CN104104081A - 一种基于优化方法的非迭代不确定潮流分析方法 - Google Patents

一种基于优化方法的非迭代不确定潮流分析方法 Download PDF

Info

Publication number
CN104104081A
CN104104081A CN201410370695.2A CN201410370695A CN104104081A CN 104104081 A CN104104081 A CN 104104081A CN 201410370695 A CN201410370695 A CN 201410370695A CN 104104081 A CN104104081 A CN 104104081A
Authority
CN
China
Prior art keywords
node
voltage
place
imaginary part
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410370695.2A
Other languages
English (en)
Other versions
CN104104081B (zh
Inventor
顾伟
罗李子
许超
姚建国
杨胜春
王珂
曾丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201410370695.2A priority Critical patent/CN104104081B/zh
Publication of CN104104081A publication Critical patent/CN104104081A/zh
Application granted granted Critical
Publication of CN104104081B publication Critical patent/CN104104081B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种基于优化方法的非迭代不确定潮流分析方法,其步骤包括:遍历整个网络,统计网络中节点数量与类型,并为节点编号;将每个节点的负荷波动表示为包含上限与下限信息的区间形式;分别建立基于潮流方程、节点参数及电力系统运行限制的约束条件;分别以每个节点的电压实部与虚部的平方和及电压虚部作为目标函数,结合已构建的约束条件,建立优化模型;使用优化算法求解优化模型,得到不确定潮流的解。根据本发明的不确定潮流分析方法,可以有效地缓解前人方法的保守性,能够得到更加小的电压波动范围并使其包含所有的电压可能解。此外,本发明所述的方法中,不同的优化模型具有相同的约束条件,可以使用并行计算技术,提高计算效率。

