CN104113041B - A kind of under-voltage protecting circuit for POE - Google Patents
A kind of under-voltage protecting circuit for POE Download PDFInfo
- Publication number
- CN104113041B CN104113041B CN201410239862.XA CN201410239862A CN104113041B CN 104113041 B CN104113041 B CN 104113041B CN 201410239862 A CN201410239862 A CN 201410239862A CN 104113041 B CN104113041 B CN 104113041B
- Authority
- CN
- China
- Prior art keywords
- pmos transistor
- voltage
- circuit
- source
- twenty
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明提供一种用于以太网供电的欠压保护电路,所述用于以太网供电的欠压保护电路包括:调节翻转门限电压的电阻分压电路,并产生第一输出电压和第二输出电压;电压选择电路,与电阻分压电路连接,从第一输出电压和第二输出电压选择出一个电压值;带隙比较电路,与电压选择电路连接,将电压选择电路选择的电压值或将防止电源电压的脉冲引起操作的保护电路的电压值作为输入电压,产生欠压保护电路UVLO信号;设置于电阻分压电路与带隙比较电路之间的反馈控制回路,在UVLO信号输出为高电平时,UVLO信号经过电压选择电路,输出较高的第一输出电压,UVLO信号输出为低电平,输出较低的第二输出电压。这样带隙比较器结构缩小了电路面积和加快了电路的响应速度。
The present invention provides an undervoltage protection circuit for power over Ethernet, the undervoltage protection circuit for power over Ethernet includes: a resistor divider circuit for adjusting the flipping threshold voltage, and generating a first output voltage and a second output voltage Voltage; the voltage selection circuit is connected with the resistor divider circuit, and a voltage value is selected from the first output voltage and the second output voltage; the band gap comparison circuit is connected with the voltage selection circuit, and the voltage value selected by the voltage selection circuit or the The voltage value of the protection circuit that prevents the operation caused by the pulse of the power supply voltage is used as the input voltage to generate the UVLO signal of the undervoltage protection circuit; the feedback control loop set between the resistor voltage divider circuit and the bandgap comparison circuit, the output of the UVLO signal is a high voltage Normally, the UVLO signal passes through the voltage selection circuit to output a higher first output voltage, and the UVLO signal output is at a low level to output a lower second output voltage. In this way, the structure of the bandgap comparator reduces the circuit area and speeds up the response speed of the circuit.
Description
技术领域technical field
本发明涉及保护电路领域,特别是涉及一种用于以太网供电的欠压保护电路。The invention relates to the field of protection circuits, in particular to an undervoltage protection circuit for Ethernet power supply.
背景技术Background technique
近年来随着互联网语音协议VoIP和无线局域网络WLAN的应用越来越广泛,通过以太网本身来提供电力的需求越来越迫切,以太网供电PoE技术在传输数据的同时,还可以提供电力支持,因此得到了迅速推广,PoE技术被越来越多的应用于网络设备。In recent years, with the application of VoIP and wireless local area network WLAN more and more widely, the demand for power supply through Ethernet itself is becoming more and more urgent. Power over Ethernet PoE technology can also provide power support while transmitting data. , so it has been rapidly promoted, and PoE technology is more and more applied to network equipment.
正是由于PoE技术的广泛使用,人们对其稳定性的要求也越来越高,以保证PoE电源在电压波动的情况下还能正常工作。当供电设备PSE完成对受电设备PD的检测、分级之后,获知了PD的确切电源功率级别,PSE会将馈送电压升高,开始为PD供电,从而实现电源电压从零开始缓慢上升;当电源电压充电到芯片的开启电压后,电路正常工作;由于内部模块的工作,此时系统的负载电流变大,芯片电源电压会产生波动,特别是芯片高压区供电电压波动会较大。如果电源电压过低会造成很大的功率损耗,因此为了保证高压集成电路在芯片开启后能稳定工作,同时也为了避免芯片波动系统的损害,我们一般引入欠压保护电路对芯片电源电压进行监控。It is precisely because of the widespread use of PoE technology that people have higher and higher requirements for its stability, so as to ensure that the PoE power supply can still work normally under the condition of voltage fluctuation. After the power supply equipment PSE completes the detection and classification of the powered device PD, and knows the exact power level of the PD, the PSE will increase the feed voltage and start supplying power to the PD, so that the power supply voltage will rise slowly from zero; when the power supply After the voltage is charged to the turn-on voltage of the chip, the circuit works normally; due to the work of the internal module, the load current of the system becomes larger at this time, and the power supply voltage of the chip will fluctuate, especially the power supply voltage fluctuation in the high-voltage area of the chip will be relatively large. If the power supply voltage is too low, it will cause a lot of power loss. Therefore, in order to ensure that the high-voltage integrated circuit can work stably after the chip is turned on, and to avoid damage to the chip fluctuation system, we generally introduce an undervoltage protection circuit to monitor the chip power supply voltage. .
目前,比较通用的欠压保护电路如图1所示,该欠压保护电路包括电源分压器、基准电压源、比较器和逻辑电路。芯片通过电源分压器采样电源电压,当采样电压V1超过开启电压VUVLO_R,UVLO翻转为低电平,芯片启动;当采样电压V2低于电源电压VDD(off),欠压保护电路UVLO信号翻转为高电平,芯片关断。该欠压保护电路使用独立的基准电压源和比较器,导致响应时间较长,占用较大面积以及功耗大。At present, a relatively common undervoltage protection circuit is shown in Figure 1. The undervoltage protection circuit includes a power voltage divider, a reference voltage source, a comparator and a logic circuit. The chip samples the power supply voltage through the power voltage divider. When the sampling voltage V1 exceeds the turn-on voltage V UVLO_R , UVLO turns to low level, and the chip starts; when the sampling voltage V2 is lower than the power supply voltage V DD (off), the UVLO signal of the undervoltage protection circuit Flip to high level, the chip is turned off. The undervoltage protection circuit uses an independent reference voltage source and comparator, resulting in long response time, large area occupation and high power consumption.
发明内容Contents of the invention
本发明的目的在于提供一种用于以太网供电的欠压保护电路,解决传统欠压电路使用独立的基准电压源和比较器,导致响应时间较长,占用面积较大以及功耗大的问题。The purpose of the present invention is to provide an undervoltage protection circuit for Ethernet power supply, which solves the problems that the traditional undervoltage circuit uses an independent reference voltage source and comparator, resulting in long response time, large occupied area and high power consumption. .
为了解决上述技术问题,本发明实施例提供的一种用于以太网供电的欠压保护电路,其中,包括:In order to solve the above technical problems, an embodiment of the present invention provides an undervoltage protection circuit for Power over Ethernet, which includes:
用于调节翻转门限电压的电阻分压电路,并产生第一输出电压和第二输出电压;A resistor divider circuit for adjusting the flipping threshold voltage, and generating a first output voltage and a second output voltage;
电压选择电路,与所述电阻分压电路连接,从所述第一输出电压和所述第二输出电压选择出一个电压值;a voltage selection circuit, connected to the resistor divider circuit, and selects a voltage value from the first output voltage and the second output voltage;
带隙比较电路,与所述电压选择电路连接,用于将所述电压选择电路选择的所述电压值或者将防止电源电压的脉冲引起操作的保护电路的电压值作为输入电压,产生一欠压保护电路UVLO信号;A bandgap comparator circuit, connected to the voltage selection circuit, used to use the voltage value selected by the voltage selection circuit or the voltage value of the protection circuit to prevent the pulse of the power supply voltage from being operated as an input voltage to generate an undervoltage Protection circuit UVLO signal;
设置于所述电阻分压电路与所述带隙比较电路之间的反馈控制回路,用于在所述UVLO信号输出为高电平时,所述UVLO信号经过所述电压选择电路,输出较高的所述第一输出电压,所述UVLO信号输出为低电平时,输出较低的所述第二输出电压。The feedback control loop provided between the resistance voltage divider circuit and the bandgap comparison circuit is used to output a higher level of the UVLO signal through the voltage selection circuit when the output of the UVLO signal is at a high level. For the first output voltage, when the output of the UVLO signal is at a low level, a lower second output voltage is output.
其中,所述的用于以太网供电的欠压保护电路还包括:偏置电路,其中所述偏置电路包括:第一偏置电路和比较电压产生电路;Wherein, the undervoltage protection circuit for Power over Ethernet further includes: a bias circuit, wherein the bias circuit includes: a first bias circuit and a comparison voltage generating circuit;
其中所述第一偏置电路包括:第三十PMOS晶体管(M0)、第二PMOS晶体管(M2)、第三PMOS晶体管(M3)、第一PMOS晶体管(M1)和第四电容(C4),Wherein the first bias circuit comprises: a thirtieth PMOS transistor (M0), a second PMOS transistor (M2), a third PMOS transistor (M3), a first PMOS transistor (M1) and a fourth capacitor (C4),
其中所述第三十PMOS晶体管(M0)栅极接地,所述第三十PMOS晶体管(M0)的源极和衬底连接于内部电源电压(VCC),所述第三十PMOS晶体管(M0)的漏极与所述第二PMOS晶体管(M2)的漏极连接,所述第二PMOS晶体管(M2)的漏极连接于所述第二PMOS晶体管(M2)的栅极上;Wherein the gate of the thirtieth PMOS transistor (M0) is grounded, the source and substrate of the thirtieth PMOS transistor (M0) are connected to the internal power supply voltage (V CC ), and the thirtieth PMOS transistor (M0) ) is connected to the drain of the second PMOS transistor (M2), and the drain of the second PMOS transistor (M2) is connected to the gate of the second PMOS transistor (M2);
所述第二PMOS晶体管(M2)的源极和衬底接地;The source and the substrate of the second PMOS transistor (M2) are grounded;
所述第三PMOS晶体管(M3)的源极和衬底接地;The source and the substrate of the third PMOS transistor (M3) are grounded;
所述第三PMOS晶体管(M3)的栅极通过所述第四电容(C4)接地,所述第二PMOS晶体管(M2)的栅极和所述第三PMOS晶体管的栅极(M3)为所述带隙比较电路提供第一偏置电流(inp1);The gate of the third PMOS transistor (M3) is grounded through the fourth capacitor (C4), the gate of the second PMOS transistor (M2) and the gate of the third PMOS transistor (M3) are the The bandgap comparator circuit provides a first bias current (inp1);
所述第二PMOS晶体管(M2)的栅极通过二极管与所述第一PMOS晶体管(M1)的栅极连接,所述第一PMOS晶体管(M1)的漏极与所述第三PMOS晶体管(M3)的漏极相连,所述第一PMOS晶体管(M1)的源极和衬底连接于所述内部电源电压(VCC),所述第一PMOS晶体管(M1)的栅极提供所述第一偏置电流(inp1);The gate of the second PMOS transistor (M2) is connected to the gate of the first PMOS transistor (M1) through a diode, and the drain of the first PMOS transistor (M1) is connected to the gate of the third PMOS transistor (M3 ) is connected to the drain, the source and substrate of the first PMOS transistor (M1) are connected to the internal power supply voltage (V CC ), and the gate of the first PMOS transistor (M1) provides the first bias current (inp1);
其中所述比较电压产生电路包括:第六PMOS晶体管(M6)、第七PMOS晶体管(M7)、第八PMOS晶体管(M8)、第九PMOS晶体管(M9)和第一电容(C1),所述第一偏置电路的所述第一PMOS晶体管(M1)与所述第六PMOS晶体管(M6)形成镜像电流源,所述第一PMOS晶体管(M1)的栅极提供的所述第一偏置电流(inp1)给所述第六PMOS晶体管(M6)的栅极;Wherein the comparison voltage generating circuit includes: a sixth PMOS transistor (M6), a seventh PMOS transistor (M7), an eighth PMOS transistor (M8), a ninth PMOS transistor (M9) and a first capacitor (C1), the The first PMOS transistor (M1) and the sixth PMOS transistor (M6) of the first bias circuit form a mirror current source, and the first bias provided by the gate of the first PMOS transistor (M1) current (inp1) to the gate of said sixth PMOS transistor (M6);
所述第六PMOS晶体管(M6)的源极和衬底连接于所述内部电源电压(VCC),所述第七PMOS晶体管(M7)的源极和衬底连接于所述内部电源电压(VCC),所述第七PMOS晶体管(M7)的栅极与所述带隙比较电路的第十五PMOS晶体管(M15)的栅极连接,所述第十五PMOS晶体管M15栅极产生自偏置电压Vbias,所述第七PMOS晶体管(M7)的漏极与所述第六PMOS晶体管(M6)的漏极连接,所述第七PMOS晶体管(M7)的漏极与所述第八PMOS晶体管(M8)的源极连接,所述第八PMOS晶体管(M8)的衬底连接于所述第八PMOS晶体管(M8)的源极,且所述第六PMOS晶体管(M6)的漏极输出第二偏置电压(Vbias2);The source and substrate of the sixth PMOS transistor (M6) are connected to the internal power supply voltage (V CC ), and the source and substrate of the seventh PMOS transistor (M7) are connected to the internal power supply voltage ( V CC ), the gate of the seventh PMOS transistor (M7) is connected to the gate of the fifteenth PMOS transistor (M15) of the bandgap comparison circuit, and the gate of the fifteenth PMOS transistor M15 generates self-bias Set the voltage V bias , the drain of the seventh PMOS transistor (M7) is connected to the drain of the sixth PMOS transistor (M6), the drain of the seventh PMOS transistor (M7) is connected to the eighth PMOS The source of the transistor (M8) is connected, the substrate of the eighth PMOS transistor (M8) is connected to the source of the eighth PMOS transistor (M8), and the drain of the sixth PMOS transistor (M6) outputs a second bias voltage (V bias2 );
所述第八PMOS晶体管的漏极(M8)与所述第八PMOS晶体管(M8)的栅极短接,所述第八PMOS管的漏极(M8)连接于所述第九PMOS管(M9)的源极,所述第九PMOS管(M9)的衬底连接于所述第九PMOS管(M9)的源极;The drain (M8) of the eighth PMOS transistor is short-circuited to the gate of the eighth PMOS transistor (M8), and the drain (M8) of the eighth PMOS transistor is connected to the ninth PMOS transistor (M9 ), the substrate of the ninth PMOS transistor (M9) is connected to the source electrode of the ninth PMOS transistor (M9);
所述第九PMOS管(M9)的栅极和所述第九PMOS管(M9)的漏极通过第一电容(C1)接地。The gate of the ninth PMOS transistor (M9) and the drain of the ninth PMOS transistor (M9) are grounded through a first capacitor (C1).
