CN104064610B - 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法 - Google Patents

以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法 Download PDF

Info

Publication number
CN104064610B
CN104064610B CN201410313420.5A CN201410313420A CN104064610B CN 104064610 B CN104064610 B CN 104064610B CN 201410313420 A CN201410313420 A CN 201410313420A CN 104064610 B CN104064610 B CN 104064610B
Authority
CN
China
Prior art keywords
area
nano structure
micro nano
layer
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410313420.5A
Other languages
English (en)
Other versions
CN104064610A (zh
Inventor
李伟
渠叶君
吴程呈
钟豪
蒋亚东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410313420.5A priority Critical patent/CN104064610B/zh
Publication of CN104064610A publication Critical patent/CN104064610A/zh
Application granted granted Critical
Publication of CN104064610B publication Critical patent/CN104064610B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法,以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器包括I型衬底、位于I型衬底下方的N区、位于I型衬底中央上方的微纳米结构层P区、位于I型衬底两侧上方的P+区、位于I型衬底上表面的上端电极及位于N区下表面的下端电极。本发明以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器比传统Si光电探测器具有更高的响应度,同时还能实现对近红外光的探测,其制备工艺简单,且可与传统硅半导体工艺兼容。

Description

以微纳米结构硅为光敏层的正照式Si-PIN光电探测器及其制 备方法
技术领域
本发明属于光电探测技术领域,涉及光电探测器件结构,具体涉及一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器及其制备方法。
背景技术
光电探测器作为光纤通讯系统、红外成像系统、激光报警系统和激光测距系统等的重要组成部分,在民用方面有广泛的应用。目前,广泛使用的光电探测器主要有Si基光电探测器和InGaAs近红外光电探测器。其中,Si-PIN光电探测器响应速度快、灵敏度高,且Si材料易于提纯、易掺杂、资源丰富、成本低、易于大规模集成和相关技术成熟等,因而被广泛使用。但是,由于Si材料的禁带宽度较大(1.12 eV),因而Si基光探测器的主要探测范围为400 nm~1000 nm,无法达到在较低偏置下探测大于1100 nm的光波信号的目的。因此,当需要探测大于1000 nm的近红外光信号时,常用InGaAs光电探测器代替。但是,InGaAs半导体材料存在价格昂贵、热机械性能较差、晶体质量较差且不易与现有硅微电子工艺兼容等缺点。
