CN104157456B - 一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法 - Google Patents

一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法 Download PDF

Info

Publication number
CN104157456B
CN104157456B CN201410351682.0A CN201410351682A CN104157456B CN 104157456 B CN104157456 B CN 104157456B CN 201410351682 A CN201410351682 A CN 201410351682A CN 104157456 B CN104157456 B CN 104157456B
Authority
CN
China
Prior art keywords
electrode
nis
preparation
hydridization
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410351682.0A
Other languages
English (en)
Other versions
CN104157456A (zh
Inventor
岳根田
姜奇伟
李福民
马兴平
谭付瑞
陈冲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201410351682.0A priority Critical patent/CN104157456B/zh
Publication of CN104157456A publication Critical patent/CN104157456A/zh
Application granted granted Critical
Publication of CN104157456B publication Critical patent/CN104157456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)

Abstract

本发明涉及一种用于柔性染料敏化太阳能电池(DSSC)的高催化活性硫化物杂化对电极(CE)及其制备方法,本发明用电化学聚合系统两步法制备的NiS/Pt/Ti杂化对电极具有比溅射和热分解制备的Pt电极具有更高的电化学催化性能和更小的电化学阻抗(EIS),作为对电极应用于柔性DSSCs获得比基于Pt电极组装的太阳能电池更好的光电转换效率。

Description

一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化 对电极及其制备方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法。
背景技术
DSSCs由于低价、耗能低、制备简单和高的转换效率引起了人们的广泛关注。在传统DSSC结构体系中,DSSC对电极材料一般采用溅射和热分解制备的Pt电极,这是因为Pt材料具有高的电催化活性、高电导率以及高稳定性等优点。然而由于Pt材料为贵金属,极大的提高了DSSC的制备成本,且采用溅射和热分解制备的Pt电极的方法属于高耗能工艺,阻碍了DSSC的产业化进展。
发明内容
本发明的目的是为了提供一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法。
基于上述目的,本发明采取了如下技术方案:
一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极的制备方法,包括如下步骤:(1)制备NiS/Pt/Ti杂化对电极:将钛箔在HF水溶液和NaOH水溶液中预处理;采用电化学工作站的三电极体系以钛箔为工作电极、Pt片为对电极和Pt丝为参比电极在NiCl2和硫脲的混合水溶液中进行电沉积得到NiS/Ti对电极;将制备的NiS/Ti对电极在氯铂酸乙醇溶液中电聚合得到NiS/Pt/Ti杂化对电极,将获得的NiS/Pt/Ti对电极清洗、烘干备用;(2)柔性DSSC组装:将染料敏化的柔性TiO2/ITO/PEN阳极和NiS/Pt/Ti杂化对电极之间预留孔隙,构成“三明治”夹心结构并组装在一起,将预留的孔隙注入电解质,封装。
步骤(2)中电解质为含下述浓度物质的乙腈溶液:0.60M四正丁基碘化铵、0.10 M碘化锂、0.10 M碘单质和0.50 M 4-特丁基吡啶。
将钛箔在HF水溶液和NaOH水溶液中预处理包括如下步骤:用洗涤剂和去离子水清洗矩形长宽为2× 5 cm2的钛箔带,然后浸入0.20 mM HF的水溶液中2分钟,之后用去离子水清洗干净;将洗净的钛箔置于聚四氟乙烯反应釜内胆中,加入10.0 M NaOH溶液,再置于不锈钢外套中140℃反应2h,冷却至室温,浸入pH=2的盐酸溶液中反应12h,最后用去离子水洗至中性,再在空气中400℃烧结30min即可。
所述NiCl2和硫脲的混合水溶液中NiCl2的浓度为0.1M,硫脲的浓度为1M;所述氯铂酸乙醇溶液中氯铂酸浓度为0.01M。
利用上述制备方法所制得的用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极。
本发明用电化学聚合系统两步法制备的NiS/Pt/Ti杂化对电极(CE)具有比溅射和热分解制备的Pt电极更高的电化学催化性能和更小的电化学阻抗(EIS),作为对电极应用于柔性DSSC获得比基于Pt电极组装的太阳能电池更好的光电转换效率。在100 mW·cm−2模拟太阳光辐照下,基于NiS/Pt/Ti杂化对电极组装的柔性DSSC的光电转换效率达到7.20%,开路电压、短路电流和填充因子分别为 0.75V、14.55 mA·cm−2和0.66。
附图说明
图1是钛箔(a)、NiS/Ti(b)和NiS/Pt/Ti对电极(c)的SEM图谱;
图2是NiS/Pt/Ti对电极的EDS图谱;
图3是Pt/Ti、NiS/Ti 和NiS/Pt/Ti 对电极在扫描速率为50 mV·s−1的循环伏安图;
图4 NiS/Pt/Ti对电极在扫描速率为50 mV·s−1,扫描30圈的循环伏安图(a);循环次数与氧化还原峰电流之间的关系(b);
图5 NiS/Pt/Ti对电极在不同扫描速率的循环伏安图(a);不同循环伏安扫描速度与氧化还原峰电流之间的关系(b);
图6 Pt/Ti、NiS/Ti 和 NiS/Pt/Ti 对电极的电化学阻抗图谱和等效电路图;
图7不同对电极组装的柔性DSSC在标准模拟太阳光照射下的电流-电压曲线。
具体实施方式
以下结合具体实施例对本发明的技术方案作进一步详细说明,但本发明的保护范围并不局限于此。
实验仪器及药品
六水氯化镍、无水乙醇、氯铂酸、硫脲(分析纯,中国医药集团上海化学试剂公司),二氧化钛(P25,德国),导电柔性基片ITO/PEN(6 Ω/cm2,日本),染料Z907(购买于Solaronix SA公司,瑞士),钛箔(纯度:99.9 %,厚度:0.05毫米,矩形长宽:21 × 5.5 cm2,购买于中国宝鸡蕴杰金属制品有限公司),可控温磁力搅拌器(C–MAG HS4,德国IKA),100 W氙灯(XQ–100 W,上海电光器件有限公司),扫描电子显微镜(SEM)7006F(日本日立公司),电化学分析仪/工作站CHI660B(上海辰华仪器有限公司)。
实施例
柔性TiO2/ITO/PEN光阳极的制备
取一定量的P25置于马弗炉中450℃煅烧30分钟,得到预处理的P25,将预处理的P25、无水乙醇和去离子水按摩尔比1:5:1置于高压釜(填充度小于80%)中,将高压釜放在可控温磁力搅拌器上,在温度200℃水热处理24小时,自然冷却到室温,得到TiO2浆体。
将导电柔性基片ITO/PEN剪裁后浸泡在乙醇溶液(95v%)中,24小时后取出,在95v%的乙醇液中反复荡洗数次,以清洗基片表面杂质,最后保存在无水乙醇中备用,使用前吹干即可。
将洗净的ITO/PEN柔性导电基底四边用透明胶带覆盖,通过控制胶带的厚度来控制TiO2膜的厚度,中间留出约0.5×0.4平方厘米的面积,用刮刀法将TiO2浆体平铺在留出的空间中。在空气中自然晾干后,在紫外灯下照射15分钟,在100℃下热处理30分钟使TiO2固化在基板上。将该基板浸泡于染料Z907乙醇溶液中12小时,使染料充分地吸附在TiO2上,取出吹风机吹干,得到染料敏化的柔性TiO2/ITO/PEN薄膜电极。
对电极制备
用洗涤剂和去离子水清洗矩形长宽为2× 5 cm2的钛箔带,然后浸入0.20 mM HF的水溶液中2分钟,之后用去离子水清洗干净。将清洗干净的钛箔置于聚四氟乙烯反应釜内丹中,然后加入10 M NaOH水溶液(填充度 < 80 %),之后置于不锈钢外套中,在140℃下水热反应2小时。冷却至室温后,获得的样品用去离子水小心清洗至中性,然后浸入pH=2的HCl水溶液中反应12小时,反应完后,用去离子水冲洗数次,直到水溶液的pH值接近于7。获得的产物在空气中400℃烧结30分钟,从而获得NaOH处理的钛箔。将预处理的钛箔带剪成面积为1*2 cm2大小,存放于无水乙醇待用。
电化学两步法制备NiS/Pt/Ti杂化对电极,采用电化学工作站(CHI660B,中国上海辰华仪器有限公司)的三电极体系:1*2 cm2大小的钛箔为工作电极、Pt片(1.5*1 cm2)为对电极和Pt丝为参比电极。第一步,NiS/Ti对电极的制备在50 mL含0.1 M NiCl2和1 M 硫脲的混合水溶液中进行电沉积,将获得的NiS/Ti对电极依次用去离子水、丙酮和无水乙醇清洗,吹干备用;第二步,将制备的NiS/Ti对电极在0.01M的氯铂酸乙醇溶液中电聚合,将获得的NiS/Pt/Ti对电极依次用去离子水、丙酮和无水乙醇清洗,在烘箱中100℃烘干备用。详细电化学参数见表1。
表 1 两步法电化学制备NiS/Pt/Ti杂化对电极(CE)的电化学参数(EPs)。
3. 柔性DSSC组装
将染料敏化的柔性TiO2/ITO/PEN薄膜电极和NiS/Pt/Ti杂化对电极按“三明治”结构组装在一起,然后通过预留的孔隙注入电解质,最后进行封装。电解质为0.60 M四正丁基碘化铵、0.10 M碘化锂、0.05 M碘单质和0.50 M 4-特丁基吡啶的乙腈溶液。
二、性能表征与讨论
图1是钛箔、NiS/Ti、NiS/Pt/Ti对电极的SEM图谱,图1a是预处理后的钛箔,从图中可以看出,预处理增加了钛箔的粗糙度,有利于纳米级NiS和Pt的沉积。相比于纯NiS/Ti膜(图1b),从图1c可以看出,Pt均匀地沉积在NiS上面,且NiS/Pt/Ti复合膜(图1c)表现出更佳的有序性。NiS/Pt/Ti对电极结构增加了复合膜高的电化学活性表面积和粗糙度,对电极具有高的电催化活性和电解质的储存起到了关键性作用。
图2 是NiS/Pt/Ti 对电极的EDS图谱,从图中可以看出,元素S、Pt、Ni和Ti都存在,说明NiS/Pt/Ti 对电极被成功制备钛箔上,其中O元素的存在是在钛箔预处理之后一小部分TiO2引起的。
在DSSC电解质中,电解质中I的电子注入到光氧化染料中如方程式(1),在对电极上,I3 被还原如方程式(2)。
为进一步验证I3 在对电极上的还原反应,图3为Pt/Ti、NiS/Ti 和NiS/Pt/Ti对电极在扫描速率为50 mV·s−1条件下的循环伏安图。从图中可以看出,NiS/Ti 和NiS/Pt/Ti对电极都显示了比Pt/Ti电极绝对值更小的阴极电势,且NiS/Pt/Ti对电极具有最小的阴极电势绝对值和最大的氧化还原电流密度,说明NiS/Pt/Ti对电极具有更小的电荷迁移电阻,使得电解质电荷迁移更快,其原因可归于具有良好催化活性的NiS和Pt的协同催化效应。
图4为NiS/Pt/Ti对电极在I/I3 电解质体系连续30次循环伏安图,和循环次数与氧化还原峰电流之间的关系。从图中可以看出30次连续循环伏安扫描,氧化还原峰电流密度随着连续循环伏安扫描次数的增加几乎没有太大的变化,氧化还原峰电流密度和循环伏安扫描次数成线性关系。这表明NiS/Pt/Ti 对电极在I/I3 的氧化还原反应中具有强的电化学稳定性。
图5a为NiS/Pt/Ti对电极在I/I3 的氧化还原电解质中不同扫描速率的循环伏安图,扫描速度从里到外分别为30、50、70、90和100 mV·s−1。阳极和阴极峰电流绝对值随着扫描速度的增加逐渐增大。换言之,阳极的峰电流随着扫描速度的增加朝正极移动,阴极的峰电流随着扫描速度的增加朝负极移动。阳极和阴极的峰电流同循环伏安扫描速度的平方根之间的关系如图5b,从图5b中可以看出,阳极和阴极的峰电流同循环伏安扫描速度的平方根之间也呈线性关系,揭示了在NiS/Pt/Ti对电极表面出现的氧化还原反应的扩散局限性。这表明碘离子对于NiS/Pt/Ti对电极自身的表面结构没有影响,同时,I/I3 的氧化还原电对的循环反应和NiS/Pt/Ti电极没有发生化学反应,这同其他研究者在相同条件下对于Pt电极体系的研究结论相一致。
为了进一步阐明不同对电极对I3 还原反应的电催化活性,可以测试该对电极的电荷传输阻抗(R ct),它是表征对电极电催化性能强弱的一种指标,EIS测试实验采用两个相同的对电极组装成对称电池。图6是不同对电极的Nyquist图,内插图是EIS等效电路图,表2是从图6获得的相应对电极的电化学阻抗参数,其中高频区横轴截距代表对电极的串联阻抗(R s),左边半圆弧代表I3 还原反应在电解质/对电极界面的电荷传输电阻(R ct),右边半圆弧代表I/I3 氧化还原电对的能斯特扩散阻抗(Z w )。
表2 各种对电极的电化学阻抗参数
表2是Pt/Ti、NiS/Ti和NiS/Pt/Ti对电极的电化学阻抗参数,从表2可知,R ct值按下列依次顺序增大:NiS/Pt/Ti(2.61 ± 0.01 Ω·cm2)< Pt/Ti(3.01± 0.01 Ω·cm2)<NiS/Ti(3.10 ± 0.01 Ω·cm2),它们的电催化活性具有相反的排列顺序。这四种对称电池的Nernst扩散阻抗也按下列顺序依次增大:NiS/Pt/Ti(0.33 ± 0.01 Ω·cm2)< Pt/Ti(0.62± 0.01 Ω·cm2)< NiS/Ti(1.08 ± 0.01 Ω·cm2),证明催化材料NiS/Pt/Ti更能加快I3 的扩散,使得I3 能够快速还原成I,提高NiS/Pt/Ti对电极的电催化活性。因此,NiS/Pt/Ti对电极的整体阻抗行为要优于其他三种对电极,这些EIS结论与循环伏安测试结果一致。
表3基于不同对电极的柔性DSSCs的光电性能参数
DSSCs的光电性能参数如短路电流(J sc)、开路电压(V oc)、填充因子(FF)和光电转换效率(η),其中V oc是开路电压,即电流为0时的电压读数,表示为在X轴上的截距;J sc 是短路电流,即电压为0时的电流读数,表示为在Y轴上的截距。FFη是通过短路电流和开路电压计算出来的,公式是:
基于NiS/Pt/Ti和Pt/Ti对电极制备的DSSCs J-V曲线见图7,相应的光电性能参数如表3所示。在100 mW·cm-2标准太阳光条件下,对比基于Pt/Ti 对电极的DSSC,基于NiS/Pt/Ti对电极的DSSC的J sc 为14.55 mA·cm-2V oc 为0.75 V,FF为0.66,光电转换效率为7.20%,超越基于Pt/Ti对电极组装的DSSC的转换效率(6.07%)。这表明通过简单的电化学复合可以达到提高DSSC光电转化效率的目的,这与循环伏安和EIS的结果一致。
DSSC电性能提高主要是以下几个方面的原因引起的:首先通过预处理钛箔实现了增加钛箔表面粗糙度的目的,有利于钛箔比表面积的增加,为催化活性材料提高更大的表面活性;第二,第二次电聚合Pt有可能修饰NiS表面缺陷,为电解质-电极界面的电荷传输提供了较大的比表面积,从而进一步增加了NiS/Pt/Ti对电极的电催化活性,促进对电极的I/I3 氧化还原反应,提高电池的光电流密度;第三,第二次电聚合Pt改变了杂化材料的能级,有利于提高开路电压,且具有良好电导率和高催化活性的NiS与Pt的协同效应为I/I3 在对电极的氧化还原反应提供了低的R ct ,改善了电池的FF

Claims (4)

1.一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极的制备方法,其特征在于,包括如下步骤:(1)制备NiS/Pt/Ti杂化对电极:将钛箔在HF水溶液和NaOH水溶液中预处理;采用电化学工作站的三电极体系以钛箔为工作电极、Pt片为对电极和Pt丝为参比电极在NiCl2和硫脲的混合水溶液中进行电沉积得到NiS/Ti对电极;将制备的NiS/Ti对电极在氯铂酸乙醇溶液中电聚合得到NiS/Pt/Ti杂化对电极,将获得的NiS/Pt/Ti对电极清洗、烘干备用;所述NiCl2和硫脲的混合水溶液中NiCl2的浓度为0.1M,硫脲的浓度为1M;所述氯铂酸乙醇溶液中氯铂酸浓度为0.01M;(2)柔性DSSC组装:将染料敏化的柔性TiO2/ITO/PEN阳极和NiS/Pt/Ti杂化对电极之间预留孔隙,构成“三明治”夹心结构并组装在一起,将预留的孔隙注入电解质,封装。
2.根据权利要求1所述的用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极的制备方法,其特征在于,步骤(2)中电解质为含下述浓度物质的乙腈溶液:0.60M四正丁基碘化铵、0.10 M碘化锂、0.10 M碘单质和0.50 M 4-特丁基吡啶。
3.根据权利要求1所述的用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极的制备方法,其特征在于,将钛箔在HF水溶液和NaOH水溶液中预处理包括如下步骤:将长宽为2× 5 cm2的钛箔带洗净,然后浸入0.20 mM HF的水溶液中2分钟,之后取出用去离子水清洗干净;将洗净的钛箔置于聚四氟乙烯反应釜内胆中,加入10.0 M NaOH溶液,再置于不锈钢外套中140℃反应2h,冷却至室温,浸入pH=2的盐酸溶液中反应12h,最后用去离子水洗至中性,再在空气中400℃烧结30min即可。
4.根据权利要求1-3任一制备方法所制得的用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极。
CN201410351682.0A 2014-07-23 2014-07-23 一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法 Active CN104157456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410351682.0A CN104157456B (zh) 2014-07-23 2014-07-23 一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410351682.0A CN104157456B (zh) 2014-07-23 2014-07-23 一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法

Publications (2)

Publication Number Publication Date
CN104157456A CN104157456A (zh) 2014-11-19
CN104157456B true CN104157456B (zh) 2017-02-08

Family

ID=51882935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410351682.0A Active CN104157456B (zh) 2014-07-23 2014-07-23 一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法

Country Status (1)

Country Link
CN (1) CN104157456B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799315B (zh) * 2017-10-30 2019-02-26 河南大学 一种柔性纤维染料敏化太阳能电池及其制备方法
CN108269698A (zh) * 2018-02-06 2018-07-10 太原理工大学 一种金属硫化物的电化学制备方法及其应用
CN108528536A (zh) * 2018-04-02 2018-09-14 深圳汇通智能化科技有限公司 一种对天然气瓶有隔热保护的太阳能光伏电池板客车顶棚
CN110026249B (zh) * 2019-04-17 2021-05-25 天津大学 一种用于常温降解VOCs的原子级“微纳催化胶囊”

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237200A (zh) * 2011-03-04 2011-11-09 中国科学院物理研究所 用于敏化太阳能电池的金属硫化物对电极及其制备方法
CN103474243A (zh) * 2013-09-27 2013-12-25 夏国栋 基于硫化镍纳米片的染料敏化太阳能电池对电极制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012103667A1 (en) * 2011-01-31 2012-08-09 Honeywell International Inc. Quantum dot solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237200A (zh) * 2011-03-04 2011-11-09 中国科学院物理研究所 用于敏化太阳能电池的金属硫化物对电极及其制备方法
CN103474243A (zh) * 2013-09-27 2013-12-25 夏国栋 基于硫化镍纳米片的染料敏化太阳能电池对电极制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells;Yaoming Xiao,Jihuai Wu et al;《 Journal of Materials Chemistry A》;20130912;第1卷;文章第13885页第1栏,第13886页 *
A large area light weight dye sensitized solar cell based on all titanium substrates with an efficiency of 6.69% outdoors;Jihuai Wu, Yaoming Xiao, et al;《Advance Materials》;20120307;第24卷;文章第1886页第2栏,第1887页 *

Also Published As

Publication number Publication date
CN104157456A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
Tang et al. A microporous platinum counter electrode used in dye-sensitized solar cells
Li et al. Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell
Chen et al. Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells
Wu et al. A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05%
Wang et al. Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells
Hou et al. Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells
Xiao et al. Electrodeposition of high performance PEDOT/Ti counter electrodes on Ti meshes for large-area flexible dye-sensitized solar cells
Yang et al. A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell
Tai et al. Optically transparent counter electrode for dye-sensitized solar cells based on cobalt sulfide nanosheet arrays
Lei et al. A solar rechargeable battery based on hydrogen storage mechanism in dual-phase electrolyte
CN104157456B (zh) 一种用于柔性染料敏化太阳能电池的高催化活性硫化物杂化对电极及其制备方法
Lin et al. Characterization of polyaniline counter electrodes for dye-sensitized solar cells
Gao et al. Effect of electropolymerization time on the performance of poly (3, 4-ethylenedioxythiophene) counter electrode for dye-sensitized solar cells
Wang et al. High‐Performance Cobalt Selenide and Nickel Selenide Nanocomposite Counter Electrode for Both Iodide/Triiodide and Cobalt (II/III) Redox Couples in Dye‐Sensitized Solar Cells
Yue et al. Enhanced performance of flexible dye-sensitized solar cell based on nickel sulfide/polyaniline/titanium counter electrode
Xiao et al. The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells
Liu et al. Synthesis of NiCo2S4 nanowire arrays through ion exchange reaction and their application in Pt-free counter-electrode
Sun et al. Directly hydrothermal growth of antimony sulfide on conductive substrate as efficient counter electrode for dye-sensitized solar cells
CN104465113A (zh) 一种氮掺杂石墨烯对电极制备方法及其在染料敏化太阳能电池中的应用
CN106952731A (zh) 一种染料敏化太阳能电池NiS2/CoS2对电极的制备方法
CN106298247A (zh) 染料敏化太阳能电池XS(X=Co、Ni)对电极的制备方法
Xiao et al. Low temperature fabrication of high performance and transparent Pt counter electrodes for use in flexible dye-sensitized solar cells
CN103413682B (zh) 一种基于双咪唑型离子晶体的太阳能电池用准固态电解质
CN103400700B (zh) 基于二元低铂合金对电极的染料敏化太阳能电池及其制备方法和应用
Kim et al. Long-term stability of conducting polymers in iodine/iodide electrolytes: Beyond conventional platinum catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant