10-12 | 南昌航空大学 | Solidification temperature gradient controllable method for 3D printing of metal material |
CN106021795B (en) * | 2016-06-03 | 2019-03-08 | 南昌航空大学 | A method for 3D printing metal materials with controllable temperature gradient during solidification |
CN110023057B (en) * | 2016-09-27 | 2022-05-03 | 物化股份有限公司 | Energy density mapping in an additive manufacturing environment |
US11260455B2 (en) | 2016-09-27 | 2022-03-01 | Materialise N.V. | Energy density mapping in additive manufacturing environments |
CN110023057A (en) * | 2016-09-27 | 2019-07-16 | 物化股份有限公司 | Energy density mapping in increasing material manufacturing environment |
EP3318352A1 (en) * | 2016-11-03 | 2018-05-09 | Amsis GmbH | Method for simulation-based detection of thermally critical component areas and method for component-specific adaption of local heat generation during additive production |
CN106682299A (en) * | 2016-12-22 | 2017-05-17 | 西安交通大学 | Design and manufacturing method used for selective laser sintering sand mould regional strength change |
CN106682299B (en) * | 2016-12-22 | 2020-03-31 | 西安交通大学 | Design and manufacturing method for sand mold regional variable strength by selective laser sintering |
CN106618804A (en) * | 2016-12-28 | 2017-05-10 | 嘉思特华剑医疗器材(天津)有限公司 | Bone induction differentiated metal bone trabecula knee joint prosthesis and preparation method thereof |
CN106618804B (en) * | 2016-12-28 | 2018-06-22 | 嘉思特华剑医疗器材(天津)有限公司 | A kind of metal bone trabecula knee-joint prosthesis of self-bone grafting differentiation and preparation method thereof |
CN106670455A (en) * | 2017-02-17 | 2017-05-17 | 哈尔滨工业大学 | 3D printing forming manufacturing method for ceramic-metal heterostructure |
CN106825574A (en) * | 2017-04-18 | 2017-06-13 | 广东工业大学 | A kind of metal gradient material laser impact forges compound increasing material manufacturing method and device |
CN106825574B (en) * | 2017-04-18 | 2020-02-07 | 广东工业大学 | Laser impact forging composite additive manufacturing method and device for metal gradient material |
US10832753B2 (en) | 2017-07-31 | 2020-11-10 | General Electric Company | Components including structures having decoupled load paths |
CN110465657A (en) * | 2018-05-09 | 2019-11-19 | 中国科学院金属研究所 | A kind of control shape deposition method of laser gain material manufacture steel alloy |
CN110465657B (en) * | 2018-05-09 | 2021-07-23 | 中国科学院金属研究所 | A shape-controlled deposition method for laser additive manufacturing of alloy steel |
CN112888517A (en) * | 2018-10-17 | 2021-06-01 | 株式会社神户制钢所 | Method for laminating hardened layer and method for manufacturing laminated molded article |
CN109514075A (en) * | 2018-10-23 | 2019-03-26 | 上海航天设备制造总厂有限公司 | A kind of functionally gradient stirring friction welding agitator head laser near-net-shape method |
CN109514069A (en) * | 2018-11-15 | 2019-03-26 | 中国航空制造技术研究院 | The stress deformation control method and device of electron beam fuse increasing material manufacturing technique |
CN109514069B (en) * | 2018-11-15 | 2021-07-27 | 中国航空制造技术研究院 | Stress deformation control method and device for electron beam fuse additive manufacturing process |
CN111069602A (en) * | 2019-12-30 | 2020-04-28 | 浙江大学 | Gradient forming design method for selective laser melting |
CN111151747A (en) * | 2019-12-31 | 2020-05-15 | 浙江大学 | Gradient performance forming design method for selective laser melting |
CN115335786A (en) * | 2020-02-26 | 2022-11-11 | 威斯康星校友研究基金会 | System and method for controlling an additive manufacturing system |
CN113681894A (en) * | 2020-05-18 | 2021-11-23 | 广东汉邦激光科技有限公司 | Scanning line quality optimization method, scanning line quality optimization device and printer |
CN112317761A (en) * | 2020-10-10 | 2021-02-05 | 北京隆源自动成型系统有限公司 | Intelligent SLM (selective laser melting) forming process for linear gradient alloy |
CN112317761B (en) * | 2020-10-10 | 2023-01-10 | 北京隆源自动成型系统有限公司 | Intelligent process for forming linear gradient alloy by SLM (Selective laser melting) |
Also Published As
Publication number | Publication date |
---|---|
