CN104190766B - 一种用于槽道热管数控弯曲的成型结构及弯曲方法 - Google Patents

一种用于槽道热管数控弯曲的成型结构及弯曲方法 Download PDF

Info

Publication number
CN104190766B
CN104190766B CN201410354389.XA CN201410354389A CN104190766B CN 104190766 B CN104190766 B CN 104190766B CN 201410354389 A CN201410354389 A CN 201410354389A CN 104190766 B CN104190766 B CN 104190766B
Authority
CN
China
Prior art keywords
sleeve
upper plate
plate
heat pipe
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410354389.XA
Other languages
English (en)
Other versions
CN104190766A (zh
Inventor
李娜
李波锋
樊晓霞
陈少君
张玉良
边洪录
汪浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Satellite Manufacturing Factory Co Ltd
Original Assignee
Beijing Satellite Manufacturing Factory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Satellite Manufacturing Factory Co Ltd filed Critical Beijing Satellite Manufacturing Factory Co Ltd
Priority to CN201410354389.XA priority Critical patent/CN104190766B/zh
Publication of CN104190766A publication Critical patent/CN104190766A/zh
Application granted granted Critical
Publication of CN104190766B publication Critical patent/CN104190766B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

本发明一种用于槽道热管数控弯曲的成型结构及弯曲方法包括下板、中板、上板、上板套筒、转动手柄、中板套筒、支撑套筒、垫片;下板通过中心螺孔与支撑套筒连接;中板的凸台与中板套筒的底座相连;上板与上板套筒连接;上板套筒下方连接中板套筒;中板套筒上方连接上板套筒;支撑套筒的内孔安装于弯管机上,用于带动整个装置随弯管机进行转动;上板套筒双向螺纹带动中板套筒及上板上下运动,中板套筒带动中板上下运动,进而完成上板及中板上下运动;中板下沉至下板避让槽底部,则达到弯曲模开启状态极限位置;中板上移至与上板接触,则达到弯曲模闭合状态。本发明提高了产品的生产效率,一次加工合格率,大大降低了生产成本,提高了加工的准确性。