Description

一种基于优化方法的非迭代不确定潮流分析方法
技术领域
本发明属于电力系统稳态分析领域,涉及一种电力系统不确定潮流分析方法,更具体地,涉及一种基于优化方法的非迭代不确定潮流分析方法。
背景技术
潮流分析是根据给定电力网络结构及运行条件分析整个网络的潮流分布,计算结果中最基本的电气量是系统各节点处电压幅值和相角的稳态值。它是研究电力系统运行、规划以及安全性、可靠性的基础,也是各种电磁暂态和机电暂态分析的基础和出发点,其内容属于电力系统稳态分析。
不确定潮流是针对电力系统内负荷和发电机的出力不能精确知道,但知道其一定包含在某个给定区间范围内的情况,通过分析得到的潮流分布结果是一组区间解。针对使用区间表征的不确定潮流问题,传统的确定性潮流算法不再适用,如何快速有效的求解电力系统不确定潮流,使其能够较为全面的表征电力系统的运行状态,是一个具有重要意义的研究课题。
基于不确定潮流问题的相关特性,前人提出了基于电流注入方程的区间潮流分析方法,该方法使用Krawczyk迭代算子求解区间非线性方程组,从而达到求解不确定潮流分布的目的。然而,受限于区间运算的保守性,基于Krawczyk迭代算子分析所得的潮流结果往往过于保守,包含很多实际上不可能出现的电力系统运行状态,所得区间解的范围往往比实际中可能出现的范围大很多。此外,迭代过程将花费大量的时间成本,降低不确定潮流的分析效率。
发明内容
技术问题:本发明的目的是提供一种效率更高,且能够得到更精确的电压波动范围的基于优化方法的非迭代不确定潮流分析方法。
技术方案:本发明的基于优化方法的非迭代不确定潮流分析方法,包括以下步骤:
1)遍历整个电力网络,统计PQ节点、PV节点、平衡节点3种节点,确定节点个数N并为节点编号;
2)将每个节点的负荷波动表示为包含上限与下限信息的区间形式;
3)分别建立基于潮流方程的等式约束、基于PQ节点给定参数的有功功率不等式约束和无功功率不等式约束、基于PV节点给定参数的有功功率不等式约束和电压幅值等式约束、基于平衡节点给定参数的电压实部等式约束和电压虚部等式约束,以及在电力网络包含系统状态量阈值时,还需建立基于电力系统运行限制的约束;
4)以每个节点的电压实部与虚部的平方和作为目标函数,结合所述步骤3)中建立的全部约束条件,构建得到电压幅值优化模型;同时以每个节点的电压虚部作为目标函数,结合步骤3)中建立的全部约束条件,构建得到电压相角优化模型;
5)求解所述步骤4)中得到的两种优化模型,得到不确定潮流的解,即每个节点电压幅值与相角的波动范围。
本发明的优选方案中,步骤1)中,节点编号由自然数1开始,直至节点个数N,在编号过程中无需考虑节点类型的影响。
本发明的步骤2)中,分别设置PQ节点有功功率的最大值和最小值、PQ节点无功功率的最大值和最小值、PV节点有功功率的最大值和最小值,从而将节点的负荷波动表征为包含上限与下限信息的区间形式。
本发明的优选方案中,步骤3)中:
所述基于潮流方程的等式约束为:
P i - e i Σ j = 1 N ( G ij e j - B ij f j ) - f i Σ j = 1 N ( G ij f j + B ij e j ) = 0
Q i - f i Σ j = 1 N ( G ij e j - B ij f j ) + e i Σ j = 1 N ( G ij f j + B ij e j ) = 0
其中,Pi、Qi分别表示节点i处注入的有功功率与无功功率,ei、fi分别表示节点i处电压的实部与虚部,ej、fj分别表示节点j处电压的实部与虚部,Gij、Bij分别表示连接节点i与节点j的支路的电导与电纳,N表示系统中的节点个数;
所述基于PQ节点给定参数的有功功率不等式约束为:
P is ‾ ≤ P i ≤ P is ‾
所述基于PQ节点给定参数的无功功率不等式约束为:
Q is ‾ ≤ Q i ≤ Q is ‾
其中,Pi、Qi分别表示节点i处注入的有功功率与无功功率,P is 表示步骤2)中节点i处的有功功率的区间下限,表示步骤2)中节点i处的有功功率的区间上限,Q is 表示步骤2)中节点i处的无功功率的区间下限,表示步骤2)中节点i处的无功功率的区间上限;
所述基于PV节点给定参数的有功功率不等式约束为:
P is ‾ ≤ P i ≤ P is ‾
所述基于PV节点给定参数的电压幅值等式约束为:
Uis 2=ei 2+fi 2
其中,Pi表示节点i处注入的有功功率,P is 表示步骤2)中节点i处的有功功率的区间下限,表示步骤2)中节点i处的有功功率的区间上限,Uis表示节点i处给定的电压幅值,ei、fi分别表示节点i处电压的实部与虚部;
所述基于平衡节点给定参数的电压实部等式约束为:
erefs=eref
所述基于平衡节点给定参数的电压虚部等式约束为:
frefs=fref
其中,eref、fref分别表示计算所得平衡节点处的电压的实部与虚部,erefs、frefs分别表示给定的平衡节点处的电压的实部与虚部。
所述基于电力系统运行限制的约束为:
f(x)≤0
其中,x为系统中的任一具有限制条件的状态量,f(x)是关于该状态量的函数。
本发明的优选方案中,步骤4)中构建得到的电压幅值优化模型如下:
obj . min ( max ) e i 2 + f i 2
s.t.   hk(x)=0  k=1,2,…,m
gt(x)≤0  t=1,2,…,n
步骤4)中构建得到的电压相角优化模型如下:
obj.  min(max)  fi
s.t.  hk(x)=0  k=1,2,…,m
gt(x)≤0  t=1,2,…,n
其中,obj.是优化模型中目标函数的标志符,s.t.是优化模型中约束条件的标志符,min表示以目标函数表达式的最小值作为优化目标,max表示以目标函数表达式的最大值作为优化目标,hk(x),k=1,2,…,m,是定义在实数域内的关于系统状态量的函数,k为该函数的序号,m表示约束条件中等式约束的个数,gt(x),t=1,2,…,n,是定义在实数域内的关于系统状态量的函数,t为该函数的序号,n表示约束条件中不等式约束的个数。
本发明的优选方案中,步骤5)的具体流程为:
首先求解电压幅值优化模型,得到所有节点的电压实部与虚部的平方和的最小值和最大值,对每个节点进行如下处理,即得到该节点的电压幅值波动范围:将所述最小值和最大值分别进行平方根计算,将最小值的算术平方根作为节点电压幅值的区间下限,将最大值的算术平方根作为节点电压幅值的区间上限;
然后求解电压相角优化模型,得到所有节点的电压虚部的最小值和最大值,并将每个节点的电压虚部的最小值和最大值,分别除以该节点处电压幅值的区间下限与上限,得到四个比值;
最后,对每个节点进行如下处理,即得到该节点的电压相角波动范围:将得到的四个比值分别进行反三角函数运算,将四个运算结果中的最小值作为节点电压相角的区间下限,将四个运算结果中的最大值作为节点电压相角的区间上限。
有益效果:本发明与现有技术相比,具有以下优点:
前人提出的使用Krawczyk迭代算子的基于电流注入方程的区间潮流分析方法,由于未考虑网络中各个不确定量之间的关联及依赖关系,所得的潮流结果往往过于保守,包含很多实际上不可能出现的电力系统运行状态,即,不确定潮流解的范围比电力系统运行状态实际可能出现的波动范围大得多。本发明提供的基于优化方法的非迭代不确定潮流分析方法,将传统的不确定潮流分析方法中的非线性区间方程组求解问题转化为优化问题,通过求解与潮流待求量相同数量的优化模型,得到每个潮流待求量的上限与下限,进而得到不确定潮流解的波动范围。在优化问题中,目标函数的极大值与极小值都是客观存在的。因此,使用本发明所述方法,不确定潮流解中每个潮流待求量的上限与下限都是客观存在的,即,该方法使不确定潮流的解完全摆脱了保守性的影响。此外,前人提出的迭代方法在迭代过程中将花费大量的时间成本,降低了不确定潮流的分析效率。在本发明提供的基于优化方法的非迭代不确定潮流分析方法中,由于求解不同节点处的潮流状态量时所用优化模型的约束条件是相同的,因此可以使用并行计算技术,同时进行不同节点处潮流状态量的求解,从而达到提高分析效率的目的。
附图说明
图1是本发明的方法流程示意图。
图2是编号后的IEEE-14节点系统结构图。
具体实施方式
下面结合实施例和说明书附图,对本发明的技术方案进行具体介绍。
图1是本发明的方法流程示意图,介绍了本发明方法的基本步骤。图2是编号后的IEEE-14节点系统,给定了网络中平衡节点的电压幅值及相角大小、PQ节点的负荷波动范围(在本例中设定为有功功率及无功功率均关于确定值波动±10%)、PV节点的电压幅值大小及有功功率波动范围(在本例中设定为有功功率关于确定值波动±10%),以下以该系统为例说明本发明方法的具体实现。
1)遍历整个网络,统计PQ节点、PV节点、平衡节点3种节点,确定网络节点个数N并为节点编号。电力系统中存在3种类型的节点,其中,有功功率和无功功率已知的节点为PQ节点,有功功率和电压幅值已知的节点为PV节点,电压幅值和电压相角已知的节点为平衡节点。以图2所示系统为例,该网络共有14个节点且已从1至14编号,其中编号1的节点为平衡节点,编号4、5、7、9、10、11、12、13、14的节点为PQ节点,编号2、3、6、8的节点为PV节点。
2)将步骤1)所述网络中的负荷波动表示为包含上限与下限信息的区间形式。以图2所示系统中的节点2和节点9为例,其中节点2为PV节点,负荷额定有功功率标幺化后为0.217;节点9为PQ节点,负荷额定有功功率标幺化后为0.295,额定无功功率标幺化后为0.166。考虑±10%的负荷波动性,则节点2的负荷有功功率可以表征为区间[0.1953,0.2387],节点9的负荷有功功率和无功功率可以分别表征为区间[0.2655,0.3245]和[0.1494,0.1826]。
3)针对已有系统网络,分别建立基于潮流方程的等式约束、基于PQ节点给定参数的有功功率不等式约束和无功功率不等式约束、基于PV节点给定参数的有功功率不等式约束和电压幅值等式约束、基于平衡节点给定参数的电压实部等式约束和电压虚部等式约束,以及在电力网络包含系统状态量阈值时,还需建立基于电力系统运行限制的约束。
基于潮流方程的等式约束为:
P i - e i Σ j = 1 N ( G ij e j - B ij f j ) - f i Σ j = 1 N ( G ij f j + B ij e j ) = 0
Q i - f i Σ j = 1 N ( G ij e j - B ij f j ) + e i Σ j = 1 N ( G ij f j + B ij e j ) = 0
其中,Pi、Qi分别表示节点i处注入的有功功率与无功功率,ei、fi分别表示节点i处电压的实部与虚部,ej、fj分别表示节点j处电压的实部与虚部,Gij、Bij分别表示连接节点i与节点j的支路的电导与电纳,N表示系统中的节点个数。每个节点均存在有功功率潮流方程约束与无功功率潮流方程约束,因此,该类约束条件共有2N个。图2所示的系统中共有14个节点,该类约束条件共有28个。以节点3为例,与其相连的有节点2与节点4,关于节点3的潮流方程约束可以表示为:
P3-e3[(G23e2-B23f2)+(G34e4-B34f4)]-f3[(G23f2+B23e2)+(G34f4+B34e4)]=0
Q3-f3[(G23e2-B23f2)+(G34e4-B34f4)]+e3[(G23f2+B23e2)+(G34f4+B34e4)]=0
基于PQ节点给定参数的有功功率不等式约束为:
P is ‾ ≤ P i ≤ P is ‾
基于PQ节点给定参数的无功功率不等式约束为:
Q is ‾ ≤ Q i ≤ Q is ‾
其中,Pi、Qi分别表示节点i处注入的有功功率与无功功率,P is 表示步骤2)中节点i处的有功功率的区间下限,表示步骤2)中节点i处的有功功率的区间上限,Q is 表示步骤2)中节点i处的无功功率的区间下限,表示步骤2)中节点i处的无功功率的区间上限。将系统中PQ节点的个数记为NPQ,则基于PQ节点给定参数的约束条件共有2NPQ个。图2所示的系统中共有9个PQ节点,该类约束条件共有18个,以节点9为例,其基于PQ节点给定参数的约束可以表示为:
P 9 s ‾ ≤ P 9 ≤ P 9 s ‾
Q 9 s ‾ ≤ Q 9 ≤ Q 9 s ‾
其中,节点9处的负荷有功功率与无功功率的下限和上限如步骤2)中所述。
基于PV节点给定参数的有功功率不等式约束为:
P is ‾ ≤ P i ≤ P is ‾
基于PV节点给定参数的电压幅值等式约束为:
Uis 2=ei 2+fi 2
其中,Pi表示节点i处注入的有功功率,P is 表示步骤2)中节点i处的有功功率的区间下限,表示步骤2)中节点i处的有功功率的区间上限,Uis表示节点i处给定的电压幅值,ei、fi分别表示节点i处电压的实部与虚部。将系统中PV节点的个数记为NPV,则基于PV节点给定参数的约束条件共有2NPV个。图2所示的系统中共有4个PV节点,该类约束条件共有8个,以节点2为例,其基于PV节点给定参数的约束可以表示为:
P 2 s ‾ ≤ P 2 ≤ P 2 s ‾
U2s 2=e2 2+f2 2
其中,节点2处的电压幅值为给定的确定量,负荷有功功率下限和上限如步骤2)中所述。
基于平衡节点给定参数的电压实部等式约束为:
erefs=eref
基于平衡节点给定参数的电压虚部等式约束为:
frefs=fref
其中,eref、fref分别表示计算所得平衡节点处的电压的实部与虚部,erefs、frefs分别表示给定的平衡节点处的电压的实部与虚部。通常的电力系统中只存在一个平衡节点,因此,基于平衡节点给定参数的约束条件只有2个。图2所示的系统中,节点1为平衡节点,则基于平衡节点给定参数的约束为:
e1s=e1
f1s=f1
基于电力系统运行限制的约束为:
f(x)≤0
其中,x为系统中的任一具有限制条件的状态量,f(x)是关于该状态量的函数。该类约束条件在设置时较为随意,不同的电力系统具有不同的运行限制,随着电力系统运行限制的改变,该类约束条件也会随之改变。假设在图2所示的系统中,电力系统运行要求节点电压满足:
0.8≤ei≤1.2
-0.3≤fi≤0.3
其中,ei、fi分别表示节点i处电压的实部与虚部。图2所示的系统中共有14个节点,该类基于电力系统运行限制的约束共有28个。
4)在步骤3)的基础上,构建得到电压幅值优化模型和电压相角优化模型:
以每个节点的电压实部与虚部的平方和作为目标函数,结合步骤3)中所述的全部约束条件,构建得到以下电压幅值优化模型:
obj . min ( max ) e i 2 + f i 2
s.t.  hk(x)=0  k=1,2,…,m
gt(x)≤0  t=1,2,…,n
以每个节点的电压虚部作为目标函数,结合步骤3)中所述的全部约束条件,构建得到以下电压相角优化模型:
obj.  min(max)  fi
s.t.  hk(x)=0  k=1,2,…,m
gt(x)≤0  t=1,2,…,n
其中,obj.是优化模型中目标函数的标志符,s.t.是优化模型中约束条件的标志符,min表示以目标函数表达式的最小值作为优化目标,max表示以目标函数表达式的最大值作为优化目标,hk(x),k=1,2,…,m,是定义在实数域内的关于系统状态量的函数,k为该函数的序号,m表示约束条件中等式约束的个数,gt(x),t=1,2,…,n,是定义在实数域内的关于系统状态量的函数,t为该函数的序号,n表示约束条件中不等式约束的个数。图2所示系统中共有9个PQ节点、4个PV节点、1个平衡节点,且有28个基于电力系统运行限制的约束,因此,在电压幅值优化模型和电压相角优化模型中m=34,n=50。以节点9为例,该节点处的电压幅值优化模型可以表示为:
obj . min ( max ) e 9 2 + f 9 2
s.t.   hk(x)=0  k=1,2,…,34
gt(x)≤0  t=1,2,…,50
以节点9为例,该节点处的电压相角优化模型可以表示为:
obj.   min(max)  f9
s.t.   hk(x)=0  k=1,2,…,34
gt(x)≤0  t=1,2,…,50
5)使用优化算法求解步骤4)中所得的优化模型,可以得到每个节点电压幅值与相角的波动范围,即不确定潮流的解。求解非线性优化模型的方法多种多样,也有诸多功能强大的优化软件可供使用,本发明不再赘述。分析得到不确定潮流解的具体流程如下:
首先求解电压幅值优化模型,得到所有节点的电压实部与虚部的平方和的最小值和最大值,对每个节点进行如下处理,即得到该节点的电压幅值波动范围:将所述最小值和最大值分别进行平方根计算,将最小值的算术平方根作为节点电压幅值的区间下限,将最大值的算术平方根作为节点电压幅值的区间上限;
然后求解电压相角优化模型,得到所有节点的电压虚部的最小值和最大值,并将每个节点的电压虚部的最小值和最大值,分别除以该节点处电压幅值的区间下限与上限,得到四个比值;
最后,对每个节点进行如下处理,即得到该节点的电压相角波动范围:将得到的四个比值分别进行反三角函数运算,将四个运算结果中的最小值作为节点电压相角的区间下限,将四个运算结果中的最大值作为节点电压相角的区间上限。
仍以图2所示系统中的节点9为例,通过求解电压幅值优化模型,可以得到的最小值与最大值,对以上两个最值分别求取算术平方根,可得节点9处电压幅值U9的区间下限与上限,通过求解电压相角优化模型,可以得到f9的最小值与最大值,将f9的最小值与最大值与U9的区间下限与上限分别进行反正弦三角运算,求取该运算结果的最小值与最大值,
min { arcsin ( f 9 ‾ / U 9 ‾ ) , arcsin ( f 9 ‾ / U 9 ‾ ) , arcsin ( f 9 ‾ / U 9 ‾ ) , arcsin ( f 9 ‾ / U 9 ‾ ) }
min { arcsin ( f 9 ‾ / U 9 ‾ ) , arcsin ( f 9 ‾ / U 9 ‾ ) , arcsin ( f 9 ‾ / U 9 ‾ ) , arcsin ( f 9 ‾ / U 9 ‾ ) }
即节点9处电压相角区间的下限与上限。其中,f 9 分别表示节点9处电压虚部的下限与上限,U 9 分别表示节点9处电压幅值的下限与上限。
以上仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干可以预期的改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (6)

1.一种基于优化方法的非迭代不确定潮流分析方法,其特征在于,该方法包括如下步骤:
1)遍历整个电力网络,统计PQ节点、PV节点、平衡节点3种节点,确定节点个数N并为节点编号;
2)将每个节点的负荷波动表示为包含上限与下限信息的区间形式;
3)分别建立基于潮流方程的等式约束、基于PQ节点给定参数的有功功率不等式约束和无功功率不等式约束、基于PV节点给定参数的有功功率不等式约束和电压幅值等式约束、基于平衡节点给定参数的电压实部等式约束和电压虚部等式约束,以及在电力网络包含系统状态量阈值时,还需建立基于电力系统运行限制的约束;
4)以每个节点的电压实部与虚部的平方和作为目标函数,结合所述步骤3)中建立的全部约束条件,构建得到电压幅值优化模型;同时以每个节点的电压虚部作为目标函数,结合步骤3)中建立的全部约束条件,构建得到电压相角优化模型;
5)求解所述步骤4)中得到的两种优化模型,得到不确定潮流的解,即每个节点电压幅值与相角的波动范围。
2.根据权利要求1所述的基于优化方法的非迭代不确定潮流分析方法,其特征在于,所述步骤1)中,节点编号由自然数1开始,直至节点个数N,在编号过程中无需考虑节点类型的影响。
3.根据权利要求1所述的基于优化方法的非迭代不确定潮流分析方法,其特征在于,所述步骤2)中,分别设置PQ节点有功功率的最大值和最小值、PQ节点无功功率的最大值和最小值、PV节点有功功率的最大值和最小值,从而将节点的负荷波动表征为包含上限与下限信息的区间形式。
4.根据权利要求1、2或3所述的基于优化方法的非迭代不确定潮流分析方法,其特征在于,所述步骤3)中:
所述基于潮流方程的等式约束为:
P i - e i Σ j = 1 N ( G ij e j - B ij f j ) - f i Σ j = 1 N ( G ij f j + B ij e j ) = 0
Q i - f i Σ j = 1 N ( G ij e j - B ij f j ) + e i Σ j = 1 N ( G ij f j + B ij e j ) = 0
其中,Pi、Qi分别表示节点i处注入的有功功率与无功功率,ei、fi分别表示节点i处电压的实部与虚部,ej、fj分别表示节点j处电压的实部与虚部,Gij、Bij分别表示连接节点i与节点j的支路的电导与电纳,N表示系统中的节点个数;
所述基于PQ节点给定参数的有功功率不等式约束为:
P is ‾ ≤ P i ≤ P is ‾
所述基于PQ节点给定参数的无功功率不等式约束为:
Q is ‾ ≤ Q i ≤ Q is ‾
其中,Pi、Qi分别表示节点i处注入的有功功率与无功功率,P is 表示步骤2)中节点i处的有功功率的区间下限,表示步骤2)中节点i处的有功功率的区间上限,Q is 表示步骤2)中节点i处的无功功率的区间下限,表示步骤2)中节点i处的无功功率的区间上限;
所述基于PV节点给定参数的有功功率不等式约束为:
P is ‾ ≤ P i ≤ P is ‾
所述基于PV节点给定参数的电压幅值等式约束为:
Uis 2=ei 2+fi 2
其中,Pi表示节点i处注入的有功功率,P is 表示步骤2)中节点i处的有功功率的区间下限,表示步骤2)中节点i处的有功功率的区间上限,Uis表示节点i处给定的电压幅值,ei、fi分别表示节点i处电压的实部与虚部;
所述基于平衡节点给定参数的电压实部等式约束为:
erefs=eref
所述基于平衡节点给定参数的电压虚部等式约束为:
frefs=fref
其中,eref、fref分别表示计算所得平衡节点处的电压的实部与虚部,erefs、frefs分别表示给定的平衡节点处的电压的实部与虚部。
所述基于电力系统运行限制的约束为:
f(x)≤0
其中,x为系统中的任一具有限制条件的状态量,f(x)是关于该状态量的函数。
5.根据权利要求1、2或3所述的基于优化方法的非迭代不确定潮流分析方法,其特征在于,所述步骤4)中构建得到的电压幅值优化模型如下:
obj . min ( max ) e i 2 + f i 2
s.t.    hk(x)=0  k=1,2,…,m
gt(x)≤0  t=1,2,…,n
步骤4)中构建得到的电压相角优化模型如下:
obj.   min(max)  fi
s.t.   hk(x)=0  k=1,2,…,m
gt(x)≤0  t=1,2,…,n
其中,obj.是优化模型中目标函数的标志符,s.t.是优化模型中约束条件的标志符,min表示以目标函数表达式的最小值作为优化目标,max表示以目标函数表达式的最大值作为优化目标,hk(x),k=1,2,…,m,是定义在实数域内的关于系统状态量的函数,k为该函数的序号,m表示约束条件中等式约束的个数,gt(x),t=1,2,…,n,是定义在实数域内的关于系统状态量的函数,t为该函数的序号,n表示约束条件中不等式约束的个数。
6.根据权利要求1、2或3所述的基于优化方法的非迭代不确定潮流分析方法,其特征在于,所述步骤5)的具体流程为:
首先求解电压幅值优化模型,得到所有节点的电压实部与虚部的平方和的最小值和最大值,对每个节点进行如下处理,即得到该节点的电压幅值波动范围:将所述最小值和最大值分别进行平方根计算,将最小值的算术平方根作为节点电压幅值的区间下限,将最大值的算术平方根作为节点电压幅值的区间上限;
然后求解电压相角优化模型,得到所有节点的电压虚部的最小值和最大值,并将每个节点的电压虚部的最小值和最大值,分别除以该节点处电压幅值的区间下限与上限,得到四个比值;
最后,对每个节点进行如下处理,即得到该节点的电压相角波动范围:将得到的四个比值分别进行反三角函数运算,将四个运算结果中的最小值作为节点电压相角的区间下限,将四个运算结果中的最大值作为节点电压相角的区间上限。
CN201410370695.2A 2014-07-30 2014-07-30 一种基于优化方法的非迭代不确定潮流分析方法 Expired - Fee Related CN104104081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410370695.2A CN104104081B (zh) 2014-07-30 2014-07-30 一种基于优化方法的非迭代不确定潮流分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410370695.2A CN104104081B (zh) 2014-07-30 2014-07-30 一种基于优化方法的非迭代不确定潮流分析方法

Publications (2)

Publication Number Publication Date
CN104104081A true CN104104081A (zh) 2014-10-15
CN104104081B CN104104081B (zh) 2016-03-16

Family

ID=51671994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410370695.2A Expired - Fee Related CN104104081B (zh) 2014-07-30 2014-07-30 一种基于优化方法的非迭代不确定潮流分析方法

Country Status (1)

Country Link
CN (1) CN104104081B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915533A (zh) * 2014-10-23 2015-09-16 南方电网科学研究院有限责任公司 基于功效系数线性加权法的多目标无功优化方法
CN107482633A (zh) * 2017-08-22 2017-12-15 东南大学 一种适用于辐射状配电网的非迭代区间潮流算法
CN108549985A (zh) * 2018-04-13 2018-09-18 深圳供电局有限公司 一种求解区间直流潮流模型的改进蒙特卡洛方法
CN110460060A (zh) * 2019-08-16 2019-11-15 中国农业大学 一种电力系统中连续潮流计算方法
CN110518591A (zh) * 2019-08-22 2019-11-29 中国农业大学 一种不确定电力系统的潮流计算方法
CN110601202A (zh) * 2019-08-28 2019-12-20 潘协印 一种电力系统潮流计算方法
CN116773186A (zh) * 2023-08-22 2023-09-19 浙江恒齿传动股份有限公司 基于多模态数据的减速机运行检测方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904252A (zh) * 2012-10-24 2013-01-30 合肥工业大学 求解含分布式电源的配电网不确定性潮流的方法
CN103093079A (zh) * 2012-12-20 2013-05-08 东南大学 基于仿射算术的辐射型配电网不确定潮流分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904252A (zh) * 2012-10-24 2013-01-30 合肥工业大学 求解含分布式电源的配电网不确定性潮流的方法
CN103093079A (zh) * 2012-12-20 2013-05-08 东南大学 基于仿射算术的辐射型配电网不确定潮流分析方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张永伍: "基于区间算法和范例学习的配电网网架规划", 《电力系统自动化》 *
裴爱华等: "考虑负荷不确定性的区间潮流计算方法", 《电力系统及其自动化学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104915533B (zh) * 2014-10-23 2018-06-22 南方电网科学研究院有限责任公司 基于功效系数线性加权法的多目标无功优化方法
CN104915533A (zh) * 2014-10-23 2015-09-16 南方电网科学研究院有限责任公司 基于功效系数线性加权法的多目标无功优化方法
CN107482633B (zh) * 2017-08-22 2020-03-31 东南大学 一种适用于辐射状配电网的非迭代区间潮流算法
CN107482633A (zh) * 2017-08-22 2017-12-15 东南大学 一种适用于辐射状配电网的非迭代区间潮流算法
CN108549985A (zh) * 2018-04-13 2018-09-18 深圳供电局有限公司 一种求解区间直流潮流模型的改进蒙特卡洛方法
CN108549985B (zh) * 2018-04-13 2022-04-19 深圳供电局有限公司 一种求解区间直流潮流模型的改进蒙特卡洛方法
CN110460060B (zh) * 2019-08-16 2021-11-02 中国农业大学 一种电力系统中连续潮流计算方法
CN110460060A (zh) * 2019-08-16 2019-11-15 中国农业大学 一种电力系统中连续潮流计算方法
CN110518591B (zh) * 2019-08-22 2021-06-15 中国农业大学 一种不确定电力系统的潮流计算方法
CN110518591A (zh) * 2019-08-22 2019-11-29 中国农业大学 一种不确定电力系统的潮流计算方法
CN110601202A (zh) * 2019-08-28 2019-12-20 潘协印 一种电力系统潮流计算方法
CN116773186A (zh) * 2023-08-22 2023-09-19 浙江恒齿传动股份有限公司 基于多模态数据的减速机运行检测方法及系统
CN116773186B (zh) * 2023-08-22 2023-11-07 浙江恒齿传动股份有限公司 基于多模态数据的减速机运行检测方法及系统

Also Published As

Publication number Publication date
CN104104081B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
CN104104081B (zh) 一种基于优化方法的非迭代不确定潮流分析方法
Xu et al. Robust dispatch of high wind power-penetrated power systems against transient instability
CN103810646B (zh) 一种基于改进投影积分算法的有源配电系统动态仿真方法
CN105656031A (zh) 基于高斯混合分布特征的含风电电力系统安全风险评估方法
CN105633948A (zh) 一种分布式风电、光伏发电等不确定能源接入电力系统随机模糊潮流算法
CN103700036A (zh) 一种适于电力系统多时间尺度的暂态稳定性投影积分方法
CN103455948B (zh) 一种配电系统多维多分辨率建模与分析方法
CN104810826A (zh) 结合拉丁超立方抽样的双向迭代并行概率潮流计算方法
CN103887792B (zh) 一种含分布式电源的低压配电网建模方法
CN104113061A (zh) 一种含分布式电源的配电网三相潮流计算方法
CN103956735A (zh) 一种分布式发电系统的谐波潮流分析方法
Wang et al. Applying probabilistic collocation method to power flow analysis in networks with wind farms
Liu et al. Fast power system dynamic simulation using continued fractions
CN104135038A (zh) 一种交直流混联系统不对称故障分析方法
CN107332239B (zh) 一种基于配电网等值的输配电网协调规划方法
Chen et al. Distribution system state estimation: A survey of some relevant work
CN104092213B (zh) 一种基于优化方法的不确定潮流支路功率分析方法
CN107179706B (zh) 适用于受端大电网仿真分析的uhvdc模型及建模方法
CN105896558B (zh) 一种基于vsc的upfc机电暂态模块化建模方法
CN111339624B (zh) 基于psasp和emtp/atp短路电流直流分量计算方法
Han et al. An assessment approach of the power system vulnerability considering the uncertainties of wind power integration
Pagnetti et al. Probabilistic methods moving towards the field: a tool for DG connection studies featuring the alternatives to grid reinforcement
CN115828489A (zh) 基于关键量测布点位置搜索的感知设备部署方法及系统
Devi et al. A new analytical method for the sizing and siting of DG in radial system to minimize real power losses
Şeker et al. An analytic approach to determine maximum penetration level of distributed generation considering power loss

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160316

Termination date: 20200730

CF01 Termination of patent right due to non-payment of annual fee