进一步的,所述电阻分压电路包括:第三电阻(R3),第四电阻(R4)和第五电阻(R5),其中所述第三电阻(R3)一端连接于所述电源电压(VDD),且所述第三电阻(R3)另一端串联于所述第四电阻(R4)的一端,所述第三电阻(R3)与所述第四电阻(R4)之间形成所述第一输出电压(V1),所述第一输出电压(V1)作为所述电压选择电路的输入电压;Further, the resistor divider circuit includes: a third resistor (R3), a fourth resistor (R4) and a fifth resistor (R5), wherein one end of the third resistor (R3) is connected to the power supply voltage (V DD ), and the other end of the third resistor (R3) is connected in series with one end of the fourth resistor (R4), the third resistor (R3) and the fourth resistor (R4) form the first an output voltage (V1), the first output voltage (V1) is used as the input voltage of the voltage selection circuit;
所述第五电阻(R5)一端串联于所述第四电阻(R4)的另一端,且所述第五电阻(R5)的另一端接地,所述第四电阻(R4)与所述第五电阻(R5)之间形成所述第二输出电压(V2),所述第一输出电压(V2)作为所述电压选择电路的输入电压。One end of the fifth resistor (R5) is connected in series with the other end of the fourth resistor (R4), and the other end of the fifth resistor (R5) is grounded, and the fourth resistor (R4) and the fifth resistor The second output voltage (V2) is formed between the resistors (R5), and the first output voltage (V2) is used as the input voltage of the voltage selection circuit.
进一步的,所述电压选择电路包括:第四PMOS晶体管(M4)、第五PMOS晶体管(M5)和第一反相器(INV1),Further, the voltage selection circuit includes: a fourth PMOS transistor (M4), a fifth PMOS transistor (M5) and a first inverter (INV1),
其中所述第五PMOS晶体管(M5)的栅极连接于所述第一反相器(INV1)的输入端;wherein the gate of the fifth PMOS transistor (M5) is connected to the input terminal of the first inverter (INV1);
所述第四PMOS晶体管(M4)的栅极连接于所述第一反相器(INV1)的输出端;The gate of the fourth PMOS transistor (M4) is connected to the output terminal of the first inverter (INV1);
所述第四PMOS晶体管(M4)的漏极与所述电阻分压电路的所述第二输出电压(V2)连接;The drain of the fourth PMOS transistor (M4) is connected to the second output voltage (V2) of the resistor divider circuit;
所述第五PMOS晶体管(M5)的漏极与所述电阻分压电路的所述第一输出电压(V1)连接;The drain of the fifth PMOS transistor (M5) is connected to the first output voltage (V1) of the resistor divider circuit;
所述第五PMOS晶体管(M5)的源极连接于第四PMOS晶体管(M4)的源极,且所述第五PMOS晶体管(M5)的衬底与第四PMOS晶体管(M4)的衬底串联在一起,所述第五PMOS晶体管(M5)的衬底连接于所述第五PMOS晶体管(M5)的源极,且所述第五PMOS晶体管(M5)的源极与所述带隙比较电路的第十二PMOS晶体管(M12)的栅极连接,由所述第五PMOS晶体管(M5)的源极输出所述电压选择电路的输出电压(Vin),所述输出电压(Vin)作为所述带隙比较电路提供输入电压。The source of the fifth PMOS transistor (M5) is connected to the source of the fourth PMOS transistor (M4), and the substrate of the fifth PMOS transistor (M5) is connected in series with the substrate of the fourth PMOS transistor (M4) Together, the substrate of the fifth PMOS transistor (M5) is connected to the source of the fifth PMOS transistor (M5), and the source of the fifth PMOS transistor (M5) is connected to the bandgap comparison circuit The gate of the twelfth PMOS transistor (M12) is connected, and the source of the fifth PMOS transistor (M5) outputs the output voltage (Vin) of the voltage selection circuit, and the output voltage (Vin) is used as the A bandgap comparator circuit provides the input voltage.
进一步的,所述防止所述电源电压(VDD)的脉冲引起操作的保护电路包括:与所述带隙比较电路的所述第十二PMOS晶体管(M12)并联的第十三PMOS晶体管(M13)、第十一PMOS晶体管(M11)和第十PMOS晶体管(M10),Further, the protection circuit for preventing operation caused by the pulse of the power supply voltage (V DD ) includes: a thirteenth PMOS transistor (M13) connected in parallel with the twelfth PMOS transistor (M12) of the bandgap comparison circuit ), the eleventh PMOS transistor (M11) and the tenth PMOS transistor (M10),
其中所述第十一PMOS晶体管(M11)和所述第十PMOS晶体管(M10)均并联在所述内部电源电压(VCC)和所述第十三PMOS晶体管(M13)的源极之间,其中所述第十一PMOS晶体管(M11)的源极和衬底连接于所述内部电源电压(VCC),所述第十一PMOS晶体管(M11)的漏极与所述第十三PMOS晶体管(M13)的源极连接,所述第十一PMOS晶体管(M11)的漏极与所述第十三PMOS晶体管(M13)的源极,所述第十一PMOS晶体管(M11)的栅极与所述第一偏置电路的第一PMOS晶体管(M1)的栅极连接,所述第十一PMOS晶体管(M11)产生第四镜像电流源支路的第四镜像电流(IC4);Wherein the eleventh PMOS transistor (M11) and the tenth PMOS transistor (M10) are connected in parallel between the internal power supply voltage (V CC ) and the source of the thirteenth PMOS transistor (M13), Wherein the source and substrate of the eleventh PMOS transistor (M11) are connected to the internal power supply voltage (V CC ), the drain of the eleventh PMOS transistor (M11) is connected to the thirteenth PMOS transistor (M13) source is connected, the drain of the eleventh PMOS transistor (M11) is connected to the source of the thirteenth PMOS transistor (M13), the gate of the eleventh PMOS transistor (M11) is connected to The gate of the first PMOS transistor (M1) of the first bias circuit is connected, and the eleventh PMOS transistor (M11) generates a fourth mirror current (I C4 ) of the fourth mirror current source branch;
所述第十PMOS晶体管(M10)的源极和衬底连接于所述内部电源电压(VCC),所述第十PMOS晶体管(M10)的漏极连接于所述第十三PMOS晶体管(M13)的源极,所述第十PMOS晶体管(M10)的漏极产生第五镜像电流支路的第五镜像电流(IC5);The source and substrate of the tenth PMOS transistor (M10) are connected to the internal power supply voltage (V CC ), and the drain of the tenth PMOS transistor (M10) is connected to the thirteenth PMOS transistor (M13 ), the drain of the tenth PMOS transistor (M10) generates the fifth mirror current (I C5 ) of the fifth mirror current branch;
所述第十三PMOS晶体管(M13)漏极与所述第十二PMOS晶体管(M12)漏极并联接地,所述第十三PMOS晶体管(M13)的栅极接入第二偏置电压(Vbias2)与所述第十二PMOS晶体管(M12)的栅极接入的输入电压作比较,所述第十三PMOS晶体管(M13)的源极并联于所述第十二PMOS晶体管(M12)的源极,所述第十三PMOS晶体管(M13)的衬底连接于所述第十三PMOS晶体管(M13)的源极,所述第十二PMOS晶体管(M12)的衬底连接于所述第十二PMOS晶体管(M12)的源极,所述第二偏置电压(Vbias2)与所述输入电压比较后由所述第十二PMOS晶体管(M12)的源极输出电压。The drain of the thirteenth PMOS transistor (M13) is connected to the ground in parallel with the drain of the twelfth PMOS transistor (M12), and the gate of the thirteenth PMOS transistor (M13) is connected to the second bias voltage (V bias2 ) is compared with the input voltage connected to the gate of the twelfth PMOS transistor (M12), and the source of the thirteenth PMOS transistor (M13) is connected in parallel to the twelfth PMOS transistor (M12) source, the substrate of the thirteenth PMOS transistor (M13) is connected to the source of the thirteenth PMOS transistor (M13), and the substrate of the twelfth PMOS transistor (M12) is connected to the source of the thirteenth PMOS transistor (M12). sources of twelve PMOS transistors (M12), the source of the twelfth PMOS transistors (M12) outputs a voltage after comparing the second bias voltage (V bias2 ) with the input voltage.
进一步的,所述带隙比较电路包括:产生基准电压的带隙基准结构、产生电流源支路电流的负载电路、第二级输出电路、启动钳位电路和逻辑电路。Further, the bandgap comparison circuit includes: a bandgap reference structure for generating a reference voltage, a load circuit for generating current source branch current, a second-stage output circuit, a startup clamp circuit and a logic circuit.
进一步的,所述逻辑电路包括施密特触发器(SMT)和第二反相器(INV2),Further, the logic circuit includes a Schmitt trigger (SMT) and a second inverter (INV2),
其中,所述施密斯触发器(SMT)的输入端与所述带隙比较电路的所述第二级输出电路的所述第十九PMOS晶体管(M19)的漏极的输出端连接,经所述第二反相器(INV2)后输出所述欠压保护电路的UVLO信号,且所述第二反相器(INV2)与所述第一反相器(INV1)连接,将所述UVLO信号反馈给所述第一反相器(INV1)的输入端。Wherein, the input end of the Smith trigger (SMT) is connected with the output end of the drain of the nineteenth PMOS transistor (M19) of the second stage output circuit of the bandgap comparator circuit, through the The second inverter (INV2) outputs the UVLO signal of the undervoltage protection circuit, and the second inverter (INV2) is connected to the first inverter (INV1), and the UVLO signal Feedback to the input of the first inverter (INV1).
进一步的,所述带隙基准结构包括:第十四PMOS晶体管(M14)、第十七PMOS晶体管(M17)、第一三极管(Q1)、第二三极管(Q2)、第一电阻(R1)和第二电阻(R2),Further, the bandgap reference structure includes: a fourteenth PMOS transistor (M14), a seventeenth PMOS transistor (M17), a first triode (Q1), a second triode (Q2), a first resistor (R1) and a second resistor (R2),
其中,所述第十四PMOS晶体管(M14)的源极和衬底连接于所述内部电源电压(VCC);Wherein, the source and substrate of the fourteenth PMOS transistor (M14) are connected to the internal power supply voltage (V CC );
所述第十四PMOS晶体管(M14)的漏极连接于所述第十七PMOS晶体管(M17)的源极,所述第十七PMOS晶体管(M17)的衬底连接于所述第十七PMOS晶体管(M17)的源极;The drain of the fourteenth PMOS transistor (M14) is connected to the source of the seventeenth PMOS transistor (M17), and the substrate of the seventeenth PMOS transistor (M17) is connected to the seventeenth PMOS transistor (M17). the source of the transistor (M17);
所述第十四PMOS晶体管(M14)的栅极与所述第一偏置电路的所述第一PMOS晶体管(M1)的栅极连接,且产生第三镜像电流源支路的第三镜像电流(IC3);The gate of the fourteenth PMOS transistor (M14) is connected to the gate of the first PMOS transistor (M1) of the first bias circuit, and generates a third mirror current of the third mirror current source branch ( IC3 );
所述第二三极管(Q2)的基极与第十三PMOS晶体管(M13)的源极连接,所述第二三极管(Q2)的基极与所述第一三极管(Q1)的基极连接作为比较电压输入端;The base of the second transistor (Q2) is connected to the source of the thirteenth PMOS transistor (M13), and the base of the second transistor (Q2) is connected to the first transistor (Q1 ) base connection as a comparison voltage input;
所述第二三极管(Q2)的集电极与所述负载电路的第十五PMOS晶体管(M15)的漏极连接,产生第二镜像电流源支路的第二镜像电流(IC2);The collector of the second triode (Q2) is connected to the drain of the fifteenth PMOS transistor (M15) of the load circuit to generate a second mirror current (I C2 ) of the second mirror current source branch;
所述第一三极管(Q1)的集电极与所述负载电路的第十六PMOS晶体管(M16)的漏极连接,产生第一镜像电流源支路的第一镜像电流(IC1);The collector of the first triode (Q1) is connected to the drain of the sixteenth PMOS transistor (M16) of the load circuit to generate the first mirror current (I C1 ) of the first mirror current source branch;
所述第二三极管(Q2)的发射极经所述第二电阻(R2)连接到所述第一三极管(Q1)的发射极,所述第一三极管(Q1)的发射极经所述第一电阻(R1)连接的第十七PMOS晶体管(M17)的源极,第十七PMOS晶体管(M17)的衬底连接于所述第十七PMOS晶体管(M17)的源极,第十七PMOS晶体管(M17)的栅极和漏极均接地。The emitter of the second triode (Q2) is connected to the emitter of the first triode (Q1) via the second resistor (R2), and the emitter of the first triode (Q1) The source of the seventeenth PMOS transistor (M17) connected via the first resistor (R1), the substrate of the seventeenth PMOS transistor (M17) is connected to the source of the seventeenth PMOS transistor (M17) , both the gate and the drain of the seventeenth PMOS transistor (M17) are grounded.
进一步的,所述产生电流源支路电流的负载电路包括:Further, the load circuit generating the branch current of the current source includes:
第十六PMOS晶体管(M16)、第十五PMOS晶体管(M15)和第二电容(C2);A sixteenth PMOS transistor (M16), a fifteenth PMOS transistor (M15) and a second capacitor (C2);
其中所述第十六PMOS晶体管M16与所述第十五PMOS晶体管M15形成镜像电流源,所述第十五PMOS晶体管M15栅极产生的自偏置电压Vbias输入到第十六PMOS晶体管M16的栅极,所述第十六PMOS晶体管(M16)的源极和衬底连接于所述内部电源电压(VCC);Wherein the sixteenth PMOS transistor M16 and the fifteenth PMOS transistor M15 form a mirror current source, and the self-bias voltage V bias generated by the gate of the fifteenth PMOS transistor M15 is input to the sixteenth PMOS transistor M16 a gate, a source and a substrate of the sixteenth PMOS transistor (M16) are connected to the internal power supply voltage (V CC );
所述第十五PMOS晶体管(M15)的源极和衬底连接于所述内部电源电压(VCC),所述第十五PMOS晶体管(M15)的栅极连接于所述第十五PMOS晶体管(M15)的漏极,所述第十五PMOS晶体管(M15)的栅极与所述比较电压产生电路的第七PMOS晶体管(M7)的栅极连接;The source and substrate of the fifteenth PMOS transistor (M15) are connected to the internal power supply voltage (V CC ), and the gate of the fifteenth PMOS transistor (M15) is connected to the fifteenth PMOS transistor (M15), the gate of the fifteenth PMOS transistor (M15) is connected to the gate of the seventh PMOS transistor (M7) of the comparison voltage generating circuit;
所述第十五PMOS晶体管(M15)与所述第十PMOS晶体管(M10)形成镜像电流源,所述第十五PMOS晶体管M15栅极产生的自偏置电压Vbias输入到第十PMOS晶体管M10的栅极。The fifteenth PMOS transistor (M15) and the tenth PMOS transistor (M10) form a mirror current source, and the self-bias voltage V bias generated by the gate of the fifteenth PMOS transistor M15 is input to the tenth PMOS transistor M10 the grid.
进一步的,所述第二级输出电路包括:第十九PMOS晶体管(M19)、第二十PMOS晶体管(M20)、第二十一PMOS晶体管(M21)和第二十九PMOS晶体管(M29),其中所述第十五PMOS晶体管(M15)与所述第二十九PMOS晶体管(M29)形成镜像电流源,所述第二十九PMOS晶体管(M29)的源极和衬底连接于所述内部电源电压(VCC),所述第二十九PMOS晶体管(M29)的漏极与所述第二十PMOS晶体管(M20)的漏极连接,所述第十五PMOS晶体管M15栅极产生的自偏置电压Vbias输入到第二十九PMOS晶体管M29的栅极,产生第六镜像电流支路的第六镜像电流(IC6);Further, the second-stage output circuit includes: a nineteenth PMOS transistor (M19), a twentieth PMOS transistor (M20), a twenty-first PMOS transistor (M21) and a twenty-ninth PMOS transistor (M29), Wherein the fifteenth PMOS transistor (M15) and the twenty-ninth PMOS transistor (M29) form a mirror current source, and the source and substrate of the twenty-ninth PMOS transistor (M29) are connected to the internal power supply voltage (V CC ), the drain of the twenty-ninth PMOS transistor (M29) is connected to the drain of the twenty-ninth PMOS transistor (M20), and the self generated by the gate of the fifteenth PMOS transistor M15 The bias voltage V bias is input to the gate of the twenty-ninth PMOS transistor M29 to generate the sixth mirror current (I C6 ) of the sixth mirror current branch;
所述第二十PMOS晶体管(M20)与所述第二十一PMOS晶体管(M21)形成镜像电流源,所述第二十PMOS晶体管(M20)产生第七镜像电流(IC7),所述第二十PMOS晶体管(M20)的栅极与所述第二十一PMOS晶体管(M21)的栅极连接,所述第二十PMOS晶体管(M20)的栅极与所述第二十PMOS晶体管(M20)的漏极连接,所述第二十PMOS晶体管(M20)的源极和衬底接地,所述第二十一PMOS晶体管(M21)的源极和衬底接地,所述第二十PMOS晶体管(M20)产生第八镜像电流(IC8);The 20th PMOS transistor (M20) and the 21st PMOS transistor (M21) form a mirror current source, and the 20th PMOS transistor (M20) generates a seventh mirror current (I C7 ), and the 20th PMOS transistor (M20) generates a seventh mirror current (I C7 ). The gates of the twenty PMOS transistors (M20) are connected to the gates of the twenty-first PMOS transistors (M21), and the gates of the twenty PMOS transistors (M20) are connected to the gates of the twenty PMOS transistors (M20). ), the source and substrate of the twentieth PMOS transistor (M20) are grounded, the source and substrate of the twenty-first PMOS transistor (M21) are grounded, and the twentieth PMOS transistor (M20) generates an eighth mirror current (I C8 );
所述第十九PMOS晶体管(M19)的栅极与所述带隙基准结构的所述第一三极管(Q1)的集电极连接,所述第十九PMOS晶体管(M19)的源极和衬底连接于所述内部电源电压(VCC),所述第十九PMOS晶体管(M19)的漏极与所述第二十一PMOS晶体管(M21)的漏极连接,产生第二级输出电路的输出电压。The gate of the nineteenth PMOS transistor (M19) is connected to the collector of the first triode (Q1) of the bandgap reference structure, and the source of the nineteenth PMOS transistor (M19) and The substrate is connected to the internal power supply voltage (V CC ), the drain of the nineteenth PMOS transistor (M19) is connected to the drain of the twenty-first PMOS transistor (M21), generating a second-stage output circuit output voltage.
进一步的,所述启动钳位电路包括:第十八PMOS晶体管(M18),第二十二PMOS晶体管(M22),第二十三PMOS晶体管(M23),第二十四PMOS晶体管(M24),第二十五PMOS晶体管(M25),第二十六PMOS晶体管(M26),第二十七PMOS晶体管(M27),第二十八PMOS晶体管(M28),第三电容(C3)和第五电容(C5),Further, the startup clamping circuit includes: an eighteenth PMOS transistor (M18), a twenty-second PMOS transistor (M22), a twenty-third PMOS transistor (M23), a twenty-fourth PMOS transistor (M24), The twenty-fifth PMOS transistor (M25), the twenty-sixth PMOS transistor (M26), the twenty-seventh PMOS transistor (M27), the twenty-eighth PMOS transistor (M28), the third capacitor (C3) and the fifth capacitor (C5),
其中所述第十八PMOS晶体管(M18)的漏极与所述第二级输出电路的所述第十九PMOS晶体管(M19)的栅极连接,所述第十九PMOS晶体管(M19)的漏极并联于一接地所述第五电容(C5);所述第十八PMOS晶体管(M18)的源极和衬底连接于所述内部电源电压(VCC),所述第十八PMOS晶体管(M18)的栅极与所述第二十七PMOS晶体管(M27)的漏极的连接;Wherein the drain of the eighteenth PMOS transistor (M18) is connected to the gate of the nineteenth PMOS transistor (M19) of the second-stage output circuit, and the drain of the nineteenth PMOS transistor (M19) The pole is connected in parallel with a grounded fifth capacitor (C5); the source and substrate of the eighteenth PMOS transistor (M18) are connected to the internal power supply voltage (V CC ), and the eighteenth PMOS transistor ( the connection of the gate of M18) to the drain of said twenty-seventh PMOS transistor (M27);
所述第二十二PMOS晶体管(M22)的源极和衬底连接于所述内部电源电压(VCC),所述第二十二PMOS晶体管(M22)的栅极与所述第一偏置电路连接的第一PMOS晶体管(M1)的栅极连接,所述第二十二PMOS晶体管(M22)的漏极与所述第二十五PMOS晶体管(M25)的源极连接;The source and substrate of the twenty-second PMOS transistor (M22) are connected to the internal power supply voltage (V CC ), and the gate of the twenty-second PMOS transistor (M22) is connected to the first bias The gate of the circuit-connected first PMOS transistor (M1) is connected, the drain of the twenty-second PMOS transistor (M22) is connected to the source of the twenty-fifth PMOS transistor (M25);
所述第二十五PMOS晶体管(M25)的衬底连接于所述内部电源电压(VCC),所述第二十五PMOS晶体管(M25)的漏极与所述第二十六PMOS晶体管(M26)的漏极连接,所述第二十五PMOS晶体管(M25)的漏极与所述第二十三PMOS晶体管(M23)的栅极连接,所述第二十五PMOS晶体管(M25)的栅极与所述第二十六PMOS晶体管(M26)的栅极连接,且所述第二十六PMOS晶体管(M26)的栅极通过所述第三电容(C3)接地;The substrate of the twenty-fifth PMOS transistor (M25) is connected to the internal power supply voltage (V CC ), and the drain of the twenty-fifth PMOS transistor (M25) is connected to the twenty-sixth PMOS transistor ( M26), the drain of the twenty-fifth PMOS transistor (M25) is connected to the gate of the twenty-third PMOS transistor (M23), the twenty-fifth PMOS transistor (M25) The gate is connected to the gate of the twenty-sixth PMOS transistor (M26), and the gate of the twenty-sixth PMOS transistor (M26) is grounded through the third capacitor (C3);
所述第二十六PMOS晶体管(M26)的源极和衬底接地;The source and the substrate of the twenty-sixth PMOS transistor (M26) are grounded;
所述第二十三PMOS晶体管(M23)的漏极并联于所述第二级输出的所述第十九PMOS晶体管(M19)的漏极,所述第二十三PMOS晶体管(M23)的衬底接地,所述第二十三PMOS晶体管(M23)的源极与所述第二十四PMOS晶体管(M24)的漏极连接;The drain of the twenty-third PMOS transistor (M23) is connected in parallel to the drain of the nineteenth PMOS transistor (M19) output by the second stage, and the substrate of the twenty-third PMOS transistor (M23) The bottom is grounded, and the source of the twenty-third PMOS transistor (M23) is connected to the drain of the twenty-fourth PMOS transistor (M24);
所述第二十四PMOS晶体管(M24)的源极和衬底接地,所述第二十四PMOS晶体管(M24)的栅极与所述第一偏置电路的所述第二PMOS晶体管M2的栅极相连;The source and the substrate of the twenty-fourth PMOS transistor (M24) are grounded, and the gate of the twenty-fourth PMOS transistor (M24) is connected to the gate of the second PMOS transistor M2 of the first bias circuit. connected to the grid;
所述第二十七PMOS晶体管(M27)的源极和衬底连接于所述内部电源电压(VCC),所述第二十七PMOS晶体管(M27)的栅极与所述比较电压产生电路的所述第七PMOS晶体管(M7)的栅极连接,所述第二十七PMOS晶体管(M27)的漏极与所述第二十八PMOS晶体管(M28)漏极连接,所述第二十六PMOS晶体管(M26)的栅极并联于所述第二十八PMOS晶体管(M28)漏极;The source and substrate of the twenty-seventh PMOS transistor (M27) are connected to the internal power supply voltage (V CC ), and the gate of the twenty-seventh PMOS transistor (M27) is connected to the comparison voltage generation circuit The gate of the seventh PMOS transistor (M7) is connected, the drain of the twenty-seventh PMOS transistor (M27) is connected to the drain of the twenty-eighth PMOS transistor (M28), and the twenty-eighth PMOS transistor (M28) is connected to the drain. The gates of the six PMOS transistors (M26) are connected in parallel to the drain of the twenty-eighth PMOS transistor (M28);
所述第二十八PMOS晶体管(M28)的源极和衬底接地,所述第二十八PMOS晶体管(M28)的栅极与所述第一偏置电路所述第一PMOS晶体管M2的栅极相连。The source and substrate of the twenty-eighth PMOS transistor (M28) are grounded, and the gate of the twenty-eighth PMOS transistor (M28) is connected to the gate of the first PMOS transistor M2 of the first bias circuit. Pole connected.
