CN104066929A - 井下工具的受控电解降解 - Google Patents

井下工具的受控电解降解 Download PDF

Info

Publication number
CN104066929A
CN104066929A CN201280060783.1A CN201280060783A CN104066929A CN 104066929 A CN104066929 A CN 104066929A CN 201280060783 A CN201280060783 A CN 201280060783A CN 104066929 A CN104066929 A CN 104066929A
Authority
CN
China
Prior art keywords
insert
electrode potential
assembly
cavity
methods
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280060783.1A
Other languages
English (en)
Other versions
CN104066929B (zh
Inventor
S·高德特
W·弗兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN104066929A publication Critical patent/CN104066929A/zh
Application granted granted Critical
Publication of CN104066929B publication Critical patent/CN104066929B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B31/00Fishing for or freeing objects in boreholes or wells
    • E21B31/002Destroying the objects to be fished, e.g. by explosive means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/04Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion
    • E21B23/0415Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells operated by fluid means, e.g. actuated by explosion using particular fluids, e.g. electro-active liquids
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/02Equipment or details not covered by groups E21B15/00 - E21B40/00 in situ inhibition of corrosion in boreholes or wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

一种能够受控降解的井下组件,包括其中具有空腔的本体,所述本体由具有第一电极电势的第一材料形成。插入件设置在所述空腔中,所述插入件与本体电联接,并由具有第二电极电势的第二材料形成,第一电极电势比第二电极电势更负。