微纳米结构硅是一种通过反应离子刻蚀、化学刻蚀及纳米压印刻蚀等方法制备的表面硅材料,该材料具有微纳米尺度的精细微结构和大面积均匀性。目前,纳米压印刻蚀这一新型的微纳米加工技术正受到国内外的重视,其基本原理是将事先制作好的微纳米结构模版通过专用压机,作用于一层薄的聚合物压印胶上,这层具有良好流变性的压印胶可通过热作用或紫外光固化,经良好的脱模后在压印胶上形成与模版1:1大小的图案,从而替代传统的“光刻”工艺。该工艺通过压印胶的模压变形与固化来实现图像的转移,图像最小尺度极限主要依赖于模板的加工精度,而后者可借助最新的微纳米刻蚀技术,实现纳米量级的加工,突破了传统光刻的工艺极限,降低了对特殊曝光束源、高精度聚焦系统、极短波长透镜系统以及抗蚀剂分辨率受光波场效应的限制和要求,具有工艺重复性好、生产效率高和图形转移精度高等优点,适合产业化批量生产。
微纳米结构硅对可见光及近红外光有很好的减反性和增吸性,光谱吸收率可达到90%以上。微纳米结构的存在将产生散射效应,使微纳米硅的直接带隙宽度与间接带隙宽度之间的差异减少,可使硅材料的能带结构由间接带隙向准直接带隙转变,因而吸收起始波长可以实现红移。基于纳米压印刻蚀工艺得到的新型Si-PIN光电探测器,不仅能提高对可见光及近红外光的吸收率,还能使光响应波段扩展到近红外波段范围,使响应度更高。此外,纳米压印刻蚀工艺简单且可与传统硅微电子工艺兼容。因此,这种新型Si-PIN光电探测器在大规模市场化方面优势明显。
发明内容
本发明基于上述微纳米压印刻蚀工艺,提供一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器及其制备方法。
本发明技术方案为:
以微纳米结构硅为光敏层的正照式Si-PIN光电探测器,包括I型衬底、位于I型衬底下方的N区、位于I型衬底中央上方的微纳米结构层P区、位于I型衬底两侧上方的P+区、位于I型衬底上表面的上端电极及位于N区下表面的下端电极,其特征为:
(1)所述微纳米结构硅层P区为探测器光敏面;
(2)所述微纳米结构硅层P区尺寸为:柱/孔直径50~90 nm、高度300~500 nm、周期100~200 nm;
(3)所述P+区形成保护环。
作为优选,所述微纳米结构硅层P区是通过硼重扩散或离子注入掺杂和经过纳米压印刻蚀工艺得到的,其呈三维空间阵列分布。
作为优选,所述微纳米结构硅层P区呈阵列化排布。
作为优选,所述P+区是通过硼重扩散或离子注入掺杂方法制备得到的,其掺杂浓度范围为1×1018 ion/cm3~5×1019 ion/cm3
作为优选,所述上端电极和下端电极为铝薄膜层或金薄膜层或铬/金薄膜层,电极厚度为50 nm~150 nm。
以微纳米结构硅为光敏层的正照式Si-PIN光电探测器的制备方法,包括以下步骤:
(1):在本征I型衬底表面氧化生长SiO2膜层;
(2):在SiO2膜层表面四周光刻出环形N型区的图形;
(3):在SiO2膜层表面光刻出微纳米结构硅层P区的图形,然后进行硼扩散或离子注入掺杂形成微纳米结构硅层P区,在微纳米结构硅层P区上方通过纳米压印刻蚀技术加工出微纳米结构;
(4):在SiO2膜层表面光刻出P+区的图形,然后进行硼重扩散或离子注入掺杂形成P+区;
(5):制备电极。
上述的以微纳米结构硅为光敏层的正照式Si-PIN光电探测器的制备方法中:
所述N区为磷扩散或离子注入掺杂N型区,结深为1.5 μm ~3. 5 μm,掺杂浓度范围为4×1015 ion/cm3 ~ 2×1017 ion /cm3
所述P型区为硼扩散或离子注入掺杂P型区,结深为0.5 μm ~ 3.0 μm,掺杂浓度范围为4×1015 ion/cm3 ~ 2×1017 ion /cm3
所述微纳米结构硅层是通过对硼扩散或离子注入掺杂P区进行纳米压印刻蚀得到的呈三维空间阵列分布的层状微结构。微纳米结构硅呈阵列化排布,其典型尺寸为:硅微纳米柱或微纳米孔直径50~90 nm、高度(或深度)300~500 nm、周期100~200 nm。
所述P+区是通过硼重扩散或离子注入掺杂方法制备得到的,结深为0.5 μm ~3.5 μm,掺杂浓度范围为1×1018 ion/cm3~5×1019 ion/cm3
上端电极和下端电极为铝薄膜层或金薄膜层或铬/金薄膜层,电极厚度为50 nm~150 nm。
本发明的基本工作原理是:被探测物质所激发出的光辐射或各种反射激光被新型Si-PIN光电探测器的光敏面所吸收,产生光生载流子,这些自由电荷在外电场作用下分别向两极漂移,从而产生光电压或者光电流。
本发明的有益效果是:将纳米压印刻蚀技术制备的微纳米结构硅与传统Si-PIN光电探测器相结合的一种新型Si-PIN光电探测器结构。由于微纳米结构硅具有宽光谱吸收和低反射率高吸收率等特征,以及探测器独特的环形P+区也叫保护环区的存在,使得这种新型Si-PIN光电探测器具有近红外光谱延伸的特征以及较高的响应度,特别能在700 nm~1200 nm波长范围内提高器件的响应度和量子效率。
按照本发明所述的以微纳米结构硅为光敏层的正照式Si-PIN光电探测器其所用的基本材料为硅,易于与现有硅微电子标准工艺兼容,且制备过程简单,成本低。并且,由于光敏面是具有微纳米尺度的表面结构,使得该器件具有较高的响应度和近红外光谱响应的特征。而且,采用纳米压印刻蚀技术加工得到的微纳米结构硅具有良好的分布均匀性与周期重复性,在大规模生产方面具有很大优势。
附图说明
图1是本发明的剖面结构示意图。
图2是本发明的仰视平面结构示意图。
其中各附图标记的含义为:
1- I型衬底,2- N区,3- 微纳米结构硅层P区,4- P+区,5-上端电极,6-下端电极。
具体实施方式
下面结合附图1-2和具体实施例对本发明一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器及其制备方法作进一步的说明。
实施例1
本发明一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器的结构如图1所示,包括I型衬底1、N区2、微纳米结构硅层P区3、P+区4、上金属电极5及下金属电极6,I型衬底1可采用高阻Si单晶片;N区2可采用磷扩散或离子注入掺杂;微纳米结构硅层P区3可采用硼扩散或离子注入掺杂,在其上进行纳米压印刻蚀;P+区4可采用硼重扩散或离子注入掺杂;上端电极5可采用P型欧姆接触;下端电极6可采用N型欧姆接触;这样制作的新型Si-PIN光电探测器具有微纳米结构硅层和保护环,从而具有高响应度和近红外宽光谱响应的特性。
本发明一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器的制备方法的具体工艺过程为:
1. 预备表面清洁、干燥的高阻(电阻率为1000 Ω•cm~2000 Ω•cm)、晶向为<111>的硅单晶片衬底材料;
2.将硅单晶片研磨抛光至厚度为350μm,并在衬底正面氧化生长SiO2膜层,膜层厚度为300 nm~400 nm,生长温度为1000℃;
3. 光刻SiO2膜层形成P+区4保护环硼掺杂窗口,在1000℃~1100℃下进行硼重扩散或离子注入掺杂形成P+区4,结深为1.0 μm ~ 3.5 μm;
4. 光刻SiO2膜层形成微纳米结构硅层P区3硼掺杂窗口,在1000℃下进行硼扩散或离子注入掺杂形成微纳米结构硅层P区,结深为0.2 μm ~ 3.0 μm;
5. 对衬底正面涂正胶,并减薄、研磨、抛光衬底背面,使衬底厚度为100 μm ~200μm,并进行磷扩散或离子注入掺杂形成N区2,结深约为3μm~ 4μm,接着去除正面正胶;
6. 依次利用丙酮、乙醇对磷重扩散或离子注入掺杂后的硅衬底进行清洗并烘干;
7. 采用纳米压印刻蚀工艺对形成微纳米结构硅层P区3的上表面进行处理;
8. 在P+区4表面刻蚀电极窗口,并在正面和背面依次沉积上端电极5和下电极6。
其中,在微纳米结构硅层P区3的制备中,微纳米结构硅呈阵列化排布,其尺寸为:硅微纳米柱或微纳米孔直径50~90 nm、高度(或深度)300~500 nm、周期100~200 nm。
其中,金属电极可选材料有铝、金、铬/金;金属沉积方法可为LPCVD、MOCVD、磁控溅射等;金属电极厚度为50 nm~150 nm。
该种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器的响应波长范围为400nm~1200 nm,响应度范围为0.5 A/W~10 A/W。
以上仅是本发明一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器及其制备方法众多具体应用范围中的代表性实施例,对本发明一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器及其制备方法的保护范围不构成任何限制,凡采用变换或是等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (1)

1.一种以微纳米结构硅为光敏层的正照式Si-PIN光电探测器,包括I型衬底(1)、位于I型衬底(1)下方的N区(2)、位于I型衬底(1)中央上方的微纳米结构层P区(3)、位于I型衬底(1)两侧上方的P+区(4)、位于I型衬底(1)上表面的上端电极(5)及位于N区(2)下表面的下端电极(6),其特征在于:
(1)、所述微纳米结构硅层P区(3)为探测器光敏面;
(2)、所述微纳米结构硅层P区(3)尺寸为:柱/孔直径50~90 nm、高度300~500 nm、周期100~200 nm;
(3)、所述P+区(4)形成保护环;
所述微纳米结构硅层P区(3)是通过硼重扩散或离子注入掺杂和经过纳米压印刻蚀工艺得到的,其呈三维空间阵列分布;所述P+区(4)是通过硼重扩散或离子注入掺杂方法制备得到的,其掺杂浓度范围为1×1018 ion/cm3~5×1019 ion/cm3;所述上端电极(5)和下端电极(6)为铝薄膜层或金薄膜层或铬/金薄膜层,电极厚度为50 nm~150 nm;
所述以微纳米结构硅为光敏层的正照式Si-PIN光电探测器的制备方法的具体工艺过程为:
(1)、 预备表面清洁、干燥的高阻,电阻率为1000 Ω•cm~2000 Ω•cm、晶向为<111>的硅单晶片衬底材料;
(2)、将硅单晶片研磨抛光至厚度为350μm,并在衬底正面氧化生长SiO2膜层,膜层厚度为300 nm~400 nm,生长温度为1000℃;
(3)、 光刻SiO2膜层形成P+区(4)保护环硼掺杂窗口,在1000℃~1100℃下进行硼重扩散或离子注入掺杂形成P+区(4),结深为1.0 μm ~ 3.5 μm;
(4) 、光刻SiO2膜层形成微纳米结构硅层P区(3)硼掺杂窗口,在1000℃下进行硼扩散或离子注入掺杂形成微纳米结构硅层P区,结深为0.2 μm ~ 3.0 μm;
(5)、对衬底正面涂正胶,并减薄、研磨、抛光衬底背面,使衬底厚度为100 μm ~ 200μm,并进行磷扩散或离子注入掺杂形成N区(2),结深约为3μm~ 4μm,接着去除正面正胶;
(6)、依次利用丙酮、乙醇对磷重扩散或离子注入掺杂后的硅衬底进行清洗并烘干;
(7)、采用纳米压印刻蚀工艺对形成微纳米结构硅层P区(3)的上表面进行处理;
(8)、在P+区(4)表面刻蚀电极窗口,并在正面和背面依次沉积上端电极(5)和下端电极(6)。
CN201410313420.5A 2014-07-03 2014-07-03 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法 Expired - Fee Related CN104064610B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410313420.5A CN104064610B (zh) 2014-07-03 2014-07-03 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410313420.5A CN104064610B (zh) 2014-07-03 2014-07-03 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN104064610A CN104064610A (zh) 2014-09-24
CN104064610B true CN104064610B (zh) 2017-02-22

Family

ID=51552236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410313420.5A Expired - Fee Related CN104064610B (zh) 2014-07-03 2014-07-03 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN104064610B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701393A (zh) * 2015-03-13 2015-06-10 上海集成电路研发中心有限公司 双波段光电探测器及其制备方法
CN105185845A (zh) * 2015-08-17 2015-12-23 电子科技大学 一种在P层和N层引入微结构硅的Si-PIN光电探测器及其制备方法
CN106206831A (zh) * 2016-08-26 2016-12-07 电子科技大学 基于飞秒激光烧蚀红外增强Si‑PIN探测器及其制备方法
CN109686805B (zh) * 2017-10-19 2021-06-18 中国电子科技集团公司第四十四研究所 硅基高速高响应pin光电探测器及其制作方法
CN109273561B (zh) * 2018-11-20 2020-04-10 电子科技大学 一种msm光电探测器的制备方法
CN109950357A (zh) * 2019-03-26 2019-06-28 京东方科技集团股份有限公司 一种pin器件及其制作方法、感光组件、显示装置
CN112635580A (zh) * 2020-12-21 2021-04-09 中国科学院国家空间科学中心 一种用于空间粒子探测的硅半导体传感器
CN117191881B (zh) * 2023-10-24 2024-04-16 莱芜职业技术学院 用于书籍的光电同步检测芯片及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090138A (zh) * 2007-07-02 2007-12-19 重庆大学 P+pin硅光电探测器
CN102800717A (zh) * 2012-08-30 2012-11-28 中山大学 一种pin结构紫外雪崩光电探测器及其制备方法
CN103137773A (zh) * 2013-03-12 2013-06-05 电子科技大学 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN103400887A (zh) * 2013-08-08 2013-11-20 电子科技大学 一种背照式Si-PIN光电探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090138A (zh) * 2007-07-02 2007-12-19 重庆大学 P+pin硅光电探测器
CN102800717A (zh) * 2012-08-30 2012-11-28 中山大学 一种pin结构紫外雪崩光电探测器及其制备方法
CN103137773A (zh) * 2013-03-12 2013-06-05 电子科技大学 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN103400887A (zh) * 2013-08-08 2013-11-20 电子科技大学 一种背照式Si-PIN光电探测器及其制备方法

Also Published As

Publication number Publication date
CN104064610A (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
CN104064610B (zh) 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法
CN104064611B (zh) 基于微纳米结构的Si-APD光电探测器及其制备方法
CN103400887B (zh) 一种背照式Si-PIN光电探测器的制备方法
Deng et al. Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability
CN102176470B (zh) 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
CN103137773B (zh) 以黑硅为光敏层的Si-APD光电探测器及其制备方法
Xu et al. Black silicon solar thin-film microcells integrating top nanocone structures for broadband and omnidirectional light-trapping
TW201501277A (zh) 淺溝槽紋理化區域及相關方法
Zhang et al. Spray‐Stencil Lithography Enabled Large‐Scale Fabrication of Multispectral Colloidal Quantum‐Dot Infrared Detectors
CN106098817A (zh) 光电子器件、半导体基板及其制作方法
CN208705505U (zh) 一种集成有聚光和滤光功能的一体式微透镜
JP2013502583A (ja) シリコン基板上において1組の高濃度ドープ領域を1組の低濃度ドープ領域から識別するための方法
TW201947749A (zh) 光偵測元件
CN105115599A (zh) 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法
Fang et al. Biomimetic diodon-skin nanothorn polymer antireflection film for solar cell applications
CN105185845A (zh) 一种在P层和N层引入微结构硅的Si-PIN光电探测器及其制备方法
CN110398794B (zh) 一种工作波长可定量调控的硅基吸波器及其制备方法
CN103779443B (zh) 超导纳米线单光子探测器的制备方法
Xu et al. Surface engineering in SnO2/Si for high-performance broadband photodetectors
Wang et al. Single-layer nanowire polarizer integrated with photodetector and its application for polarization navigation
Zhong et al. Enhanced near-infrared absorber: two-step fabricated structured black silicon and its device application
CN113193070B (zh) 一种二维二硒化钯柔性自驱动宽光谱光电传感器及其制备方法
CN110233182A (zh) 一种复合结构双吸收层石墨烯探测器及其制备工艺
CN106197668A (zh) 一种窄带红外探测芯片及其制作方法
Setälä et al. Boron-implanted black silicon photodiode with close-to-ideal responsivity from 200 to 1000 nm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170222

Termination date: 20190703