本发明的上述技术方案的有益效果如下:The beneficial effects of above-mentioned technical scheme of the present invention are as follows:
本发明的方案中,通过电阻分压电路产生两个电压值,由电压选择电路选择一个电压值作为带隙比较电路的输入电压,通过与保护电路的电压值相比来防止电源电压的脉冲引起操作,同时通过带隙比较电路产生一欠压保护电路UVLO信号后,由反馈控制回路返回UVLO信号来监控UVLO信号的高低电平,以保护后续模块启动的安全性,这样通过带隙比较电路实现了带隙基准电路和比较器的功能,在优化了电路结构、缩小电路面积、降低功耗的同时,还加快了电路的响应速度。实现对PoE接口和固定的直流电压变换为可变的直流电压的直流斩波器DC/DC控制器电源电压进行监控,同时为了实现高转换效率和得到随输入电压和温度的变化均很小的翻转门限电压。In the solution of the present invention, two voltage values are generated by the resistor divider circuit, and a voltage value is selected by the voltage selection circuit as the input voltage of the bandgap comparison circuit, and the pulse of the power supply voltage is prevented from being caused by the voltage value of the protection circuit by comparing with the voltage value of the protection circuit. At the same time, after the UVLO signal of an undervoltage protection circuit is generated by the bandgap comparison circuit, the UVLO signal is returned by the feedback control loop to monitor the high and low levels of the UVLO signal to protect the safety of subsequent module startup. This is achieved through the bandgap comparison circuit. The functions of the bandgap reference circuit and the comparator are optimized, the circuit structure is optimized, the circuit area is reduced, the power consumption is reduced, and the response speed of the circuit is also accelerated. Realize the monitoring of the power supply voltage of the DC chopper DC/DC controller that converts the PoE interface and the fixed DC voltage into a variable DC voltage. At the same time, in order to achieve high conversion efficiency and obtain small changes with input voltage and temperature flip threshold voltage.
附图说明Description of drawings
图1为现有技术的通用的欠压保护电路图;FIG. 1 is a general undervoltage protection circuit diagram of the prior art;
图2为本发明实施例的电流IC1、电流IC2与输入电压VD的关系图;FIG. 2 is a relationship diagram between current I C1 , current I C2 and input voltage V D according to an embodiment of the present invention;
图3为本发明实施例的欠压保护电路的示意框图;3 is a schematic block diagram of an undervoltage protection circuit according to an embodiment of the present invention;
图4为本发明实施例的欠压保护电路的电路图。FIG. 4 is a circuit diagram of an undervoltage protection circuit according to an embodiment of the present invention.
附图标记说明:Explanation of reference signs:
1-电阻分压电路,2-电压选择电路,3-带隙比较电路,31-带隙基准结构,32-逻辑电路,4-偏置电路。1-resistor divider circuit, 2-voltage selection circuit, 3-band gap comparison circuit, 31-band gap reference structure, 32-logic circuit, 4-bias circuit.
具体实施方式detailed description
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
本发明针对现有技术中传统欠压电路使用独立的基准电压源和比较器,导致响应时间较长,占用面积较大以及功耗大的问题,提供一种用于以太网供电的欠压保护电路,通过具有将比较器和基准电压源做成一个带隙比较电路3电路,使欠压保护电路具有更快的翻转速度,并且功耗很低,并且通过保护电路的存在,防止了电源电压VDD脉冲引起误操作。The present invention aims at the problems of using independent reference voltage source and comparator in the traditional undervoltage circuit in the prior art, resulting in long response time, large occupied area and large power consumption, and provides an undervoltage protection for Power over Ethernet The circuit, by making the comparator and the reference voltage source into a bandgap comparison circuit 3 circuit, makes the undervoltage protection circuit have a faster flipping speed, and the power consumption is very low, and through the existence of the protection circuit, the power supply voltage is prevented V DD pulses cause misoperation.
需要说明的是本发明的VDD为芯片外接电源引脚,VDD经过内部低压源产生电路产生内部电源电压VCC。It should be noted that V DD in the present invention is an external power supply pin of the chip, and V DD generates an internal power supply voltage V CC through an internal low-voltage source generating circuit.
如图2至图4所示,本发明实施例提供的用于以太网供电的欠压保护电路,其中,包括:As shown in Figures 2 to 4, the undervoltage protection circuit for Ethernet power supply provided by the embodiment of the present invention includes:
用于调节翻转门限电压的电阻分压电路1,并产生第一输出电压和第二输出电压;A resistor divider circuit 1 for adjusting the inversion threshold voltage, and generating a first output voltage and a second output voltage;
电压选择电路2,与所述电阻分压电路1连接,从所述第一输出电压和所述第二输出电压选择出一个电压值;A voltage selection circuit 2, connected to the resistor divider circuit 1, selects a voltage value from the first output voltage and the second output voltage;
带隙比较电路3,与所述电压选择电路2连接,用于将所述电压选择电路2选择的所述电压值或者将防止电源电压的脉冲引起操作的保护电路的电压值作为输入电压,产生一欠压保护电路UVLO信号;A bandgap comparator circuit 3, connected to the voltage selection circuit 2, used to use the voltage value selected by the voltage selection circuit 2 or the voltage value of the protection circuit that prevents the operation from being caused by the pulse of the power supply voltage as an input voltage to generate 1. Undervoltage protection circuit UVLO signal;
设置于所述电阻分压电路1与所述带隙比较电路3之间的反馈控制电路,用于在所述UVLO信号输出为高电平时,所述UVLO信号经过所述电压选择电路2,输出较高的所述第一输出电压,所述UVLO信号输出为低电平时,输出较低的所述第二输出电压。The feedback control circuit arranged between the resistance divider circuit 1 and the bandgap comparison circuit 3 is used to output the UVLO signal through the voltage selection circuit 2 when the output of the UVLO signal is at a high level When the first output voltage is relatively high, when the UVLO signal output is at a low level, the second output voltage is relatively low.
所述电压选择电路2选择电阻分压电路1的电压值或者选择防止电源电压的脉冲引起操作的保护电路的电压值作为带隙比较电路3的输入电压,产生欠压保护电路UVLO信号后,通过反馈控制回路将UVLO信号返回给电压选择电路2,然后电压选择电路2可以选择电压值较高的第一输出电压或者输出较低的第二输出电压作为带隙比较电路3的输入,并在带隙比较电路3的输出欠压保护电路UVLO信号为低电平时,芯片内部基本模块不启动,起到欠压保护的目的;在带隙比较电路3的输出欠压保护电路UVLO信号为高电平时,芯片启动,内部基本模块启动。这样将比较器与基准电压源相结合,组成的带隙比较电路3,电路结构明显简化,减小了面积,降低了成本;再经过欠压保护电路翻转门限电压可调且温漂小;当电源电压出现欠压时,不产生基准电压,节省了大量待机功耗。The voltage selection circuit 2 selects the voltage value of the resistor divider circuit 1 or the voltage value of the protection circuit that prevents the operation caused by the pulse of the power supply voltage as the input voltage of the bandgap comparison circuit 3, and after generating the UVLO signal of the undervoltage protection circuit, through The feedback control loop returns the UVLO signal to the voltage selection circuit 2, and then the voltage selection circuit 2 can select a first output voltage with a higher voltage value or output a lower second output voltage as the input of the bandgap comparison circuit 3, and in the bandgap When the UVLO signal of the output undervoltage protection circuit of the gap comparison circuit 3 is at a low level, the basic module inside the chip does not start, which serves the purpose of undervoltage protection; when the UVLO signal of the output undervoltage protection circuit of the band gap comparison circuit 3 is at a high level , the chip starts, and the internal basic module starts. In this way, the comparator and the reference voltage source are combined to form a bandgap comparison circuit 3, the circuit structure is obviously simplified, the area is reduced, and the cost is reduced; and the undervoltage protection circuit flip threshold voltage is adjustable and the temperature drift is small; when When the power supply voltage is undervoltage, no reference voltage is generated, which saves a lot of standby power consumption.
为了给带隙比较电路3供电,因此本发明实施例的用于以太网供电的欠压保护电路中,还包括:In order to supply power to the bandgap comparison circuit 3, the undervoltage protection circuit for power over Ethernet in the embodiment of the present invention also includes:
偏置电路4,其中所述偏置电路4包括:第一偏置电路和比较电压产生电路;A bias circuit 4, wherein the bias circuit 4 includes: a first bias circuit and a comparison voltage generation circuit;
其中所述第一偏置电路包括:第三十PMOS晶体管M0、第二PMOS晶体管M2、第三PMOS晶体管M3、第一PMOS晶体管(M1)和第四电容C4,其中所述第三十PMOS晶体管M0栅极接地,所述第三十PMOS晶体管M0的源极和衬底连接于内部电源电压VCC,所述第三十PMOS晶体管M0的漏极与所述第二PMOS晶体管M2的漏极连接,所述第二PMOS晶体管M2的漏极连接于所述第二PMOS晶体管M2的栅极上;其中所述第三十PMOS晶体管M0的栅极接地,源极和衬底连接于电源电压VCC,则所述第三十PMOS晶体管M0处于常通状态;Wherein the first bias circuit includes: a thirtieth PMOS transistor M0, a second PMOS transistor M2, a third PMOS transistor M3, a first PMOS transistor (M1) and a fourth capacitor C4, wherein the thirtieth PMOS transistor The gate of M0 is grounded, the source and substrate of the thirtieth PMOS transistor M0 are connected to the internal power supply voltage V CC , the drain of the thirtieth PMOS transistor M0 is connected to the drain of the second PMOS transistor M2 , the drain of the second PMOS transistor M2 is connected to the gate of the second PMOS transistor M2; wherein the gate of the thirtieth PMOS transistor M0 is grounded, and the source and substrate are connected to the power supply voltage V CC , the thirtieth PMOS transistor M0 is in a normally-on state;
所述第二PMOS晶体管M2的源极和衬底接地;The source and the substrate of the second PMOS transistor M2 are grounded;
所述第三PMOS晶体管M3的源极和衬底接地;The source and the substrate of the third PMOS transistor M3 are grounded;
所述第三PMOS晶体管M3的栅极通过第四电容C4接地,所述第二PMOS晶体管M2的栅极和所述第三PMOS晶体管的栅极M3为所述带隙比较电路3提供第一偏置电流inp1;The gate of the third PMOS transistor M3 is grounded through the fourth capacitor C4, and the gates of the second PMOS transistor M2 and the gate M3 of the third PMOS transistor provide a first bias for the bandgap comparison circuit 3. set current inp1;
所述第二PMOS晶体管M2的栅极通过二极管与所述第一PMOS晶体管M1的栅极连接,所述第一PMOS晶体管M1的漏极与所述第三PMOS晶体管M3的漏极相连,所述第一PMOS晶体管M1的源极和衬底连接于所述内部电源电压VCC,所述第一PMOS晶体管M1的栅极提供所述第一偏置电流inp1;The gate of the second PMOS transistor M2 is connected to the gate of the first PMOS transistor M1 through a diode, and the drain of the first PMOS transistor M1 is connected to the drain of the third PMOS transistor M3. The source and substrate of the first PMOS transistor M1 are connected to the internal power supply voltage V CC , and the gate of the first PMOS transistor M1 provides the first bias current inp1;
其中所述比较电压产生电路包括:第六PMOS晶体管M6、第七PMOS晶体管M7、第八PMOS晶体管M8、第九PMOS晶体管M9和第一电容C1,所述第一偏置电路的所述第一PMOS晶体管M1与所述第六PMOS晶体管M6形成镜像电流源,所述第一PMOS晶体管M1的栅极提供的所述第一偏置电流inp1给所述第六PMOS晶体管M6的栅极;Wherein the comparison voltage generation circuit includes: a sixth PMOS transistor M6, a seventh PMOS transistor M7, an eighth PMOS transistor M8, a ninth PMOS transistor M9 and a first capacitor C1, and the first bias circuit of the first The PMOS transistor M1 and the sixth PMOS transistor M6 form a mirror current source, and the gate of the first PMOS transistor M1 provides the first bias current inp1 to the gate of the sixth PMOS transistor M6;
所述第六PMOS晶体管M6的源极和衬底连接于所述内部电源电压VCC,所述第七PMOS晶体管M7的源极和衬底连接于所述内部电源电压VCC,所述第七PMOS晶体管(M7)的栅极与所述带隙比较电路3的第十五PMOS晶体管(M15)的栅极连接,所述第十五PMOS晶体管M15栅极产生自偏置电压Vbias,所述第七PMOS晶体管M7的漏极与所述第六PMOS晶体管M6的漏极连接,所述第七PMOS晶体管M7的漏极与所述第八PMOS晶体管M8的源极连接,所述第八PMOS晶体管M8的衬底连接于所述第八PMOS晶体管M8的源极,且所述第六PMOS晶体管M6的漏极输出第二偏置电压Vbias2;The source and substrate of the sixth PMOS transistor M6 are connected to the internal power supply voltage V CC , the source and substrate of the seventh PMOS transistor M7 are connected to the internal power supply voltage V CC , and the seventh PMOS transistor M7 is connected to the internal power supply voltage V CC . The gate of the PMOS transistor (M7) is connected to the gate of the fifteenth PMOS transistor (M15) of the bandgap comparison circuit 3, and the gate of the fifteenth PMOS transistor M15 generates a self-bias voltage V bias , the The drain of the seventh PMOS transistor M7 is connected to the drain of the sixth PMOS transistor M6, the drain of the seventh PMOS transistor M7 is connected to the source of the eighth PMOS transistor M8, and the eighth PMOS transistor The substrate of M8 is connected to the source of the eighth PMOS transistor M8, and the drain of the sixth PMOS transistor M6 outputs a second bias voltage V bias2 ;
所述第八PMOS晶体管的漏极M8与所述第八PMOS晶体管M8的栅极短接,所述第八PMOS管的漏极M8连接于所述第九PMOS管M9的源极,所述第九PMOS管M9的衬底连接于所述第九PMOS管M9的源极;The drain M8 of the eighth PMOS transistor is short-circuited to the gate of the eighth PMOS transistor M8, the drain M8 of the eighth PMOS transistor is connected to the source of the ninth PMOS transistor M9, and the eighth PMOS transistor M8 is connected to the source of the ninth PMOS transistor M9. The substrate of the ninth PMOS transistor M9 is connected to the source of the ninth PMOS transistor M9;
所述第九PMOS管M9的栅极和所述第九PMOS管M9的漏极通过第一电容C1接地。The gate of the ninth PMOS transistor M9 and the drain of the ninth PMOS transistor M9 are grounded through the first capacitor C1.
上述当芯片上电后,第六PMOS晶体管M6镜像电流源快速给第一电容C1充电,当带隙比较电路3启动,第七PMOS晶体管M7导通,给第一电容C1充电的电流增加后,第二偏置电压Vbias2更加快速的充电。如果电源电压VDD上升的比较慢,那么第二偏置电压Vbias2的电压上升的比输出电压Vin快,VD主要受输出电压Vin控制,即翻转点由输出电压Vin控制;但是当电源电压VDD产生一脉冲,电源电压VDD急速上升,输出电压Vin上升的比第二偏置电压Vbias2快,那么此时,VD的电压由第二偏置电压Vbias2决定,当它上升到某固定值时,使带隙比较电路3翻转,下降沿亦是如此,因此防止了电源电压VDD因为脉冲而引起误操作。When the above-mentioned chip is powered on, the mirror current source of the sixth PMOS transistor M6 quickly charges the first capacitor C1, when the bandgap comparison circuit 3 starts, the seventh PMOS transistor M7 is turned on, and after the current charging the first capacitor C1 increases, The second bias voltage V bias2 charges more quickly. If the power supply voltage V DD rises relatively slowly, the voltage of the second bias voltage V bias2 rises faster than the output voltage Vin, and V D is mainly controlled by the output voltage Vin, that is, the inversion point is controlled by the output voltage Vin; but when the power supply voltage V DD generates a pulse, the power supply voltage V DD rises rapidly, and the output voltage Vin rises faster than the second bias voltage V bias2 , then at this time, the voltage of V D is determined by the second bias voltage V bias2 , when it rises to When a certain value is fixed, the bandgap comparator circuit 3 is reversed, and the same is true for the falling edge, thus preventing the power supply voltage V DD from being misoperated due to pulses.
为了采样电源电压VDD,因此本发明实施例的用于以太网供电的欠压保护电路中,所述电阻分压电路1包括:第三电阻R3,第四电阻R4和第五电阻R5,其中所述第三电阻R3一端连接于所述电源电压VDD,且所述第三电阻R3另一端串联于所述第四电阻R4的一端,所述第三电阻R3与所述第四电阻R4之间形成所述第一输出电压V1,所述第一输出电压V1作为所述电压选择电路2的输入电压;In order to sample the power supply voltage V DD , in the undervoltage protection circuit for Power over Ethernet according to the embodiment of the present invention, the resistor divider circuit 1 includes: a third resistor R3, a fourth resistor R4 and a fifth resistor R5, wherein One end of the third resistor R3 is connected to the power supply voltage V DD , and the other end of the third resistor R3 is connected in series with one end of the fourth resistor R4, and the connection between the third resistor R3 and the fourth resistor R4 form the first output voltage V1, and the first output voltage V1 is used as the input voltage of the voltage selection circuit 2;
所述第五电阻R5一端串联于所述第四电阻R4的另一端,且所述第五电阻R5的另一端接地,所述第四电阻R4与所述第五电阻R5之间形成所述第二输出电压V2,所述第一输出电压V2作为所述电压选择电路2的输入电压。One end of the fifth resistor R5 is connected in series with the other end of the fourth resistor R4, and the other end of the fifth resistor R5 is grounded, the fourth resistor R4 and the fifth resistor R5 form the first Two output voltages V2 , the first output voltage V2 is used as the input voltage of the voltage selection circuit 2 .
通过调节电阻分压电路1的分压电阻也可以调节上下翻转门限电压,带隙比较电路3的输出信号UVLO又返回到电压选择电路2;当UVLO信号翻转时,电压选择电路2也随之翻转,从分压电阻中,输出的信号Vin也随之改变,此信号既是UVLO电路的输入信号,也可以是VDD信号的分压的Vin,因此翻转门限电压随之改变。By adjusting the voltage dividing resistor of the resistance voltage dividing circuit 1, the threshold voltage of up and down flipping can also be adjusted, and the output signal UVLO of the bandgap comparator circuit 3 returns to the voltage selection circuit 2; when the UVLO signal flips, the voltage selection circuit 2 also flips accordingly. , from the voltage dividing resistor, the output signal Vin also changes accordingly. This signal is not only the input signal of the UVLO circuit, but also the Vin of the divided voltage of the V DD signal, so the flipping threshold voltage changes accordingly.
本发明的又一实施例的用于以太网供电的欠压保护电路中,所述电压选择电路2包括:第四PMOS晶体管M4、第五PMOS晶体管M5和第一反相器INV1,In still another embodiment of the present invention, in the undervoltage protection circuit for Power over Ethernet, the voltage selection circuit 2 includes: a fourth PMOS transistor M4, a fifth PMOS transistor M5, and a first inverter INV1,
其中所述第五PMOS晶体管M5的栅极连接于所述第一反相器INV1的输入端;Wherein the gate of the fifth PMOS transistor M5 is connected to the input terminal of the first inverter INV1;
所述第四PMOS晶体管M4的栅极连接于所述第一反相器INV1的输出端;The gate of the fourth PMOS transistor M4 is connected to the output terminal of the first inverter INV1;
所述第四PMOS晶体管M4的漏极与所述电阻分压电路1的所述第二输出电压V2连接;The drain of the fourth PMOS transistor M4 is connected to the second output voltage V2 of the resistor divider circuit 1;
所述第五PMOS晶体管M5的漏极与所述电阻分压电路1的所述第一输出电压V1连接;The drain of the fifth PMOS transistor M5 is connected to the first output voltage V1 of the resistor divider circuit 1;
所述第五PMOS晶体管M5的源极连接于第四PMOS晶体管M4的源极,且所述第五PMOS晶体管M5的衬底与第四PMOS晶体管M4的衬底串联在一起,所述第五PMOS晶体管M5的衬底连接于所述第五PMOS晶体管M5的源极,且所述第五PMOS晶体管M5的源极与所述带隙比较电路3的第十二PMOS晶体管M12的栅极连接,由所述第五PMOS晶体管M5的源极输出所述电压选择电路的输出电压(Vin),所述输出电压(Vin)作为所述带隙比较电路3提供输入电压。The source of the fifth PMOS transistor M5 is connected to the source of the fourth PMOS transistor M4, and the substrate of the fifth PMOS transistor M5 is connected in series with the substrate of the fourth PMOS transistor M4. The substrate of the transistor M5 is connected to the source of the fifth PMOS transistor M5, and the source of the fifth PMOS transistor M5 is connected to the gate of the twelfth PMOS transistor M12 of the bandgap comparison circuit 3, by The source of the fifth PMOS transistor M5 outputs the output voltage (Vin) of the voltage selection circuit, and the output voltage (Vin) serves as the input voltage for the bandgap comparison circuit 3 .
为了防止所述电源电压VDD的脉冲引起操作,因此本发明实施例的用于以太网供电的欠压保护电路中,所述防止所述电源电压VDD的脉冲引起操作的保护电路包括:与所述带隙比较电路3的所述第十二PMOS晶体管M12并联的第十三PMOS晶体管M13、第十一PMOS晶体管(M11)和第十PMOS晶体管(M10),In order to prevent the operation caused by the pulse of the power supply voltage V DD , in the undervoltage protection circuit for power over Ethernet in the embodiment of the present invention, the protection circuit for preventing the operation caused by the pulse of the power supply voltage V DD includes: The thirteenth PMOS transistor M13, the eleventh PMOS transistor (M11) and the tenth PMOS transistor (M10) connected in parallel to the twelfth PMOS transistor M12 of the bandgap comparison circuit 3,
其中所述第十一PMOS晶体管(M11)和所述第十PMOS晶体管(M10)均并联在所述内部电源电压(VCC)和所述第十三PMOS晶体管(M13)的源极之间,其中所述第十一PMOS晶体管(M11)的源极和衬底连接于所述内部电源电压(VCC),所述第十一PMOS晶体管(M11)的漏极与所述第十三PMOS晶体管(M13)的源极连接,所述第十一PMOS晶体管(M11)的漏极与所述第十三PMOS晶体管(M13)的源极,所述第十一PMOS晶体管(M11)的栅极与所述第一偏置电路的第一PMOS晶体管(M1)的栅极连接,所述第十一PMOS晶体管(M11)产生第四镜像电流源支路的第四镜像电流(IC4);Wherein the eleventh PMOS transistor (M11) and the tenth PMOS transistor (M10) are connected in parallel between the internal power supply voltage (V CC ) and the source of the thirteenth PMOS transistor (M13), Wherein the source and substrate of the eleventh PMOS transistor (M11) are connected to the internal power supply voltage (V CC ), the drain of the eleventh PMOS transistor (M11) is connected to the thirteenth PMOS transistor (M13) source is connected, the drain of the eleventh PMOS transistor (M11) is connected to the source of the thirteenth PMOS transistor (M13), the gate of the eleventh PMOS transistor (M11) is connected to The gate of the first PMOS transistor (M1) of the first bias circuit is connected, and the eleventh PMOS transistor (M11) generates a fourth mirror current (I C4 ) of the fourth mirror current source branch;
所述第十PMOS晶体管(M10)的源极和衬底连接于所述内部电源电压(VCC),所述第十PMOS晶体管(M10)的漏极连接于所述第十三PMOS晶体管(M13)的源极,所述第十PMOS晶体管(M10)的漏极产生第五镜像电流支路的第五镜像电流(IC5);其中所述第十PMOS晶体管M10加速了电源电压到达上升门限电压时带隙比较电路3电平翻转速度,减小了比较器的响应时间,所述第十一PMOS晶体管M11提供的偏置电流为第四镜像电流IC4。The source and substrate of the tenth PMOS transistor (M10) are connected to the internal power supply voltage (V CC ), and the drain of the tenth PMOS transistor (M10) is connected to the thirteenth PMOS transistor (M13 ), the drain of the tenth PMOS transistor (M10) generates the fifth mirror current (I C5 ) of the fifth mirror current branch; wherein the tenth PMOS transistor M10 accelerates the power supply voltage to reach the rising threshold voltage The level inversion speed of the bandgap comparison circuit 3 reduces the response time of the comparator, and the bias current provided by the eleventh PMOS transistor M11 is the fourth mirror current I C4 .
所述第十三PMOS晶体管M13漏极与所述第十二PMOS晶体管M12漏极并联接地,所述第十三PMOS晶体管M13的栅极接入第二偏置电压Vbias2与所述第十二PMOS晶体管M12的栅极接入的输入电压作比较,所述第十三PMOS晶体管M13的源极并联于所述第十二PMOS晶体管M12的源极,所述第十三PMOS晶体管M13的衬底连接于所述第十三PMOS晶体管M13的源极,所述第十二PMOS晶体管M12的衬底连接于所述第十二PMOS晶体管M12的源极,所述第二偏置电压Vbias2与所述输入电压比较后由所述第十二PMOS晶体管M12的源极输出电压。The drain of the thirteenth PMOS transistor M13 is connected to the ground in parallel with the drain of the twelfth PMOS transistor M12, and the gate of the thirteenth PMOS transistor M13 is connected to the second bias voltage V bias2 and the twelfth PMOS transistor M13. The input voltage connected to the gate of the PMOS transistor M12 is compared, the source of the thirteenth PMOS transistor M13 is connected in parallel to the source of the twelfth PMOS transistor M12, and the substrate of the thirteenth PMOS transistor M13 connected to the source of the thirteenth PMOS transistor M13, the substrate of the twelfth PMOS transistor M12 is connected to the source of the twelfth PMOS transistor M12, the second bias voltage V bias2 and the After comparing the input voltage, the source of the twelfth PMOS transistor M12 outputs a voltage.
本发明未将电阻分压电路1输出直接输入到带隙比较电路3,而是将其先输入到第十二PMOS晶体管M12,由于第十二PMOS晶体管M12是源极跟随器,抬升输入信号的电平,D点的电压VD随着电源电压VDD的增大而增大,这样因为输入电压先输入到第十二PMOS管M12,由源级跟随器的原理,VD=Vin+VGS12,表示了输入电压通过M12后,升压了,因此将UVLO电路的翻转点前提了,即减小了开启电压VUVLO_R的值,使电源电压VDD上电后,快速启动。The present invention does not directly input the output of the resistance divider circuit 1 to the bandgap comparator circuit 3, but first inputs it to the twelfth PMOS transistor M12. Since the twelfth PMOS transistor M12 is a source follower, the output of the input signal is raised. Level, the voltage V D at point D increases with the increase of the power supply voltage V DD , so because the input voltage is first input to the twelfth PMOS transistor M12, and by the principle of the source follower, V D =Vin+V GS12 means that the input voltage has been boosted after passing through M12, so the inversion point of the UVLO circuit is premised, that is, the value of the turn-on voltage V UVLO_R is reduced, and the power supply voltage V DD is powered on and started quickly.
第十三PMOS管M13通过与输入电压的比较,防止电源电压VDD脉冲引起误操作。The thirteenth PMOS transistor M13 prevents misoperation caused by the power supply voltage V DD pulse by comparing with the input voltage.
由于本发明将基准电压源与比较器结合形成带隙比较电路3电路,,因此本发明实施例的用于以太网供电的欠压保护电路中,所述带隙比较电路3包括:产生基准电压的带隙基准结构31、产生电流源支路电流的负载电路、第二级输出电路、启动钳位电路和逻辑电路32。Since the present invention combines a reference voltage source and a comparator to form a bandgap comparison circuit 3, in the undervoltage protection circuit for power over Ethernet in the embodiment of the present invention, the bandgap comparison circuit 3 includes: generating a reference voltage The bandgap reference structure 31, the load circuit that generates the current source branch current, the second stage output circuit, the startup clamp circuit and the logic circuit 32.
其中所述逻辑电路32包括施密特触发器SMT和第二反相器INV2,其中,所述施密斯触发器SMT的输入端与所述带隙比较电路3的所述第二级输出电路的所述第十九PMOS晶体管M19的漏极的输出端连接,经所述第二反相器INV2后输出所述欠压保护电路的UVLO信号,且所述第二反相器INV2与所述第一反相器INV1连接,将所述UVLO信号反馈给所述第一反相器INV1的输入端。Wherein the logic circuit 32 includes a Schmitt trigger SMT and a second inverter INV2, wherein, the input terminal of the Schmitt trigger SMT is connected to the output circuit of the second stage of the bandgap comparison circuit 3 The output end of the drain of the nineteenth PMOS transistor M19 is connected to output the UVLO signal of the undervoltage protection circuit through the second inverter INV2, and the second inverter INV2 is connected to the first An inverter INV1 is connected to feed back the UVLO signal to the input terminal of the first inverter INV1.
其中所述带隙基准结构31包括:第十四PMOS晶体管M14、第十七PMOS晶体管M17、第一三极管Q1、第二三极管Q2、第一电阻R1和第二电阻R2,Wherein the bandgap reference structure 31 includes: a fourteenth PMOS transistor M14, a seventeenth PMOS transistor M17, a first triode Q1, a second triode Q2, a first resistor R1 and a second resistor R2,
其中,所述第十四PMOS晶体管M14的源极和衬底连接于所述内部电源电压VCC;Wherein, the source and the substrate of the fourteenth PMOS transistor M14 are connected to the internal power supply voltage V CC ;
所述第十四PMOS晶体管M14的漏极连接于所述第十七PMOS晶体管M17的源极,所述第十七PMOS晶体管M17的衬底连接于所述第十七PMOS晶体管M17的源极;The drain of the fourteenth PMOS transistor M14 is connected to the source of the seventeenth PMOS transistor M17, and the substrate of the seventeenth PMOS transistor M17 is connected to the source of the seventeenth PMOS transistor M17;
所述第十四PMOS晶体管M14的栅极与所述第一偏置电路的所述第一PMOS晶体管M1的栅极连接,且产生第三镜像电流源支路的第三镜像电流IC3;The gate of the fourteenth PMOS transistor M14 is connected to the gate of the first PMOS transistor M1 of the first bias circuit, and generates a third mirror current I C3 of a third mirror current source branch;
所述第二三极管Q2的基极与第十三PMOS晶体管M13的源极连接,所述第二三极管Q2的基极与所述第一三极管Q1的基极连接作为比较电压输入端;The base of the second transistor Q2 is connected to the source of the thirteenth PMOS transistor M13, and the base of the second transistor Q2 is connected to the base of the first transistor Q1 as a comparison voltage input terminal;
所述第二三极管Q2的集电极与所述负载电路的第十五PMOS晶体管M15的漏极连接,产生第二镜像电流源支路的第二镜像电流IC2;The collector of the second transistor Q2 is connected to the drain of the fifteenth PMOS transistor M15 of the load circuit to generate a second mirror current I C2 of the second mirror current source branch;
所述第一三极管Q1的集电极与所述负载电路的第十六PMOS晶体管M16的漏极连接,产生第一镜像电流源支路的第一镜像电流IC1;The collector of the first triode Q1 is connected to the drain of the sixteenth PMOS transistor M16 of the load circuit to generate a first mirror current I C1 of the first mirror current source branch;
所述第二三极管Q2的发射极经所述第二电阻R2连接到所述第一三极管Q1的发射极,所述第一三极管Q1的发射极经所述第一电阻R1连接的第十七PMOS晶体管M17的源极,第十七PMOS晶体管M17的衬底连接于所述第十七PMOS晶体管M17的源极,第十七PMOS晶体管M17的栅极和漏极均接地。The emitter of the second transistor Q2 is connected to the emitter of the first transistor Q1 through the second resistor R2, and the emitter of the first transistor Q1 is connected to the emitter of the first transistor Q1 through the first resistor R1 The source of the seventeenth PMOS transistor M17 is connected, the substrate of the seventeenth PMOS transistor M17 is connected to the source of the seventeenth PMOS transistor M17, and the gate and drain of the seventeenth PMOS transistor M17 are both grounded.
通过第十四PMOS晶体管M14、第十七PMOS晶体管M17、第二三极管Q2、第一三极管Q1、第二电阻R2及第一电阻R1组成带隙比较电路3的核心结构,产生基准电压,也可以经过优化的电路大大加速了电源电压到达上升阈值时带隙比较电路3电平翻转速度,同时减小了比较器的响应时间。The core structure of the bandgap comparison circuit 3 is formed by the fourteenth PMOS transistor M14, the seventeenth PMOS transistor M17, the second triode Q2, the first triode Q1, the second resistor R2 and the first resistor R1 to generate a reference The optimized circuit greatly accelerates the 3-level inversion speed of the bandgap comparator circuit when the power supply voltage reaches the rising threshold, and at the same time reduces the response time of the comparator.
如图2所示,ic1、ic2与输入电压VD的关系。电路刚上电时,VDD电压慢慢上升,一开始VD电压小于带隙比较电路3翻转门限电压VTH(IC1=IC2时VD的值),IC2大于IC1,因此A点电压比B点电压高,UVLO信号输出低电平;当信号VD从低逐渐增加时,电流ic1、ic2均增加,ic2曲线斜率比ic1曲线斜率小,当VDD上升到VUVLO_R,即当VD达到带隙基准比较器的翻转门限VTH时,ic1=ic2,A点电压与B点电压相等,此时是翻转的临界状态;在翻转的临界状态时,ΔVBE=VBE1-VBE2=ic2R2=VTln(4),VBE1、VBE2分别是第一三极管Q1、第二三极管Q2管的发射机-基极电压,则解ic2=VTln(4)/R2,又设M14的电流为ic3,所以在翻转点时,流过C点的电流为2ic2+ic3,处于翻转点临界状态时,不是有IC1、IC2两路电流,此时IC1=IC2,再加上IC3支路电流。由此可以得知,C点的电压为:As shown in Figure 2, the relationship between i c1 , i c2 and the input voltage V D. When the circuit is just powered on, the V DD voltage rises slowly. At the beginning, the V D voltage is lower than the bandgap comparison circuit 3 flipping threshold voltage V TH (the value of V D when I C1 = I C2 ), and I C2 is greater than I C1 , so A The voltage at point B is higher than the voltage at point B, and the UVLO signal outputs a low level; when the signal V D gradually increases from low, the current i c1 and i c2 both increase, and the slope of the i c2 curve is smaller than the slope of the i c1 curve. When V DD rises to V UVLO_R , that is, when V D reaches the inversion threshold V TH of the bandgap reference comparator, i c1 =i c2 , the voltage at point A is equal to the voltage at point B, and this is the critical state of inversion; in the critical state of inversion, ΔV BE =V BE1 -V BE2 = ic2 R2=V T ln(4), V BE1 and V BE2 are the transmitter-base voltages of the first transistor Q1 and the second transistor Q2 respectively, then Solve i c2 =V T ln(4)/R2, and set the current of M14 as i c3 , so at the turning point, the current flowing through point C is 2i c2 +i c3 , when it is in the critical state of turning point, there is no I C1 , I C2 two currents, at this time I C1 = I C2 , plus I C3 branch current. From this we can know that the voltage at point C is:
其中,ic2=VTln(4)/R2,ic3是电流镜镜像电流。Wherein, i c2 =V T ln(4)/R2, and i c3 is the mirror current of the current mirror.
第一三极管Q1的基极电压就是翻转门限电压VTH,即The base voltage of the first triode Q1 is the inversion threshold voltage V TH , that is,
其中,ic2=VTln(4)/R2,ic3是电流镜镜像电流。Wherein, i c2 =V T ln(4)/R2, and i c3 is the mirror current of the current mirror.
于是带隙比较电路3的翻转门限电压就等于VTH,在式(2)中,ic3是负温度系数,但2ic2+ic3是正温度系数,且(2)中第一项是VBE1负温度系数,后三项是正温度系数,因此经过合理的调节就可以得到与温度、电源电压无关的翻转门限电压。Therefore, the inversion threshold voltage of the bandgap comparator circuit 3 is equal to V TH , in formula (2), i c3 is a negative temperature coefficient, but 2i c2 +i c3 is a positive temperature coefficient, and the first item in (2) is V BE1 Negative temperature coefficient, the last three items are positive temperature coefficients, so after reasonable adjustment, the flipping threshold voltage independent of temperature and power supply voltage can be obtained.
当VDD大于VUVLO_R,UVLO信号翻转输出高电平。其中ic2曲线斜率比ic1曲线斜率小的原因是电压VD输送到第一三极管Q1、第二三极管Q2的基极,在带隙基准结构31中,取第一三极管Q1和第二三极管Q2的发射极面积比为1:4,那么两个晶体管的跨导关系是:When V DD is greater than V UVLO_R , the UVLO signal is inverted and outputs a high level. The reason why the slope of the i c2 curve is smaller than the slope of the i c1 curve is that the voltage V D is delivered to the bases of the first triode Q1 and the second triode Q2, and in the bandgap reference structure 31, the first triode The emitter area ratio of Q1 and the second transistor Q2 is 1:4, then the transconductance relationship of the two transistors is:
4gm1=gm2 (1)4gm1=gm2 (1)
由于第一电阻R1和第二电阻R2的射极反馈作用,所以第一三极管Q1和第二三极管Q2的等效跨导是:Due to the emitter feedback effect of the first resistor R1 and the second resistor R2, the equivalent transconductance of the first transistor Q1 and the second transistor Q2 is:
将(2)式中gm2用(1)式代入并整理,得:Substituting g m2 in formula (2) into formula (1) and rearranging, we get:
而and
一般选择gm1R2>>1,则Gm1>Gm2。于是,当芯片的电源电压VDD波动时,第一三极管Q1的集电极电流IC1相对于第二三极管Q2的集电极电流IC2变化量要大。因此一开始,IC2大于IC1,且M15、M16宽长比一样,因此通过M15的压降要大于通过M16的压降,因此B点电压小于A点。Generally choose gm1R2>>1, then Gm1>Gm2. Therefore, when the power supply voltage V DD of the chip fluctuates, the collector current I C1 of the first transistor Q1 changes more than the collector current I C2 of the second transistor Q2 . Therefore, at the beginning, I C2 is greater than I C1 , and M15 and M16 have the same width-to-length ratio, so the voltage drop through M15 is greater than the voltage drop through M16, so the voltage at point B is lower than that at point A.
正是因为Gm1>Gm2,所以第一三极管Q1的集电极电流IC1相对于第二三极管Q2的集电极电流IC2变化量要大,因此当它们的基极输入相同的电压时,IC2的斜率比IC1的斜率小。It is precisely because Gm1>Gm2 that the collector current I C1 of the first triode Q1 changes greatly compared to the collector current I C2 of the second triode Q2, so when their bases input the same voltage , the slope of I C2 is smaller than that of I C1 .
本发明的又一实施例的用于以太网供电的欠压保护电路中,所述产生电流源支路电流的负载电路包括:In another embodiment of the present invention, in the undervoltage protection circuit for Power over Ethernet, the load circuit that generates the branch current of the current source includes:
第十六PMOS晶体管(M16)、第十五PMOS晶体管M15和第二电容C2;A sixteenth PMOS transistor (M16), a fifteenth PMOS transistor M15 and a second capacitor C2;
其中所述第十六PMOS晶体管M16与所述第十五PMOS晶体管M15形成镜像电流源,所述第十五PMOS晶体管M15栅极产生的自偏置电压Vbias输入到第十六PMOS晶体管M16的栅极,所述第十六PMOS晶体管M16的源极和衬底连接于所述内部电源电压VCC;Wherein the sixteenth PMOS transistor M16 and the fifteenth PMOS transistor M15 form a mirror current source, and the self-bias voltage V bias generated by the gate of the fifteenth PMOS transistor M15 is input to the sixteenth PMOS transistor M16 The gate, the source and the substrate of the sixteenth PMOS transistor M16 are connected to the internal power supply voltage V CC ;
所述第十五PMOS晶体管M15的源极和衬底连接于所述内部电源电压VCC,所述第十五PMOS晶体管M15的栅极连接于所述第十五PMOS晶体管M15的漏极,所述第十五PMOS晶体管M15的栅极与所述比较电压产生电路的第七PMOS晶体管M7的栅极连接;The source and substrate of the fifteenth PMOS transistor M15 are connected to the internal power supply voltage V CC , the gate of the fifteenth PMOS transistor M15 is connected to the drain of the fifteenth PMOS transistor M15, so The gate of the fifteenth PMOS transistor M15 is connected to the gate of the seventh PMOS transistor M7 of the comparison voltage generating circuit;
所述第十五PMOS晶体管M15与所述第十PMOS晶体管M10形成镜像电流源,所述第十五PMOS晶体管M15栅极产生的自偏置电压Vbias输入到第十PMOS晶体管M10的栅极。The fifteenth PMOS transistor M15 and the tenth PMOS transistor M10 form a mirror current source, and the self-bias voltage V bias generated by the gate of the fifteenth PMOS transistor M15 is input to the gate of the tenth PMOS transistor M10 .
如图4所示,当带隙比较电路3启动,第十五PMOS晶体管M15支路导通后,其自偏置产生的电压Vbias输入到第十PMOS晶体管M10的栅极,组成镜像关系,其镜像电流源像给第十PMOS晶体管M10,第十PMOS晶体管M10导通,加速了VD的上升,再一次加速了电源电压到达上升阈值时带隙比较电路3电平翻转速度,加速了这个带隙比较电路3的翻转,大大减小了比较器的响应时间。As shown in FIG. 4, when the bandgap comparator circuit 3 is activated and the branch of the fifteenth PMOS transistor M15 is turned on, the voltage V bias generated by its self-bias is input to the gate of the tenth PMOS transistor M10, forming a mirror image relationship. Its mirror current source is like the tenth PMOS transistor M10, and the tenth PMOS transistor M10 is turned on, which accelerates the rise of V D , and once again accelerates the level flipping speed of the bandgap comparison circuit 3 when the power supply voltage reaches the rising threshold, which accelerates this The inversion of the bandgap comparator circuit 3 greatly reduces the response time of the comparator.
本发明的又一实施例的用于以太网供电的欠压保护电路中,所述第二级输出电路包括:第十九PMOS晶体管M19、第二十PMOS晶体管M20、第二十一PMOS晶体管M21和第二十九PMOS晶体管M29,其中所述第十五PMOS晶体管M15与所述第二十九PMOS晶体管M29形成镜像电流源,所述第二十九PMOS晶体管M29的源极和衬底连接于所述内部电源电压VCC,所述第二十九PMOS晶体管M29的漏极与所述第二十PMOS晶体管M20的漏极连接,第十五PMOS晶体管M15栅极产生的自偏置电压Vbias输入到第二十九PMOS晶体管M29的栅极,产生第六镜像电流支路的第六镜像电流IC6;In still another embodiment of the present invention, in the under-voltage protection circuit for Power over Ethernet, the second-stage output circuit includes: a nineteenth PMOS transistor M19, a twentieth PMOS transistor M20, and a twenty-first PMOS transistor M21 and the twenty-ninth PMOS transistor M29, wherein the fifteenth PMOS transistor M15 and the twenty-ninth PMOS transistor M29 form a mirror current source, and the source and substrate of the twenty-ninth PMOS transistor M29 are connected to The internal power supply voltage V CC , the drain of the twenty-ninth PMOS transistor M29 is connected to the drain of the twenty-ninth PMOS transistor M20, and the self-bias voltage V bias generated by the gate of the fifteenth PMOS transistor M15 Input to the gate of the twenty-ninth PMOS transistor M29 to generate the sixth mirror current I C6 of the sixth mirror current branch;
所述第二十PMOS晶体管M20与所述第二十一PMOS晶体管M21形成镜像电流源,所述第二十PMOS晶体管M20产生第七镜像电流IC7,所述第二十PMOS晶体管M20的栅极与所述第二十一PMOS晶体管M21的栅极连接,所述第二十PMOS晶体管M20的栅极与所述第二十PMOS晶体管M20的漏极连接,所述第二十PMOS晶体管M20的源极和衬底接地,所述第二十一PMOS晶体管M21的源极和衬底接地,所述第二十PMOS晶体管M20产生第八镜像电流IC8;The twentieth PMOS transistor M20 and the twenty-first PMOS transistor M21 form a mirror current source, the twentieth PMOS transistor M20 generates a seventh mirror current I C7 , and the gate of the twentieth PMOS transistor M20 connected to the gate of the twenty-first PMOS transistor M21, the gate of the twenty-first PMOS transistor M20 is connected to the drain of the twenty-first PMOS transistor M20, and the source of the twenty-first PMOS transistor M20 The pole and the substrate are grounded, the source and the substrate of the twenty-first PMOS transistor M21 are grounded, and the twenty-first PMOS transistor M20 generates an eighth mirror current I C8 ;
所述第十九PMOS晶体管M19的栅极与所述带隙基准结构31的所述第一三极管Q1的集电极连接,所述第十九PMOS晶体管M19的源极和衬底连接于所述内部电源电压VCC,所述第十九PMOS晶体管M19的漏极与所述第二十一PMOS晶体管M21的漏极连接,产生第二级输出电路的输出电压。The gate of the nineteenth PMOS transistor M19 is connected to the collector of the first triode Q1 of the bandgap reference structure 31, and the source and substrate of the nineteenth PMOS transistor M19 are connected to the The internal power supply voltage V CC , the drain of the nineteenth PMOS transistor M19 is connected to the drain of the twenty-first PMOS transistor M21 to generate the output voltage of the second-stage output circuit.
本发明的又一实施例的用于以太网供电的欠压保护电路中,所述启动钳位电路包括:第十八PMOS晶体管M18,第二十二PMOS晶体管M22,第二十三PMOS晶体管M23,第二十四PMOS晶体管M24,第二十五PMOS晶体管M25,第二十六PMOS晶体管M26,第二十七PMOS晶体管M27,第二十八PMOS晶体管M28,第三电容C3和第五电容C5,In still another embodiment of the present invention, in the undervoltage protection circuit for Power over Ethernet, the start-up clamping circuit includes: an eighteenth PMOS transistor M18, a twenty-second PMOS transistor M22, and a twenty-third PMOS transistor M23 , the twenty-fourth PMOS transistor M24, the twenty-fifth PMOS transistor M25, the twenty-sixth PMOS transistor M26, the twenty-seventh PMOS transistor M27, the twenty-eighth PMOS transistor M28, the third capacitor C3 and the fifth capacitor C5 ,
其中所述第十八PMOS晶体管M18的漏极与所述第二级输出电路的所述第十九PMOS晶体管M19的栅极连接,所述第十九PMOS晶体管M19的漏极并联于一接地所述第五电容C5;所述第十八PMOS晶体管M18的源极和衬底连接于所述内部电源电压VCC,所述第十八PMOS晶体管M18的栅极与所述第二十七PMOS晶体管M27的漏极的连接;Wherein the drain of the eighteenth PMOS transistor M18 is connected to the gate of the nineteenth PMOS transistor M19 of the second-stage output circuit, and the drain of the nineteenth PMOS transistor M19 is connected in parallel to a ground The fifth capacitor C5; the source and substrate of the eighteenth PMOS transistor M18 are connected to the internal power supply voltage V CC , the gate of the eighteenth PMOS transistor M18 is connected to the twenty-seventh PMOS transistor The drain connection of M27;
所述第二十二PMOS晶体管M22的源极和衬底连接于所述内部电源电压VCC,所述第二十二PMOS晶体管M22的栅极与所述第一偏置电路连接的第一PMOS晶体管M1的栅极连接,所述第二十二PMOS晶体管M22的漏极与所述第二十五PMOS晶体管M25的源极连接;The source and substrate of the twenty-second PMOS transistor M22 are connected to the internal power supply voltage V CC , and the gate of the twenty-second PMOS transistor M22 is connected to the first PMOS transistor of the first bias circuit. The gate of the transistor M1 is connected, and the drain of the twenty-second PMOS transistor M22 is connected to the source of the twenty-fifth PMOS transistor M25;
所述第二十五PMOS晶体管M25的衬底连接于所述内部电源电压VCC,所述第二十五PMOS晶体管M25的漏极与所述第二十六PMOS晶体管M26的漏极连接,所述第二十五PMOS晶体管M25的漏极与所述第二十三PMOS晶体管M23的栅极连接,所述第二十五PMOS晶体管M25的栅极与所述第二十六PMOS晶体管M26的栅极连接,且所述第二十六PMOS晶体管M26的栅极通过所述第三电容C3接地;The substrate of the twenty-fifth PMOS transistor M25 is connected to the internal power supply voltage V CC , the drain of the twenty-fifth PMOS transistor M25 is connected to the drain of the twenty-sixth PMOS transistor M26, so The drain of the twenty-fifth PMOS transistor M25 is connected to the gate of the twenty-third PMOS transistor M23, and the gate of the twenty-fifth PMOS transistor M25 is connected to the gate of the twenty-sixth PMOS transistor M26. and the gate of the twenty-sixth PMOS transistor M26 is grounded through the third capacitor C3;
所述第二十六PMOS晶体管M26的源极和衬底接地;The source and the substrate of the twenty-sixth PMOS transistor M26 are grounded;
所述第二十三PMOS晶体管M23的漏极并联于所述第二级输出的所述第十九PMOS晶体管M19的漏极,所述第二十三PMOS晶体管M23的衬底接地,所述第二十三PMOS晶体管M23的源极与所述第二十四PMOS晶体管M24的漏极连接;The drain of the twenty-third PMOS transistor M23 is connected in parallel to the drain of the nineteenth PMOS transistor M19 output from the second stage, the substrate of the twenty-third PMOS transistor M23 is grounded, and the second The source of the twenty-third PMOS transistor M23 is connected to the drain of the twenty-fourth PMOS transistor M24;
所述第二十四PMOS晶体管M24的源极和衬底接地,所述第二十四PMOS晶体管M24的栅极与所述第一偏置电路的所述第二PMOS晶体管M2的栅极相连;The source and the substrate of the twenty-fourth PMOS transistor M24 are grounded, and the gate of the twenty-fourth PMOS transistor M24 is connected to the gate of the second PMOS transistor M2 of the first bias circuit;
所述第二十七PMOS晶体管M27的源极和衬底连接于所述内部电源电压VCC,所述第二十七PMOS晶体管M27的栅极与所述比较电压产生电路的所述第七PMOS晶体管M7的栅极连接,所述第二十七PMOS晶体管M27的漏极与所述第二十八PMOS晶体管M28漏极连接,所述第二十六PMOS晶体管M26的栅极并联于所述第二十八PMOS晶体管M28漏极;The source and substrate of the twenty-seventh PMOS transistor M27 are connected to the internal power supply voltage V CC , and the gate of the twenty-seventh PMOS transistor M27 is connected to the seventh PMOS of the comparison voltage generating circuit. The gate of the transistor M7 is connected, the drain of the twenty-seventh PMOS transistor M27 is connected to the drain of the twenty-eighth PMOS transistor M28, and the gate of the twenty-sixth PMOS transistor M26 is connected in parallel to the drain of the twenty-sixth PMOS transistor M26. 28 PMOS transistor M28 drain;
所述第二十八PMOS晶体管M28的源极和衬底接地,所述第二十八PMOS晶体管M28的栅极与所述第一偏置电路所述第二PMOS晶体管M2的栅极相连。The source and substrate of the twenty-eighth PMOS transistor M28 are grounded, and the gate of the twenty-eighth PMOS transistor M28 is connected to the gate of the second PMOS transistor M2 of the first bias circuit.
当电路刚上电时,第二十四PMOS晶体管M24、第二十八PMOS晶体管第二十八PMOS晶体管M28被镜像导通,第二十七PMOS晶体管M27未导通,那么VF为低电平,因此第十八PMOS晶体管M18、第二十三PMOS晶体管M23、第二十五PMOS晶体管M25导通,强制A点电压为高电平,E点的第二级输出电压为低电平,其目的就是强制输出信号UVLO为低电平。When the circuit is powered on, the twenty-fourth PMOS transistor M24 and the twenty-eighth PMOS transistor M28 are mirrored and turned on, and the twenty-seventh PMOS transistor M27 is not turned on, so VF is low , so the eighteenth PMOS transistor M18, the twenty-third PMOS transistor M23, and the twenty-fifth PMOS transistor M25 are turned on, forcing the voltage at point A to be at a high level, and the second-stage output voltage at point E to be at a low level. The purpose is to force the output signal UVLO to be low.
电阻分压电路1的分压电压输出端VD连接到带隙比较电路3的比较电压输入端,带隙比较电路3的输出端输到逻辑电路32的输入端,经过逻辑电路32的整形后输出欠压保护电路的输出端UVLO;UVLO信号又反馈回到电阻分压电路1,当带隙比较电路3输出高电平,电阻分压电路1经过电压选择电路2的二选一开关输出较高的分压电压。从而实现对PoE接口和DC/DC控制器电源电压进行监控,同时实现高转换效率和得到随输入电压和温度的变化均很小的翻转门限电压。带隙比较电路3实现了带隙基准电路和比较器的功能,不仅优化了电路结构、而且缩小了电路面积、同时降低了功耗,还加快了电路的响应速度。The divided voltage output terminal V D of the resistance voltage divider circuit 1 is connected to the comparison voltage input terminal of the bandgap comparator circuit 3, and the output terminal of the bandgap comparator circuit 3 is input to the input terminal of the logic circuit 32, and after shaping by the logic circuit 32 The output terminal UVLO of the output undervoltage protection circuit; the UVLO signal is fed back to the resistance voltage divider circuit 1. When the bandgap comparison circuit 3 outputs a high level, the resistance voltage divider circuit 1 outputs a higher level through the two-choice switch of the voltage selection circuit 2 High divider voltage. In this way, the PoE interface and the power supply voltage of the DC/DC controller can be monitored, and at the same time, high conversion efficiency and an inversion threshold voltage with little variation with input voltage and temperature can be obtained. The bandgap comparison circuit 3 realizes the functions of the bandgap reference circuit and the comparator, which not only optimizes the circuit structure, but also reduces the circuit area, reduces power consumption, and accelerates the response speed of the circuit.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410239862.XA CN104113041B (en) | 2014-05-30 | 2014-05-30 | A kind of under-voltage protecting circuit for POE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410239862.XA CN104113041B (en) | 2014-05-30 | 2014-05-30 | A kind of under-voltage protecting circuit for POE |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104113041A CN104113041A (en) | 2014-10-22 |
CN104113041B true CN104113041B (en) | 2017-03-29 |
Family
ID=51709728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410239862.XA Active CN104113041B (en) | 2014-05-30 | 2014-05-30 | A kind of under-voltage protecting circuit for POE |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104113041B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617559A (en) * | 2018-12-25 | 2019-04-12 | 成都前锋电子仪器有限责任公司 | A High Precision Blind Fall ILS Signal Source |
CN111446949B (en) * | 2019-01-16 | 2024-03-01 | 中芯国际集成电路制造(上海)有限公司 | Power-on reset circuit and integrated circuit |
CN110048368B (en) * | 2019-04-29 | 2021-01-29 | 中国电子科技集团公司第五十八研究所 | High-speed high-precision undervoltage protection circuit |
CN111711172B (en) * | 2020-06-22 | 2021-03-30 | 电子科技大学 | An ultra-low power consumption undervoltage protection circuit |
CN112649657B (en) * | 2020-11-25 | 2021-10-29 | 西南大学 | Undervoltage indicating system |
CN113206494B (en) * | 2021-03-19 | 2023-04-28 | 成都市菱奇半导体有限公司 | Input voltage detection circuit and charger |
CN113783160B (en) * | 2021-11-11 | 2022-04-01 | 浙江大学 | Undervoltage protection circuit and power module |
CN116093887B (en) * | 2023-02-09 | 2023-07-25 | 北京伽略电子股份有限公司 | Over-temperature protection circuit |
CN117118410B (en) * | 2023-10-25 | 2024-02-02 | 无锡众享科技有限公司 | Comparator, detection circuit, grading circuit and POE power supply system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101958640A (en) * | 2010-10-15 | 2011-01-26 | 苏州大学 | Undervoltage lockout circuit with bandgap reference structure |
CN102662518A (en) * | 2012-03-31 | 2012-09-12 | 华映光电股份有限公司 | System and method for controlling signal noise ratio |
CN102710011A (en) * | 2012-06-14 | 2012-10-03 | 济南镭之源电气有限公司 | Power over Ethernet (POE) device capable of supplying power uninterruptedly |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4886588B2 (en) * | 2007-05-10 | 2012-02-29 | ルネサスエレクトロニクス株式会社 | Voltage sensor module and voltage monitoring device |
-
2014
- 2014-05-30 CN CN201410239862.XA patent/CN104113041B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101958640A (en) * | 2010-10-15 | 2011-01-26 | 苏州大学 | Undervoltage lockout circuit with bandgap reference structure |
CN102662518A (en) * | 2012-03-31 | 2012-09-12 | 华映光电股份有限公司 | System and method for controlling signal noise ratio |
CN102710011A (en) * | 2012-06-14 | 2012-10-03 | 济南镭之源电气有限公司 | Power over Ethernet (POE) device capable of supplying power uninterruptedly |
Also Published As
Publication number | Publication date |
---|---|
CN104113041A (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104113041B (en) | A kind of under-voltage protecting circuit for POE | |
US10884442B2 (en) | Bandgap reference power generation circuit and integrated circuit | |
CN203838588U (en) | Self-biased bandgap reference | |
CN105786069A (en) | Low-voltage power supply generation circuit and method and integrated circuit | |
CN103606895B (en) | A kind of overvoltage turn-off protection circuit | |
CN103901935A (en) | Automatic biasing band-gap reference source | |
CN102609031A (en) | Highly integrated low-power reference source | |
CN105676929B (en) | LDO starting circuit capable of preventing output overshoot | |
CN114069553A (en) | Overvoltage protection circuit | |
CN102789255B (en) | Turn-threshold-adjustable under voltage lockout (UVLO) and reference voltage circuit | |
CN108039695A (en) | Overvoltage crowbar | |
CN103809645A (en) | Starting circuit for wide power band gap reference source | |
CN114204805B (en) | Power rail circuit for high-voltage Buck converter | |
CN209103177U (en) | A kind of band-gap reference source circuit with self-start circuit | |
CN204361662U (en) | A kind of thermal-shutdown circuit | |
CN108646842B (en) | Soft start circuit without overshooting suitable for band gap reference source | |
CN204667243U (en) | A kind of voltage-regulating circuit | |
CN212277911U (en) | Overvoltage protection circuit | |
CN107704006A (en) | A kind of drive circuit of electronic device | |
CN204442174U (en) | A kind of power circuit and electronic product | |
CN212304747U (en) | A kind of anti-reverse circuit and anti-reverse device | |
US10423188B1 (en) | Voltage generating circuit for improving stability of bandgap voltage generator | |
CN116470741A (en) | An Overcurrent Protection Circuit Based on Valley Current Detection | |
CN107992144A (en) | The start-up circuit of band gap reference | |
CN115291660A (en) | Low dropout linear regulator overshoot suppression circuit and driving method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200820 Address after: 315000 floor 10, Gaoqiao chamber of Commerce building, No. 388, Huixian Road, Gaoqiao Town, Haishu District, Ningbo City, Zhejiang Province Patentee after: Ningbo Xinhui Technology Co.,Ltd. Address before: Xi'an City, Shaanxi province Taibai Road 710071 No. 2 Patentee before: XIDIAN University |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: Room 01, 4 / F, building B, Xi'an Tengfei innovation center, No. 38, Gaoxin 6th Road, high tech Zone, Xi'an, Shaanxi 710075 Patentee after: Xi'an Xinhui Photoelectric Technology Co.,Ltd. Address before: 315000 10th floor, Gaoqiao chamber of Commerce building, 388 Huixian Road, Gaoqiao Town, Haishu District, Ningbo City, Zhejiang Province Patentee before: Ningbo Xinhui Technology Co.,Ltd. |