Description

井下工具的受控电解降解
相关申请的交叉引用
本申请要求2011年12月13日提交的美国申请No.13/324753的优先权,该申请全部内容在此引入作为参考。
背景技术
在井下钻进和完井工业中,通常要求在工具已被使用而不再需要之后移除所安装的工具或部件。例如,工具可以是锁、凸耳、滑件、球、塞子、座等或它们的部分,这些部件的移除能够使流体流过之前被阻挡的路径,释放锁或锚固件等等。当前用于移除井下部件的系统包括将球或塞子沿井眼向上泵回、铣削部件、放置酸或其它化学品以溶解部件等等。虽然这些方法都能起作用,但工业上总是希望找到实施井下部件移除的替代方案。
发明内容
一种能够受控降解的井下组件,包括:其中具有空腔的本体,所述本体由具有第一电极电势的第一材料形成;和设置在所述空腔中的插入件,所述插入件与所述本体电联接,并且所述插入件由具有第二电极电势的第二材料形成,第一电极电势比第二电极电势更负。
一种控制井下组件的降解的方法,所述方法包括:在一本体中形成空腔,所述本体由具有第一电极电势的第一材料形成;和将一插入件设置在所述空腔中,所述插入件与所述本体电联接,并且所述插入件由具有第二电极电势的第二材料形成,第一电极电势比第二电极电势更负。
附图简要说明
下面的描述无论如何都不认为是限制。请参阅附图,同样的元件采用相同的标记:
图1是受控降解组件的横截面视图;和
图2示意性示出了图1中用作阻止流体流过管的塞子的组件。
具体实施方式
参照这些图,所披露的设备和方法的一个或多个实施例的详细说明在此借助于范例进行,但不作为限制。
现在参考图1,显示了组件10。组件10包括一本体12和至少一个插入件14(分别显示为插入件14a、14b和14c,不过共同被称为“插入件14”)。组件10可以是,例如,在使用后需要移除的任何井下工具或部件。例如,组件10可以是阀、球、塞子、突板(dart)、座、滑件、锁、凸耳、锚固件、套筒等等或它们的组合或部分。虽然显示的横截面为圆形,但是,本体12可以具有任何规则或不规则的形状或横截面,提供的这些图的目的只是为了示出一个实施例。
插入件14均安装在本体12中的相应空腔16内(空腔16a、16b和16c分别对应于插入件14a、14b和14c,并且共同被称为“空腔16”)。空腔16可以以任何所要求的方式在本体12制造期间或者本体12制造之后形成。例如,可以在本体12成型之后进行钻进或某些其它机加工作业,或者可以在本体12制造过程期间形成空腔16,所述制造过程例如是锻造、压塑、模制等,例如通过利用例如冲头或夯锤等在模具或模周围成型熔融金属。插入件14可以以使插入件14电联接于本体12的任何方式安装在空腔16中。例如,在一个实施例中,插入件14和空腔16互补地螺纹连接(例如参见插入件14a和14b以及相应的空腔16a和16b),而在另一个实施例中使用了压配合或干涉配合(例如参见空腔16c中的插入件14c)。在螺纹连接时,插入件14可以带有凹口或键,以便与合适的工具接合,例如类似于可用螺丝刀驱动的调节螺钉。
阴极保护(CP)是众所周知的用于控制建筑物、桥梁、船体等上的腐蚀的做法。一般而言,CP包含形成带有设置在电解溶液中的阳极和阴极的电化学电池。通过选择比阴极材料“电活性”更好的阳极作为材料,阳极将代替阴极经历氧化,从而牺牲阳极本身,以便保护阴极免受腐蚀。用于牺牲阳极的典型材料包括镁、锌、铝等,例如以便保护铜、钢、铸铁等。一般而言,为形成适合的材料对,可以查阅电动势序或电势序,阳极材料选择成具有较低(更负)的电极电势,阴极材料具有较高(更正)的电极电势。
有利地,阴极保护的原理实质上可反过来使用以便实施井下部件(例如组件10)的移除。也就是说,与保护相反,可以通过形成其中本体12为阳极的电化学电池来腐蚀或降解结构即本体12。也就是说,例如,通过将组件10设置到电解溶液18中并由比插入件14电活性更大的材料形成本体12来形成电化学电池。电解溶液18可以是一种或多种井下流体,使得仅仅通过将组件10下入或落到井下就可以开始电腐蚀过程。应当注意,术语“流体”广义地使用以包括与固体混合的流体(例如泥浆)、具有溶解的固体的流体(例如盐水)等等。