Description

一种用于槽道热管数控弯曲的成型结构及弯曲方法
技术领域
本发明涉及一种用于槽道热管数控弯曲的成型结构及弯曲方法,属于空间飞行器成型工艺技术领域。
背景技术
热管是广泛应用于空间飞行器热控措施中的重要器件。在众多热管产品中,氨轴向槽道热管的应用最为广泛。为实现空间飞行器的热控目标,需要将热管精确成型为各种空间尺寸,以满足热管的安装接口要求。
现热管成型多采用手工成型,但由于氨轴向槽道热管多为不规则截面,且产品种类多,部分产品尺寸大,手工成型工装庞大,手工成型生产效率低下,无法满足日益增长的任务需求。为提高产品的生产效率,缩短热管产品研制周期,满足型号任务需求,提出采用数控弯管技术结合组合式热管成型工装的方案,有效提高热管研制的效率。
但是目前数控弯管机技术只能做圆形截面的热管加工,由于异性热管截面无法实现在弯曲模结构的外形槽中准确轴向旋转,所以需要能够实现快速准确地进行弯曲结构外形槽的开闭合,使得异性热管截面能够实现准确快速自由转动。
同时热管成型有弯曲和回弹两个过程。空间飞行器热管精度要求高,回弹使热管弯曲角度变小,影响成型精度,不满足产品使用要求,降低成型效率,及产品一次合格率。采用过弯法对回弹角进行补偿控制是较常用的控制方法,但是目前的过弯法并没有给出理论的计算公式,完全是依照人工进行过弯调整,效率低下,准确率较低,因此需要一种理论的热管回弹补偿公式,使得过弯调整准确迅速,一次到位。
发明内容
本发明的技术解决问题是:针对现有技术的不足,提供了一种用于槽道热管数控弯曲的成型结构及弯曲方法,本发明通过弯曲成形结构实现了数控弯管机的异性截面槽道热管的弯曲,以及通过大量的异形截面槽道热管数控弯曲试验,建立了异形截面槽道热管回弹角补偿公式。
本发明的技术解决方案是:
一种用于槽道热管数控弯曲的成型结构包括:下板、中板、上板、上板套筒、转动手柄、中板套筒、支撑套筒、垫片;
下板通过中心螺孔与支撑套筒连接,并通过支撑套筒上的定位台对支撑套筒进行定位;下板内开有避让槽用于使弯曲模开启时中板下沉至避让槽;
中板中心开有通孔使得支撑套筒能够通过中板与下板连接;中板通孔内侧开有凸台,凸台与中板套筒的底座相连,用于放置中板套筒;中板与下板有一定间隙用于弯曲模开启关闭;中板的上表面与上板的下表面接触连接;
上板通过中心螺纹孔与上板套筒连接,并且上板通过其内侧的凸台与上板套筒的底座相连用于进行上板的限位;当上板运动到上板套筒的底座时,将停止向下的运动
上板套筒下方通过内侧左旋螺纹连接中板套筒,上方通过外侧右旋螺纹连接上板,使得转动上板套筒可以带动中板套筒和上板进行相反方向运动即可实现工装半自动开合功能及数控弯曲中对于工装及产品间隙的控制;上板套筒内侧开有阶梯台,上板套筒的阶梯台下表面与支撑套筒的轴肩接触连接用于上板套筒的向下限位;支撑套筒在轴向方向是保持稳定的,进而使得上板套筒的位置保持稳定;上板套筒与转动手柄连接用于转动;
中板套筒上方通过外侧螺纹连接上板套筒;中板套筒的底座与中板的凸台固定连接;中板套筒中心开有通孔使得支撑套筒能够通过;
支撑套筒上的表面盖有垫片,上板套筒阶梯台的上表面与垫片的下表面相连用于对上板套筒进行向上限位;支撑套筒的内孔安装于弯管机上,用于带动整个装置随弯管机进行转动;
上板、中板连接后形成用于放置槽道热管管体的外形槽;上板、下板装配后所形成用于放置槽道热管翼片的外形槽;上板、中板、下板之间所形成的几何外形即为全槽道热管截面尺寸,上板、中板间的间隙控制槽道热管成型后截面尺寸;
转动手柄运动,带动上板套筒原位旋转,上板套筒双向螺纹带动中板套筒及上板上下运动,中板套筒带动中板上下运动,进而完成上板及中板上下运动;中板下沉至下板避让槽底部,则达到弯曲模开启状态极限位置;中板上移至与上板接触,则达到弯曲模闭合状态极限位置。
所述的上板和中板连接后形成用于放置槽道热管管体的外形槽的轴向间距a满足以下条件:a=槽道热管管体尺寸+0.05mm。
一种基于用于槽道热管数控弯曲的成型结构的弯曲方法,,包括步骤如下:
步骤1:将上板和中板连接后形成用于放置槽道热管管体的外形槽的轴向间距a调至槽道热管管体尺寸+0.05mm;
步骤2:弯管机自动将槽道热管管体的角度成型起始点送至外形槽中,外形槽随弯管机转动,进而使得槽道热管管体实现一定角度弯曲;
步骤3:暂停弯管机动作;
步骤4:逆时针转动转动手柄带动上板套筒逆时针旋转,上板套筒外螺纹与上板内螺纹右旋螺纹连接,带动上板螺旋向上运动;同时上板套筒内螺纹与中板套筒外螺纹左旋螺纹连接,带动中板套筒螺旋向下运动,中板套筒带动中板向下运动,最终使得中板和上板达到开合状态;
步骤5:弯管机使得外形槽内的槽道热管管体进行轴向90°旋转,同时将槽道热管管体下一个角度成型点送外形槽内;
步骤6:暂停步骤5中槽道热管管体的动作;
步骤7:顺时针转动转动手柄带动上板套筒顺时针旋转,上板套筒外螺纹与上板内螺纹右旋螺纹连接,带动上板螺旋向下运动;同时上板套筒内螺纹与中板套筒外螺纹左旋螺纹连接,带动中板套筒螺旋向上运动,中板套筒带动中板向上运动,最终使得中板和上板达到闭合状态,使得轴向间距a达到一定尺寸,尺寸为槽道热管管体尺寸+0.05mm;
步骤8:外形槽随弯管机转动,进而使得槽道热管管体实现一定角度弯曲;
步骤9:重复步骤3-8,直到完成所有角度的弯曲。
所述槽道热管管体实现一定角度弯曲的角度的确定方式如下:弯曲角度γ=β-0.0192β+3.0672,其中β为理论角度。
本发明与现有技术相比有益效果为:
(1)本发明设计了热管数控成型弯曲模工装,在此基础之上通过大量的异形截面槽道热管数控弯曲试验,建立了异形截面槽道热管回弹角补偿公式,本发明提高了产品的生产效率,一次加工合格率,大大降低了生产成本,提高了加工的准确性。
(2)本发明的成型结构通过上板、上板套筒、中板套筒的配合,实现了外形槽的快速和准确调整,提高了工作效率,使得数控弯管机不再依靠人工来完成热管的调整,同时使得数控弯管机适用于异性截面槽道热管的弯曲成型,适用性强。
(3)本发明采用机械结构完成了成型弯曲模的设计,结构简单,操作方便,成本较低,可以通过改变支撑套筒的内孔大小与多种数控弯管机配合,使得本发明适用性强,适用范围较广,以简单机械结构解决了复杂的实际工程问题。
附图说明
图1为本发明成型结构整体图;
图2为本发明剖视图;
图3为本发明结构半剖爆炸示意图。
具体实施方式
下面结合附图对本发明的工作原理和工作过程做进一步解释和说明。
如图1、2、3所示,本发明一种用于槽道热管数控弯曲的成型结构包括:下板1、中板2、上板3、上板套筒4、转动手柄5、中板套筒6、支撑套筒7、垫片8;
下板1通过中心螺孔与支撑套筒7连接,并通过支撑套筒7上的定位台对支撑套筒7进行定位;下板1内开有避让槽用于使弯曲模开启时中板2下沉至避让槽;
中板2中心开有通孔使得支撑套筒7能够通过中板2与下板1连接;中板2通孔内侧开有凸台,凸台与中板套筒6的底座相连,用于放置中板套筒6;中板2与下板1有一定间隙用于弯曲模开启关闭;中板2的上表面与上板3的下表面接触连接;
上板3通过中心螺纹孔与上板套筒4连接,并且上板3通过其内侧的凸台与上板套筒4的底座相连用于进行上板3的限位;当上板3运动到上板套筒4的底座时,将停止向下的运动
上板套筒4下方通过内侧左旋螺纹连接中板套筒6,上方通过外侧右旋螺纹连接上板3,使得转动上板套筒4可以带动中板套筒6和上板3进行相反方向运动即可实现工装半自动开合功能及数控弯曲中对于工装及产品间隙的控制;上板套筒4内侧开有阶梯台,上板套筒4的阶梯台下表面与支撑套筒7的轴肩接触连接用于上板套筒4的向下限位;支撑套筒7在轴向方向是保持稳定的,进而使得上板套筒4的位置保持稳定;上板套筒4与转动手柄5连接用于转动;
中板套筒6上方通过外侧螺纹连接上板套筒4;中板套筒6的底座与中板2的凸台固定连接;中板套筒6中心开有通孔使得支撑套筒7能够通过;
支撑套筒7上的表面盖有垫片8,上板套筒4阶梯台的上表面与垫片8的下表面相连用于对上板套筒4进行向上限位;支撑套筒7的内孔安装于弯管机上,用于带动整个装置随弯管机进行转动;
上板3、中板2连接后形成用于放置槽道热管管体的外形槽;上板3、下板1装配后所形成用于放置槽道热管翼片的外形槽;上板3、中板2、下板1之间所形成的几何外形即为全槽道热管截面尺寸,上板3、中板2间的间隙控制槽道热管成型后截面尺寸;上板3和中板2连接后形成用于放置槽道热管管体的外形槽的轴向间距a满足以下条件:a=槽道热管管体尺寸+0.05mm。轴向间距a的求解公式是根据大量试验的结果,利用曲线拟合算法得到的,本实施例中以六组实验数据为例说明如何得到间距a的拟合结果。在槽道槽道热管加工中,影响截面尺寸误差的主要因素是外形槽轴向间距a、弯曲角度和弯曲速度,其中弯曲速度的影响可以忽略不计,所以本实施例的试验假设弯曲速度固定在一定值,主要考虑轴向间距a和弯曲角度的影响。
首先假设除外形槽的轴向间距a是变量外,其他因素保持不变,弯曲角度α取75°。因为外形槽的轴向间距a=槽道热管管体尺寸+弯曲模间距h,本实施例选择弯曲模间距h进行研究进而实现对外形槽的轴向间距a的研究:
表1弯曲模间距h的单因素试验表
再次假设弯曲角度α为变量,外形槽的轴向间距a保持不变,如表2所示:
表2弯曲角度α的单因素试验表
从表1、2可以看出,弯曲角度的增大对截面尺寸误差几乎没有影响,在外形槽的轴向间距a和弯曲角度固定的情况下,弯曲速度对折弯前后截面尺寸几乎没有影响。对于截面尺寸误差的影响最大的因素是轴向间距a。从表1中可以看出,间隙尺寸越小,截面尺寸的误差也越小;本实施例中选择,弯曲模间距h为0、0.05、0.1、0.2、0.3、0.4、0.5mm,对应的截面尺寸误差,有一定程度的减小,说明间隙越小截面尺寸误差越小,但是间隙为零时截面尺寸精度最高,但是根据夹紧力的分析,当弯曲模的间隙小到一定程度时,模具对管体的夹紧力会过大,会对管体造成损伤。此时作出的试验件也可以观察出管体有一定程度的损伤。所以针对截面尺寸精度来说,弯曲模的间隙可以调整至0~0.1mm,实际可取0.05mm为宜。
转动手柄5运动,带动上板套筒4原位旋转,上板套筒4双向螺纹带动中板套筒6及上板3上下运动,中板套筒6带动中板2上下运动,进而完成上板3及中板2上下运动;中板2下沉至下板1避让槽底部,则达到弯曲模开启状态极限位置;中板2上移至与上板3接触,则达到弯曲模闭合状态极限位置。
一种基于用于槽道热管数控弯曲的成型结构的弯曲方法,,包括步骤如下:
步骤1:将上板3和中板2连接后形成用于放置槽道热管管体的外形槽的轴向间距a调至槽道热管管体尺寸+0.05mm;
步骤2:弯管机自动将槽道热管管体的角度成型起始点送至外形槽中,外形槽随弯管机转动,进而使得槽道热管管体实现一定角度弯曲;
步骤3:暂停弯管机动作;
步骤4:逆时针转动转动手柄5带动上板套筒4逆时针旋转,上板套筒4外螺纹与上板3内螺纹右旋螺纹连接,带动上板3螺旋向上运动;同时上板套筒4内螺纹与中板套筒6外螺纹左旋螺纹连接,带动中板套筒6螺旋向下运动,中板套筒6带动中板2向下运动,最终使得中板2和上板3达到开合状态;
步骤5:弯管机使得外形槽内的槽道热管管体进行轴向90°旋转,同时将槽道热管管体下一个角度成型点送外形槽内;
步骤6:暂停步骤5中槽道热管管体的动作;
步骤7:顺时针转动转动手柄5带动上板套筒4顺时针旋转,上板套筒4外螺纹与上板3内螺纹右旋螺纹连接,带动上板3螺旋向下运动;同时上板套筒4内螺纹与中板套筒6外螺纹左旋螺纹连接,带动中板套筒6螺旋向上运动,中板套筒6带动中板2向上运动,最终使得中板2和上板3达到闭合状态,使得轴向间距a达到一定尺寸,尺寸为槽道热管管体尺寸+0.05mm;
步骤8:外形槽随弯管机转动,进而使得槽道热管管体实现一定角度弯曲;
步骤9:重复步骤3-8,直到完成所有角度的弯曲。
槽道热管管体实现一定角度弯曲的角度的确定方式如下:弯曲角度γ=β+ε=β-0.0192β+3.0672,其中β为理论角度,ε=-0.0192β+3.0672。弯曲角度γ的求解公式是根据大量试验的结果,利用曲线拟合算法得到的:
表3槽道槽道热管不同弯曲角度的折弯误差
目标角度β(°) 实际弯曲角度γ(°) 弯曲角度误差ε(°)
45 47.1 2.1
60 47 2
75 76.583 1.583
90 91.553 1.553
105 106 1
120 120.67 0.67
135 135.5 0.5
以弯曲角度误差为函数,对七组数据进行线性回归得到回归公式为ε=-0.0192β+3.0672,R2=0.9676。几组试验结果的数据基本满足线性关系,折弯角度的误差和弯曲角度成反比关系,弯曲的角度越小,回弹的影响越大。通过线性回归的分析,可以对不同弯曲角度的回弹量进行预测和调整,从而对不同角度下预留的回弹量有一定的指导意义。
下面以单孔矩形槽道热管角度回弹试验验证说明利用本发明进行实际槽道热管的角度弯曲取得的良好效果,如表4、5所示:
由经验公式ε=-0.0192β+3.0672得到的弯曲角度的理论修正值如表4所示。
表4单孔矩形槽道热管不同角度的理论修正值
目标角度β(°) 折弯角度误差ε(°) 理论修正值(°)
45 2.1 2.2032
60 2 1.9152
75 1.583 1.6272
90 1.553 1.3392
105 1 1.0512
120 0.67 0.7632
135 0.5 0.4752
按照理论修正值的指导,去做不同弯曲角度的验证试验,得到的实际测量值如下表5所示:
表5单孔矩形槽道热管不同角度的理论修正值和实际测量值
目标角度β(°) 理论修正值(°) 实际测量值(°)
45 2.2032 45.3
60 1.9152 60.4
75 1.6272 75.3
90 1.3392 90.3
105 1.0512 105.4
120 0.7632 120.1
135 0.4752 134.7
按照理论修正值修正后的实际测量值,与目标角度的实际误差在±0.5度,可以满足要求,对实际的角度折弯有参考价值。
本发明已经经过专家评审,效果良好,已经取得广泛应用,具有很强的使用价值。
本发明未公开的部分为公知常识。

Claims (4)

1.一种用于槽道热管数控弯曲的成型结构,其特征在于包括:下板(1)、中板(2)、上板(3)、上板套筒(4)、转动手柄(5)、中板套筒(6)、支撑套筒(7)、垫片(8);
下板(1)通过中心螺孔与支撑套筒(7)连接,并通过支撑套筒(7)上的定位台对支撑套筒(7)进行定位;下板(1)内开有避让槽用于使弯曲模开启时中板(2)下沉至避让槽;
中板(2)中心开有通孔使得支撑套筒(7)能够通过中板(2)与下板(1)连接;中板(2)通孔内侧开有凸台,凸台与中板套筒(6)的底座相连,用于放置中板套筒(6);中板(2)与下板(1)有一定间隙用于弯曲模开启关闭;中板(2)的上表面与上板(3)的下表面接触连接;
上板(3)通过中心螺纹孔与上板套筒(4)连接,并且上板(3)通过其内侧的凸台与上板套筒(4)的底座相连用于进行上板(3)的限位;
上板套筒(4)下方通过内侧左旋螺纹连接中板套筒(6),上方通过外侧右旋螺纹连接上板(3),使得转动上板套筒(4)可以带动中板套筒(6)和上板(3)进行相反方向运动;上板套筒(4)内侧开有阶梯台,上板套筒(4)的阶梯台下表面与支撑套筒(7)的轴肩接触连接用于上板套筒(4)的向下限位;上板套筒(4)与转动手柄(5)连接用于转动;
中板套筒(6)上方通过外侧螺纹连接上板套筒(4);中板套筒(6)的底座与中板(2)的凸台固定连接;中板套筒(6)中心开有通孔使得支撑套筒(7)能够通过;
支撑套筒(7)上的表面盖有垫片(8),上板套筒(4)阶梯台的上表面与垫片(8)的下表面相连用于对上板套筒(4)进行向上限位;支撑套筒(7)的内孔安装于弯管机上,用于带动整个装置随弯管机进行转动;
上板(3)、中板(2)连接后形成用于放置槽道热管管体的外形槽;上板(3)、下板(1)装配后所形成用于放置槽道热管翼片的外形槽;
转动手柄(5)运动,带动上板套筒(4)原位旋转,上板套筒(4)双向螺纹带动中板套筒(6)及上板(3)上下运动,中板套筒(6)带动中板(2)上下运动,进而完成上板(3)及中板(2)上下运动;中板(2)下沉至下板(1)避让槽底部,则达到弯曲模开启状态极限位置;中板(2)上移至与上板(3)接触,则达到弯曲模闭合状态极限位置。
2.根据权利要求1所述的一种用于槽道热管数控弯曲的成型结构,其特征在于:所述的上板(3)和中板(2)连接后形成用于放置槽道热管管体的外形槽的轴向间距a满足以下条件:a=槽道热管管体尺寸+0.05mm。
3.一种基于权利要求1所述用于槽道热管数控弯曲的成型结构的弯曲方法,其特征在于步骤如下:
步骤1:将上板(3)和中板(2)连接后形成用于放置槽道热管管体的外形槽的轴向间距a调至槽道热管管体尺寸+0.05mm;
步骤2:弯管机自动将槽道热管管体的角度成型起始点送至外形槽中,外形槽随弯管机转动,进而使得槽道热管管体实现一定角度弯曲;
步骤3:暂停弯管机动作;
步骤4:逆时针转动转动手柄(5)带动上板套筒(4)逆时针旋转,上板套筒(4)外螺纹与上板(3)内螺纹右旋螺纹连接,带动上板(3)螺旋向上运动;同时上板套筒(4)内螺纹与中板套筒(6)外螺纹左旋螺纹连接,带动中板套筒(6)螺旋向下运动,中板套筒(6)带动中板(2)向下运动,最终使得中板(2)和上板(3)达到开合状态;
步骤5:弯管机使得外形槽内的槽道热管管体进行轴向90°旋转,同时将槽道热管管体下一个角度成型点送外形槽内;
步骤6:暂停步骤5中槽道热管管体的动作;
步骤7:顺时针转动转动手柄(5)带动上板套筒(4)顺时针旋转,上板套筒(4)外螺纹与上板(3)内螺纹右旋螺纹连接,带动上板(3)螺旋向下运动;同时上板套筒(4)内螺纹与中板套筒(6)外螺纹左旋螺纹连接,带动中板套筒(6)螺旋向上运动,中板套筒(6)带动中板(2)向上运动,最终使得中板(2)和上板(3)达到闭合状态,使得轴向间距a达到一定尺寸,尺寸为槽道热管管体尺寸+0.05mm;
步骤8:外形槽随弯管机转动,进而使得槽道热管管体实现一定角度弯曲;
步骤9:重复步骤3-8,直到完成所有角度的弯曲。
4.根据权利要求3所述的弯曲方法,其特征在于:所述槽道热管管体实现一定角度弯曲的角度的确定方式如下:弯曲角度γ=β-0.0192β+3.0672,其中β为理论角度。
CN201410354389.XA 2014-07-23 2014-07-23 一种用于槽道热管数控弯曲的成型结构及弯曲方法 Expired - Fee Related CN104190766B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410354389.XA CN104190766B (zh) 2014-07-23 2014-07-23 一种用于槽道热管数控弯曲的成型结构及弯曲方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410354389.XA CN104190766B (zh) 2014-07-23 2014-07-23 一种用于槽道热管数控弯曲的成型结构及弯曲方法

Publications (2)

Publication Number Publication Date
CN104190766A CN104190766A (zh) 2014-12-10
CN104190766B true CN104190766B (zh) 2016-01-13

Family

ID=52076213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410354389.XA Expired - Fee Related CN104190766B (zh) 2014-07-23 2014-07-23 一种用于槽道热管数控弯曲的成型结构及弯曲方法

Country Status (1)

Country Link
CN (1) CN104190766B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550374B (zh) * 2014-11-28 2017-02-01 华瑞电器股份有限公司 一种换向器气动折弯机
CN111545674B (zh) * 2020-05-19 2021-12-17 宿迁市苏宿工业园区城市发展投资有限公司 一种折弯角度可调的建筑用钢筋折弯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2329458Y (zh) * 1998-04-28 1999-07-21 郭汉光 一种手动弯筋机
EP1700647A1 (de) * 2005-03-08 2006-09-13 WAFIOS Aktiengesellschaft Biegevorrichtung für stab- und rohrförmige Werkstücke
CN101856681A (zh) * 2010-04-27 2010-10-13 通州海通船舶修造有限公司 地笼式弯管机
DE102010022879B3 (de) * 2010-06-07 2011-06-22 Wafios AG, 72764 Biegevorrichtung für stab- oder rohrförmige Werkstücke
CN203578472U (zh) * 2013-11-29 2014-05-07 上海卫星装备研究所 热管成形装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2329458Y (zh) * 1998-04-28 1999-07-21 郭汉光 一种手动弯筋机
EP1700647A1 (de) * 2005-03-08 2006-09-13 WAFIOS Aktiengesellschaft Biegevorrichtung für stab- und rohrförmige Werkstücke
CN101856681A (zh) * 2010-04-27 2010-10-13 通州海通船舶修造有限公司 地笼式弯管机
DE102010022879B3 (de) * 2010-06-07 2011-06-22 Wafios AG, 72764 Biegevorrichtung für stab- oder rohrförmige Werkstücke
CN203578472U (zh) * 2013-11-29 2014-05-07 上海卫星装备研究所 热管成形装置

Also Published As

Publication number Publication date
CN104190766A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN104190766B (zh) 一种用于槽道热管数控弯曲的成型结构及弯曲方法
CN205393399U (zh) 扁形螺旋筋绕制机
CN203862778U (zh) 弯管机的弯管角度可调装置
CN207238826U (zh) 一种铜管折弯治具
CN105081142A (zh) 一种弹簧弯制模及其弯制方法
CN205393398U (zh) 螺旋筋绕制机
CN210208414U (zh) 一种建筑工程用钢筋折弯装置
CN208999234U (zh) 波纹管柔韧性试验仪
CN203937082U (zh) 一种可自动调节滴塑高度的滴塑机
CN210562088U (zh) 一种动式测斜管滑具及测斜仪装置
CN208385596U (zh) 移动网络基站天线固定装置
CN209021000U (zh) 一种移模机构及弯管机
CN202484312U (zh) 单向控制精密节流阀
CN203171483U (zh) 热交换器组装机集流管组装模具定位结构
CN105057505A (zh) 矫线器和矫线方法
CN209592839U (zh) 一种可调节长度的过桥弯
CN219465975U (zh) 一种多方向管道位置调整工具
CN206190679U (zh) 一面两销定位装置
CN212652472U (zh) 一种空调管件的变径拉伸成型装置
CN216410179U (zh) 一种硅片pl自动检测设备
CN204953744U (zh) 一种便携式多功能矫线器
CN208920941U (zh) 一种快速安装散热管内隔板装置
CN204135134U (zh) 冰柜冷却管盘绕定型架
CN208853630U (zh) 一种长弹簧节距修正装置
CN209363362U (zh) 换热盘管单管折弯编程自动量规

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113