CN104190930B (en) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104190930B (en) | The laser gain material manufacture method of a kind of homogeneity FGM and structure | |
CN112008081B (en) | A preparation method of high melting point Kelvin structure lattice metal based on laser additive manufacturing | |
JP6746308B2 (en) | Hybrid additive manufacturing method using hybrid additive manufactured features for hybrid parts | |
CN104308153B (en) | A kind of manufacture method of high-entropy alloy turbogenerator hot-end component based on precinct laser fusion | |
CN109967739B (en) | A method for preparing metal parts with gradient structure based on additive manufacturing technology | |
JP6200969B2 (en) | Workpiece manufacturing apparatus and manufacturing method with adjusted fine structure | |
CA2843450C (en) | Method for manufacturing a hybrid component | |
US10556270B2 (en) | Additive manufacturing system for minimizing thermal stresses | |
CN104368814B (en) | A kind of method of metal laser direct-forming high-entropy alloy turbogenerator hot-end component | |
CN109551758B (en) | Conformal manufacturing method for three-dimensional printing by using high-viscosity material | |
CN104148636B (en) | A kind of scanning pattern generation method of control metal parts increasing material manufacturing thermal deformation | |
CN112475319B (en) | 4D forming method and product of nickel-titanium alloy component with fast response to deformation recovery | |
US20170284206A1 (en) | High porosity material and method of making thereof | |
Wang et al. | Characteristics of typical geometrical features shaped by selective laser melting | |
US20120213659A1 (en) | Method and device for producing a component of a turbomachine | |
CN104084584A (en) | Laser scanning method used for fast forming high-temperature alloy structural member | |
JP2014040663A (en) | Method for manufacturing three-dimensional article | |
CN108393492A (en) | A method of shaping complexity NiTi alloy components using increasing material manufacturing | |
JP6344004B2 (en) | Method for producing single crystal | |
WO2019186603A1 (en) | Nozzle guide vane and manufacturing method for the same | |
JP2019084723A (en) | Three-dimensional modeling method, three-dimensional modeling apparatus, and three-dimensional objects modeled by these | |
EP3365130B1 (en) | Turbine blade manufacturing method | |
CN112296355B (en) | Method for fabricating micron-scale topologically porous titanium alloy bone tissue engineering implants by SLM | |
Wischeropp et al. | Simulation of the effect of different laser beam intensity profiles on heat distribution in selective laser melting | |
CN111299583A (en) | Method for manufacturing gradient structure titanium alloy integral component by laser additive manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20141210 Assignee: Chongqing jiurenjie Intelligent Equipment Technology Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980010991 Denomination of invention: A laser additive manufacturing method for homogeneous functionally graded materials and structures Granted publication date: 20160302 License type: Common License Record date: 20240806 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20141210 Assignee: Chongqing Fengji Intelligent Technology Research Institute Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980012679 Denomination of invention: A laser additive manufacturing method for homogeneous functionally graded materials and structures Granted publication date: 20160302 License type: Common License Record date: 20240902 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20141210 Assignee: CHONGQING HUAHONG INSTRUMENT Co.,Ltd. Assignor: CHONGQING INSTITUTE OF GREEN AND INTELLIGENT TECHNOLOGY, CHINESE ACADEMY OF SCIENCES Contract record no.: X2024980012973 Denomination of invention: A laser additive manufacturing method for homogeneous functionally graded materials and structures Granted publication date: 20160302 License type: Common License Record date: 20240903 |