在一个实施例中,本体12由镁(基本上为电活性最大的材料)形成,而插入件14由锌(电活性更小的材料)形成,不过当然其它材料组合也是可以的。通过选择本体12的材料使之比插入件14的材料具有相对更负的电势,本体12将腐蚀,从而充当用于保护插入件14的牺牲阳极。当然,并不是希望保护插入件14,而是希望本体12被腐蚀。
本体12的腐蚀或降解速率可以由各种因素进行控制。例如,本体12相比于插入件14的相对体积、与电解溶液18相接触的表面面积的相对尺寸(例如本体12的外表面的面积与插入件14的多个表面22a-22d的面积之和相比)、形成本体12与插入件14的材料的电极电势之间的差等都影响本体12的腐蚀速率。有利的是,这允许通过例如选择本体12和插入件14的合适的材料以及相对形状和尺寸可预测地调谐、定制或控制本体12的腐蚀速率。因此,应当明白,为了控制本体12和插入件14之间的容积比率和/或表面面积比率,可以包括任何数量的插入件14。作为另一个示例,插入件14可以部分地(例如,参见插入件14a和14b)或完全地(例如,参见插入件14c)穿过本体12安装。
进一步地,插入件14中不同的插入件可以是用于允许更精细地调谐本体12的腐蚀速率的不同电材料。例如,本体12可以是镁,插入件可以是其他电活性更小的材料(例如锌、铝、钢、铸铁等)的组合。当然,本体12可以是锌、铝、钢、铸铁等中的任何一个,只要插入件14为电活性更小的材料,例如镍、不锈钢、石墨等。
在一个实施例中,要求本体12的腐蚀在初始被延迟,插入件14由两种或更多种材料形成,其中一种材料的电极电势大于本体12的材料的电极电势,另一种材料的电极电势小于本体12的材料的电极电势。例如,插入件14a和14b可以由镁形成,本体12由锌形成,插入件14c由铝形成。在该实施例中,插入件14a和14b将首先腐蚀掉,本体12的腐蚀延迟,本体12将在插入件14a和14b腐蚀完之后才开始腐蚀。应当注意,在此给出的各种材料的电极电势可以根据其他因素改变,所述其他因素例如是溶液18的盐度、井下温度等,而且,在使用所述组件10的情况下,通常本体12被选定为比至少其中一个插入件14的材料活性更大(即更负)的电材料。
在图2所示的实施例中,组件10形成塞子50,所述塞子50着陆在一座52上,用于防止流体流过管54。存在于管54中的流体将与组件完成电化学电池。由于由此形成的电化学电池,本体12被布置成被腐蚀掉,从而允许流体流过座52,而不需要回泵塞子50,也不需要通过磨铣移除塞子50。例如,管54为井下生产管,移除塞子50使得能够穿过该管进行生产。在另一个例子中,组件10属于锁或锚固系统的一部分,本体12的腐蚀导致锁或锚固件的释放。当然,组件10可以是要求在井下移除的任何其他工具或部件,或者可以是这些其他工具或部件的一部分。虽然插入件14作为电化学电池的一部分免于被腐蚀,但是插入件14可以具有较小的尺寸,以便在本体12已被腐蚀之后有效地使得不与井下活动干涉。进一步地,插入件14可以由在不存在牺牲阳极的情况下能较易腐蚀的材料构成,使得当本体12被充分腐蚀并且插入件14从该本体挣脱时,插入件14将经受腐蚀,直到插入件14也被井下流体溶解、腐蚀或降解。
虽然已经参照示例性实施例描述了本发明,本领域技术人员应当明白,在没有背离本发明的范围的情况下,可以进行各种改变,也可以利用等效物来代替其元件。另外,在没有偏离本发明的实质范围的情况下,可以进行许多改进,以使具体情形或材料适应本发明的教导。所以,本发明不局限于作为执行本发明的最佳方式的所公开的特定实施例,而是,本发明包括落入权利要求书的范围之内的所有实施例。而且,在附图和说明书中已经披露了本发明的示例性实施例,虽然可能采用了专门术语,但是,除非另有说明,这些术语仅仅是用于一般、描述性意义,不用于限制,因而本发明的范围不局限于此。此外,术语第一、第二等等的使用不表示任何次序或重要程度,而是用来区分不同的元件。此外,术语一、一个等等的使用不表示量上的限定,而是表示至少存在一个所述零件。

Claims (19)

1.一种能够受控降解的井下组件,包括:
其中具有空腔的本体,所述本体由具有第一电极电势的第一材料形成;和
设置在所述空腔中的插入件,所述插入件与所述本体电联接,并且所述插入件由具有第二电极电势的第二材料形成,第一电极电势比第二电极电势更负。
2.如权利要求1所述的组件,其中,本体响应于正经受电解溶液的所述组件而腐蚀。
3.如权利要求2所述的组件,其中,电解溶液包括井下流体。
4.如权利要求1所述的组件,其中,插入件螺纹连接在空腔中。
5.如权利要求1所述的组件,其中,插入件压配合到所述空腔中。
6.如权利要求1所述的组件,其中,第一材料包括镁、锌、铝、以及包括上述物质的组合物。
7.如权利要求1所述的组件,其中,第二材料包括锌、铝、钢、以及包括上述物质的组合物。
8.如权利要求1所述的组件,其中,所述组件形成以下物件的至少一部分,所述物件为球、塞子、突板、套筒、滑件、锁、凸耳、锚固件、或包括上述物件中的至少一个的组合物。
9.如权利要求1所述的组件,还包括设置在至少一个其它空腔中的至少一个其它插入件。
10.如权利要求9所述的组件,其中,所述至少一个其它插入件由第三材料形成,所述第三材料所具有的第三电极电势不同于第一电极电势和第二电极电势。
11.如权利要求10所述的组件,其中,第三电极电势比第一电极电势更负,以便延迟本体的腐蚀直到所述至少一个其它插入件被腐蚀。
12.如权利要求9所述的组件,其中,所述至少一个其它插入件由第二材料形成。
13.一种控制井下组件的降解的方法,所述方法包括:
在一本体中形成空腔,所述本体由具有第一电极电势的第一材料形成;和
将一插入件设置在所述空腔中,所述插入件与所述本体电联接,并且所述插入件由具有第二电极电势的第二材料形成,第一电极电势比第二电极电势更负。
14.如权利要求13所述的方法,还包括:通过将本体和插入件暴露于电解溶液而腐蚀本体。
15.如权利要求13所述的方法,其中,电解溶液包括一种或多种井下流体。
16.如权利要求13所述的方法,还包括:通过设定本体和插入件的容积比率而调谐本体的腐蚀速率。
17.如权利要求13所述的方法,还包括:通过设定本体和插入件的暴露表面面积比率而调谐本体的腐蚀速率。
18.如权利要求13所述的方法,还包括:通过设定第一电极电势和第二电极电势之间的差而调谐本体的腐蚀速率。
19.如权利要求13所述的方法,其中,形成所述空腔包括机加工、锻造、模制、或包括上面形成方式中的至少一种的组合。
CN201280060783.1A 2011-12-13 2012-11-05 井下工具的受控电解降解 Active CN104066929B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/324,753 2011-12-13
US13/324,753 US8905146B2 (en) 2011-12-13 2011-12-13 Controlled electrolytic degredation of downhole tools
PCT/US2012/063534 WO2013089941A1 (en) 2011-12-13 2012-11-05 Controlled electrolytic degradation of downhole tools

Publications (2)

Publication Number Publication Date
CN104066929A true CN104066929A (zh) 2014-09-24
CN104066929B CN104066929B (zh) 2017-07-04

Family

ID=48570933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280060783.1A Active CN104066929B (zh) 2011-12-13 2012-11-05 井下工具的受控电解降解

Country Status (8)

Country Link
US (1) US8905146B2 (zh)
EP (1) EP2791467A4 (zh)
CN (1) CN104066929B (zh)
AP (1) AP2014007685A0 (zh)
AU (1) AU2012352834B2 (zh)
BR (1) BR112014012981A2 (zh)
CA (1) CA2857123C (zh)
WO (1) WO2013089941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109403904A (zh) * 2018-12-13 2019-03-01 美钻深海能源科技研发(上海)有限公司 水下装备电位腐蚀自动安全关井系统
CN110847852A (zh) * 2019-10-22 2020-02-28 中国石油天然气股份有限公司 一种加速可溶桥塞溶解的电化学方法

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US8528633B2 (en) 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) * 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US9777549B2 (en) 2012-06-08 2017-10-03 Halliburton Energy Services, Inc. Isolation device containing a dissolvable anode and electrolytic compound
US9689231B2 (en) * 2012-06-08 2017-06-27 Halliburton Energy Services, Inc. Isolation devices having an anode matrix and a fiber cathode
US9759035B2 (en) 2012-06-08 2017-09-12 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion of a metal alloy in solid solution
US9689227B2 (en) * 2012-06-08 2017-06-27 Halliburton Energy Services, Inc. Methods of adjusting the rate of galvanic corrosion of a wellbore isolation device
US9458692B2 (en) 2012-06-08 2016-10-04 Halliburton Energy Services, Inc. Isolation devices having a nanolaminate of anode and cathode
US8905147B2 (en) * 2012-06-08 2014-12-09 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion
US9316090B2 (en) * 2013-05-07 2016-04-19 Halliburton Energy Services, Inc. Method of removing a dissolvable wellbore isolation device
WO2014210283A1 (en) * 2013-06-28 2014-12-31 Schlumberger Canada Limited Smart cellular structures for composite packer and mill-free bridgeplug seals having enhanced pressure rating
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
WO2015060826A1 (en) * 2013-10-22 2015-04-30 Halliburton Energy Services, Inc. Degradable device for use in subterranean wells
US20150191986A1 (en) * 2014-01-09 2015-07-09 Baker Hughes Incorporated Frangible and disintegrable tool and method of removing a tool
CA2929884C (en) 2014-01-13 2018-08-21 Halliburton Energy Services, Inc. Decomposing isolation devices containing a buffering agent
US9850735B2 (en) * 2014-01-14 2017-12-26 Halliburton Energy Services, Inc. Isolation devices containing a transforming matrix and a galvanically-coupled reinforcement area
AU2014385212B2 (en) * 2014-03-06 2016-12-22 Halliburton Energy Services, Inc. Methods of adjusting the rate of galvanic corrosion of a wellbore isolation device
WO2015167640A1 (en) * 2014-05-02 2015-11-05 Halliburton Energy Services. Inc. Isolation devices having a nanolaminate of anode and cathode
US20160047194A1 (en) * 2014-08-13 2016-02-18 Geodynamics, Inc. Wellbore Plug Isolation System and Method
US20160047195A1 (en) * 2014-08-13 2016-02-18 Geodynamics, Inc. Wellbore Plug Isolation System and Method
US9062543B1 (en) 2014-08-13 2015-06-23 Geodyanmics, Inc. Wellbore plug isolation system and method
US9752406B2 (en) 2014-08-13 2017-09-05 Geodynamics, Inc. Wellbore plug isolation system and method
WO2016025275A1 (en) * 2014-08-13 2016-02-18 Geodynamics, Inc. Wellbore plug isolation system and method
US10180037B2 (en) 2014-08-13 2019-01-15 Geodynamics, Inc. Wellbore plug isolation system and method
US9835016B2 (en) * 2014-12-05 2017-12-05 Baker Hughes, A Ge Company, Llc Method and apparatus to deliver a reagent to a downhole device
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10526870B2 (en) 2015-06-30 2020-01-07 Packers Plus Energy Services Inc. Downhole actuation ball, methods and apparatus
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US20180306027A1 (en) * 2016-09-23 2018-10-25 Terves Inc. Method of Assuring Dissolution of Degradable Tools
US10612335B2 (en) * 2016-10-06 2020-04-07 Baker Hughes, A Ge Company, Llc Controlled disintegration of downhole tools
US10358892B2 (en) 2017-07-25 2019-07-23 Baker Hughes, A Ge Company, Llc Sliding sleeve valve with degradable component responsive to material released with operation of the sliding sleeve
US10724321B2 (en) 2017-10-09 2020-07-28 Baker Hughes, A Ge Company, Llc Downhole tools with controlled disintegration
US10329871B2 (en) * 2017-11-09 2019-06-25 Baker Hughes, A Ge Company, Llc Distintegrable wet connector cover
US10724336B2 (en) * 2017-11-17 2020-07-28 Baker Hughes, A Ge Company, Llc Method of controlling degradation of a degradable material
US10975646B2 (en) 2018-07-26 2021-04-13 Baker Hughes, A Ge Company, Llc Object removal enhancement arrangement and method
US10900311B2 (en) 2018-07-26 2021-01-26 Baker Hughes, A Ge Company, Llc Object removal enhancement arrangement and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157732A (en) * 1977-10-25 1979-06-12 Ppg Industries, Inc. Method and apparatus for well completion
CN1965106A (zh) * 2004-04-29 2007-05-16 富斯乐国际有限公司 牺牲阳极组合件
CN101255787A (zh) * 2007-01-15 2008-09-03 普拉德研究及开发股份有限公司 控制井下地层和中心管之间的流体流动的方法
US7699101B2 (en) * 2006-12-07 2010-04-20 Halliburton Energy Services, Inc. Well system having galvanic time release plug
US20110132143A1 (en) * 2002-12-08 2011-06-09 Zhiyue Xu Nanomatrix powder metal compact
US20110132621A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Multi-Component Disappearing Tripping Ball and Method for Making the Same
US20110186306A1 (en) * 2010-02-01 2011-08-04 Schlumberger Technology Corporation Oilfield isolation element and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6742491B1 (en) * 2002-12-17 2004-06-01 Tecumseh Products Company Engine lubrication system
US20060150770A1 (en) * 2005-01-12 2006-07-13 Onmaterials, Llc Method of making composite particles with tailored surface characteristics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157732A (en) * 1977-10-25 1979-06-12 Ppg Industries, Inc. Method and apparatus for well completion
US20110132143A1 (en) * 2002-12-08 2011-06-09 Zhiyue Xu Nanomatrix powder metal compact
CN1965106A (zh) * 2004-04-29 2007-05-16 富斯乐国际有限公司 牺牲阳极组合件
US7699101B2 (en) * 2006-12-07 2010-04-20 Halliburton Energy Services, Inc. Well system having galvanic time release plug
CN101255787A (zh) * 2007-01-15 2008-09-03 普拉德研究及开发股份有限公司 控制井下地层和中心管之间的流体流动的方法
US20110132621A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Multi-Component Disappearing Tripping Ball and Method for Making the Same
US20110186306A1 (en) * 2010-02-01 2011-08-04 Schlumberger Technology Corporation Oilfield isolation element and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109403904A (zh) * 2018-12-13 2019-03-01 美钻深海能源科技研发(上海)有限公司 水下装备电位腐蚀自动安全关井系统
CN109403904B (zh) * 2018-12-13 2023-12-15 美钻深海能源科技研发(上海)有限公司 水下装备电位腐蚀自动安全关井系统
CN110847852A (zh) * 2019-10-22 2020-02-28 中国石油天然气股份有限公司 一种加速可溶桥塞溶解的电化学方法

Also Published As

Publication number Publication date
AU2012352834B2 (en) 2016-06-23
WO2013089941A1 (en) 2013-06-20
CA2857123A1 (en) 2013-06-20
AU2012352834A1 (en) 2014-05-22
BR112014012981A2 (pt) 2017-06-13
EP2791467A1 (en) 2014-10-22
CN104066929B (zh) 2017-07-04
AP2014007685A0 (en) 2014-06-30
EP2791467A4 (en) 2015-12-09
US8905146B2 (en) 2014-12-09
US20130146302A1 (en) 2013-06-13
CA2857123C (en) 2016-06-28

Similar Documents

Publication Publication Date Title
CN104066929A (zh) 井下工具的受控电解降解
AU2012294758B2 (en) Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
CN104619884A (zh) 钢筋混凝土结构的电防腐方法
WO2007132081A3 (fr) Procede de fabrication d'anodes pour la production d'aluminium par electrolyse ignee, lesdites anodes et leur utilisation
CN204401107U (zh) 油井牺牲阳极保护装置
CN107208288B (zh) 用于在Hall-Héroult类型电解槽中生产铝的电解过程中使用的阳极以及制造该阳极的方法
CN109680319A (zh) 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法
CN106011939A (zh) 一种预焙阳极铝电解连续生产方法及结构
CN101851764B (zh) 一种铝电解槽异型阴极炭块制造方法
DE102016210693A1 (de) Kathodenblock aufweisend eine neuartige Nut-Geometrie
WO2018058204A1 (en) Carbonaceous anode for aluminium electrolysis with aluminium insert and process for construction thereof
CA3179811A1 (en) Cathode assembly with metallic collector bar systems for electrolytic cell suitable for the hall-heroult process
KR20130045484A (ko) 콘크리트 구조물에 대한 간헐적인 전기방식 방법, 콘크리트 구조물에 대한 간헐적인 전기방식시스템 및 원전구조물에 대한 간헐적인 전기방식 시스템
EP3461933B1 (en) Method for electrolytically depositing a zinc-nickel alloy layer on at least a substrate to be treated
CN206467293U (zh) 一种用于钢筋混凝土的防腐牺牲阳极
Mustafa et al. Design and performance of a full copper collector bar pot at EGA
CN109482989A (zh) 一种电解液及其制备方法和在双排链轮轴电解加工精密修形中的应用
RU2561556C2 (ru) Инструмент-электрод для электрохимического полирования пространственно-сложных поверхностей
JP3614622B2 (ja) 電解装置、及び電解槽の防食方法
CN109865906A (zh) 一种用于风电轴承零件表面硬化层电解修型的电解液及其制备方法
CN105755517B (zh) 一种石油行业用铝基工件表面的耐磨耐腐处理方法
CN105821447B (zh) 一种连续预焙阳极用的炭块固定方法及装置
CN118110216A (zh) 一种水下混凝土裂缝的复合修复方法
CN101363120A (zh) 一种直接膨胀式地源热泵地下换热器铜管的防腐蚀方法
JP4824737B2 (ja) 電気防食用陽極体および該陽極体を備えたコンクリート構造物、ならびに電気防食用陽極体の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant