CN104064611B - 基于微纳米结构的Si-APD光电探测器及其制备方法 - Google Patents

基于微纳米结构的Si-APD光电探测器及其制备方法 Download PDF

Info

Publication number
CN104064611B
CN104064611B CN201410313465.2A CN201410313465A CN104064611B CN 104064611 B CN104064611 B CN 104064611B CN 201410313465 A CN201410313465 A CN 201410313465A CN 104064611 B CN104064611 B CN 104064611B
Authority
CN
China
Prior art keywords
district
nano structure
micro
micro nano
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410313465.2A
Other languages
English (en)
Other versions
CN104064611A (zh
Inventor
李伟
吴程呈
渠叶君
钟豪
蒋亚东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410313465.2A priority Critical patent/CN104064611B/zh
Publication of CN104064611A publication Critical patent/CN104064611A/zh
Application granted granted Critical
Publication of CN104064611B publication Critical patent/CN104064611B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于微纳米结构的Si‑APD光电探测器及其制备方法,属于光电探测技术领域,其包括P型Si衬底(1)、位于P型Si衬底(1)中心上方的微纳米结构硅层N+区(2)、位于P型Si衬底(1)两侧上方的保护环区即N区(3)、设置在微纳米结构硅层N+区(2)和N区(3)上表面的上端电极(4)以及位于P型Si衬底(1)下表面的下端电极(5);所述微纳米结构硅层N+区(2)的深度小于保护环区即N区(3)的深度。本发明解决了传统Si‑APD光电探测器响应度较低、无法响应近红外波段等问题,可使响应波段扩展到近红外波段,响应度更高。

Description

基于微纳米结构的Si-APD光电探测器及其制备方法
技术领域
本发明属于光电探测技术领域,涉及光电探测器件结构,尤其涉及一种基于微纳米结构的Si-APD光电探测器及其制备方法。
背景技术
光电探测器作为光纤通讯系统、红外成像系统、激光告警系统和激光测距系统等的重要组成部分,在民用和军用方面均得到了广泛的应用。APD是一种具有内增益能力的光探测器,具有很高的灵敏度,被广泛地应用在超高速光通信、信号处理、测量和传感系统中。APD是现代高比特速率光通信系统广泛使用的光电探测器,以其体积小、测量波段范围宽以及在近红外波段有较高灵敏度等一系列的优点,已大量用于弱光场测量、光子计数等相关领域中。由于APD光电探测器具有较高的内增益和探测灵敏度比PIN型光二极管高的特点,因此是目前1.06μm激光测距机中最常用的优良器件。
雪崩光电二极管(APD)是一种应用广泛的光电探测器件,由于具有较高的内部增益,因而器件的灵敏度和响应度较高,主要用于弱光条件下的通信、航空、航天、航海以及医疗、安防等工业和民用领域。
传统硅基雪崩光电二极管(Si-APD)在200 nm~900 nm波长范围内的响应度较高,但硅材料的禁带宽度较大(1.12 eV),因而传统Si-APD对大于1000 nm波长光的响应度很低,一般不能用于红外波段的光探测。其它半导体材料如Ge、InGaAs等虽然可以探测红外波段的光,但这些材料的价格昂贵、热力学性能较差、信噪比低,而且器件制备工艺与现有成熟的硅工艺不兼容。Si材料具有高的碰撞电离系数比,用于光探测器时可使器件的信噪比得到提高,且工艺成熟。因而,通过某些特定的方法实现硅材料对近红外波段的吸收,扩展硅基光探测器的探测范围,意义十分重大。
微纳米结构硅是一种在晶体硅表面通过微纳米加工技术得到的具有微纳米尺度的表面硅材料,具有排列规整、分布均匀和可加工面积大等优点,其对可见光及近红外光的吸收率可达到90%以上,且由于在加工过程中可能引入的缺陷态和杂质能级等,使其光谱吸收范围相较于传统硅材料可向近红外方向拓展。
目前,能在硅晶体表面实现微纳米结构的加工方法主要有:极紫外光刻技术、电子束光刻技术、X 射线光刻、纳米压印刻蚀技术等。其中,纳米压印刻蚀方法是国内外正在研发和推广的新一代微纳米结构材料刻蚀新工艺,其基本原理是将事先制作好的微纳米结构模版通过专用压机作用于一层薄的聚合物压印胶上,这层具有良好流变性的压印胶可通过热作用或紫外光固化,经良好的脱模后在压印胶上形成与模版1:1大小的图案,从而替代传统的“光刻”工艺。该工艺通过压印胶的模压变形与固化来实现图像的转移,图像最小尺度极限主要依赖于模板的加工精度,而后者可借助最新的微纳米刻蚀技术,实现纳米量级的加工,突破了传统光刻的工艺极限,降低了对特殊曝光束源、高精度聚焦系统、极短波长透镜系统以及抗蚀剂分辨率受光波场效应的限制和要求,具有工艺重复性好、生产效率高和图形转移精度高等优点,适合产业化批量生产。现有的纳米压印刻蚀技术主要有热压印刻蚀、紫外纳米压印刻蚀和微接触纳米压印刻蚀等。
发明内容
针对上述现有技术,利用微纳米压印刻蚀工艺,本发明的目在于提供一种响应度高、响应速度快和响应光谱波段宽的基于微纳米结构的Si-APD光电探测器及制备方法。
为了达到上述目的,本发明采用如下技术方案:
一种基于微纳米结构的Si-APD光电探测器,其特征在于,包括P型Si衬底1、位于P型Si衬底1中心上方的微纳米结构硅层N+区2、位于P型Si衬底1两侧上方的保护环区即N区3、设置在微纳米结构硅层N+区2和N区3上表面的上端电极4以及位于P型Si衬底1下表面的下端电极5;所述微纳米结构硅层N+区(2)的深度小于保护环区即N区(3)的深度。
在本发明中,所述微纳米结构硅层N+区是通过磷(P)重扩散或离子注入形成的N+区,也是进行纳米压印刻蚀得到的表面呈微纳米尺度阵列化分布的微结构硅材料。
进一步地,磷扩散N区呈环形状,为环形N区。
在本发明中,微纳米结构硅层N+区呈阵列化排布,其典型尺寸为:硅微纳米柱或微纳米孔直径60~90 nm、高度或深度300~500 nm、周期100~300 nm。
所述N区3是通过磷扩散或者离子注入制备得到的,其掺杂浓度范围为1×1014 ion/cm3~2×1017 ion/cm3
在本发明中,所述上端电极4和下端电极5为金属薄膜电极,金属材料为铝(Al)、金(Au)或金铬合金(Au/Cr)。
针对上述基于微纳米结构的Si-APD光电探测器的制备方法,其特征在于,包括如下步骤:
预备表面清洁、干燥的硅单晶片衬底材料;
将硅单晶片研磨抛光至厚度为350 μm,并在衬底正面氧化生长SiO2膜层;
在SiO2膜层表面旋涂上一层光刻胶,并利用掩模图形对光刻胶图形化,在SiO2膜层上光刻出N区图形区域待刻蚀;
对已经图形化的表面区域进行刻蚀,去除未被保护的SiO2膜层形成N区保护环磷扩散窗口;
对刻蚀后的N区磷扩散窗口进行磷扩散或离子注入形成N区,掺杂浓度范围为1×1014 ion/cm3~2×1017 ion/cm3,结深为1.5 μm~3.5 μm,接着去除表面光刻胶;
在SiO2膜层表面旋涂上一层光刻胶,并利用掩模图形对光刻胶图形化,在SiO2膜层上光刻出N+区图形区域待刻蚀;
对已经图形化的表面区域进行刻蚀,去除未被保护的SiO2膜层形成N+区窗口;
对N+区窗口进行磷扩散或离子注入形成N+区,掺杂浓度范围为>5×1017 ion/cm3,结深为0.2 μm~3.0 μm,接着去除表面光刻胶;
制成的硅器件进行清洗并烘干,并在N+区上均匀涂敷一层压印胶;
在真空下施加一定压力,使纳米压印模板与压印胶充分接触,填充完全后通过照射紫外光或加热使压印胶固化成形;
脱模,去除残胶层;
采用深槽反应离子刻蚀的方法,以上述固化后的压印胶为掩膜,对其下面的硅材料衬底进行各向异性刻蚀,得到相应的图形,从而形成微纳米结构硅层N+区;
上端电极和下端电极制备。
本发明的基本工作原理是:被探测目标物质所激发出的光辐射或各种反射激光被新型Si-APD光电探测器的光敏面所吸收,产生空穴电子对;空穴电子对在高电场作用下高速运动,通过碰撞电离效应,产生数量是首次空穴电子对几十倍的二次、三次新空穴电子对,从而产生很大的光信号电流。
本发明同现有技术相比,其有效果表现在:
一、由于探测器光敏面具有微纳米尺度的表面微结构,使得该器件具有较高的响应度和近红外光谱响应的特征;并且,纳米压印刻蚀技术应用于硅晶体材料表面微纳结构加工,具有微纳米结构分布均匀性好、加工重复性好以及可用于大规模生产等优势。
二、由于微纳米结构硅具有宽光谱吸收和低反射率等特征,以及探测器独特的保护环区即环形N区的存在,使得这种新型Si-APD光电探测器具有近红外光谱延伸的特征以及较高的响应度,特别能在700 nm~1200 nm波长范围内提高器件的响应度和量子效率。
三、本发明所涉及的基于微纳米结构的Si-APD光电探测器所用材料均以硅为基本材料,易于与现有硅微电子标准工艺兼容,且制备过程简单,效率高。
附图说明
图1是本发明的剖面结构示意图。
图2是本发明的俯视平面结构示意图。
附图标记:1是P型Si衬底、2是微纳米结构硅层N+区、3是N区、4是上端电极、5是下端电极。
具体实施方式
下面将结合附图及具体实施方式对本发明作进一步的描述。
如图1所示,包括P型Si衬底1、微纳米结构硅层N+区2、N区3、上端电极4及下端电极5。P型Si衬底1可采用高阻Si单晶片;N区3可采用磷扩散或离子注入;微纳米结构硅层N+区2可通过在磷扩散掺杂或离子注入形成 N+区上进行纳米压印刻蚀得到。这样制作的新型Si-APD光电探测器具有微纳米结构硅层和保护环,从而具有高响应度和近红外宽光谱响应的特性。
一种基于微纳米结构的Si-APD光电探测器,具体包括如下步骤:
预备表面清洁、干燥的硅单晶片衬底材料;
将硅单晶片研磨抛光至厚度为350 μm,并在衬底正面氧化生长SiO2膜层;
在SiO2膜层表面旋涂上一层光刻胶,并利用掩模图形对光刻胶图形化,在SiO2膜层上光刻出N区图形区域待刻蚀;
对已经图形化的表面区域进行刻蚀,去除未被保护的SiO2膜层形成N区保护环磷扩散窗口;
对刻蚀后的N区磷扩散窗口进行磷扩散或离子注入形成N区,掺杂浓度范围为1×1014 ion/cm3~2×1017 ion/cm3,结深为1.5 μm~3.5 μm,接着去除表面光刻胶;
在SiO2膜层表面旋涂上一层光刻胶,并利用掩模图形对光刻胶图形化,在SiO2膜层上光刻出N+区图形区域待刻蚀;
对已经图形化的表面区域进行刻蚀,去除未被保护的SiO2膜层形成N+区窗口;
对N+区窗口进行磷扩散或离子注入形成N+区,掺杂浓度范围为>5×1017 ion/cm3,结深为0.2 μm~3.0 μm,接着去除表面光刻胶;
制成的硅器件进行清洗并烘干,并在N+区上均匀涂敷一层压印胶;
在真空下施加一定压力,使纳米压印模板与压印胶充分接触,填充完全后通过照射紫外光或加热使压印胶固化成形;
脱模,去除残胶层;
采用深槽反应离子刻蚀的方法,以上述固化后的压印胶为掩膜,对其下面的硅材料衬底进行各向异性刻蚀,得到相应的图形,从而形成微纳米结构硅层N+区;
上端电极和下端电极制备。
其中,在微纳米结构硅层N+区2的制备中,微纳米结构硅呈阵列化排布,其典型尺寸为:硅微纳米柱或微纳米孔直径60~90 nm、高度(或深度)300~500 nm、周期为100~300nm。
其中,金属电极可选材料有铝Al、金Au、铬/金Cr/Au;金属沉积方法可为LPCVD、MOCVD、磁控溅射;金属电极厚度为50 nm~150 nm。该种以微纳米结构硅为光敏层的背照式Si-APD光电探测器的响应波长范围为400 nm~1200 nm,响应度范围为20 A/W~100 A/W。
以上仅是本发明众多具体应用范围中的代表性实施例,对本发明的保护范围不构成任何限制。凡采用变换或是等效替换而形成的技术方案,均落在本发明权利保护范围之内。

Claims (6)

1.一种基于微纳米结构的Si-APD光电探测器的制备方法,Si-APD光电探测器包括P型Si衬底(1)、位于P型Si衬底(1)中心上方的微纳米结构硅层N+区(2)、位于P型Si衬底(1)两侧上方的保护环区即N区(3)、设置在微纳米结构硅层N+区(2)和N区(3)上表面的上端电极(4)以及位于P型Si衬底(1)下表面的下端电极(5);所述微纳米结构硅层N+区(2)的深度小于保护环区即N区(3)的深度;
其特征在于,包括如下步骤:
预备表面清洁、干燥的硅单晶片衬底材料;
将硅单晶片研磨抛光至厚度为350 μm,并在衬底正面氧化生长SiO2膜层;
在SiO2膜层表面旋涂上一层光刻胶,并利用掩模图形对光刻胶图形化,在SiO2膜层上光刻出N区图形区域待刻蚀;
对已经图形化的表面区域进行刻蚀,去除未被保护的SiO2膜层形成N区保护环磷扩散窗口;
对刻蚀后的N区磷扩散窗口进行磷扩散或离子注入形成N区,掺杂浓度范围为1×1014ion/cm3~2×1017 ion/cm3,结深为1.5 μm~3.5 μm,接着去除表面光刻胶;
在SiO2膜层表面旋涂上一层光刻胶,并利用掩模图形对光刻胶图形化,在SiO2膜层上光刻出N+区图形区域待刻蚀;
对已经图形化的表面区域进行刻蚀,去除未被保护的SiO2膜层形成N+区窗口;
对N+区窗口进行磷扩散或离子注入形成N+区,掺杂浓度范围为>5×1017 ion/cm3,结深为0.2 μm~3.0 μm,接着去除表面光刻胶;
制成的硅器件进行清洗并烘干,并在N+区上均匀涂敷一层压印胶;
在真空下施加一定压力,使纳米压印模板与压印胶充分接触,填充完全后通过照射紫外光或加热使压印胶固化成形;
脱模,去除残胶层;
采用深槽反应离子刻蚀的方法,以上述固化后的压印胶为掩膜,对其下面的硅材料衬底进行各向异性刻蚀,得到相应的图形,从而形成微纳米结构硅层N+区;
上端电极和下端电极制备。
2.根据权利要求1所述的一种基于微纳米结构的Si-APD光电探测器的制备方法,其特征在于,所述微纳米结构硅层N+区是通过磷重扩散或离子注入形成的N+区,也是通过纳米压印刻蚀得到的表面呈微纳米尺度阵列化分布的微结构硅材料。
3.根据权利要求1所述的一种基于微纳米结构的Si-APD光电探测器的制备方法,其特征在于,所述磷扩散或离子注入N区呈环形状,为环形N区。
4.根据权利要求1或2所述的一种基于微纳米结构的Si-APD光电探测器的制备方法,其特征在于,微纳米结构硅层N+区呈阵列化排布,其典型尺寸为:硅微纳米柱或微纳米孔直径60~90 nm、高度或深度300~500 nm、周期100~300 nm。
5.根据权利要求1或3所述的一种基于微纳米结构的Si-APD光电探测器的制备方法,其特征在于,所述N区(3)是通过磷扩散或者离子注入制备得到的,其掺杂浓度范围为1×1014 ion/cm3~2×1017 ion/cm3
6.根据权利要求1所述的一种基于微纳米结构的Si-APD光电探测器的制备方法,其特征在于,所述上端电极(4)和下端电极(5)为金属薄膜电极,金属材料为铝、金或金铬合金。
CN201410313465.2A 2014-07-03 2014-07-03 基于微纳米结构的Si-APD光电探测器及其制备方法 Expired - Fee Related CN104064611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410313465.2A CN104064611B (zh) 2014-07-03 2014-07-03 基于微纳米结构的Si-APD光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410313465.2A CN104064611B (zh) 2014-07-03 2014-07-03 基于微纳米结构的Si-APD光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN104064611A CN104064611A (zh) 2014-09-24
CN104064611B true CN104064611B (zh) 2016-09-14

Family

ID=51552237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410313465.2A Expired - Fee Related CN104064611B (zh) 2014-07-03 2014-07-03 基于微纳米结构的Si-APD光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN104064611B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185845A (zh) * 2015-08-17 2015-12-23 电子科技大学 一种在P层和N层引入微结构硅的Si-PIN光电探测器及其制备方法
CN105932091B (zh) * 2016-07-13 2017-05-17 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
IT201600088211A1 (it) * 2016-08-30 2018-03-02 St Microelectronics Srl Dispositivo elettronico a giunzione con ridotto tempo di recupero per applicazioni soggette al fenomeno del ricircolo della corrente e relativo metodo di fabbricazione
CN108878544B (zh) * 2017-05-15 2021-01-22 上海新微科技服务有限公司 硅基光电探测器及其制作方法
CN108281505A (zh) * 2018-01-29 2018-07-13 中国电子科技集团公司第四十四研究所 基于硅微结构的1064nm增强型四象限光电探测器
CN108493292B (zh) * 2018-04-12 2020-06-09 大连理工大学 一种基于碳化硅单晶的x射线探测器及其制备方法
CN109638024B (zh) * 2018-12-18 2024-06-18 暨南大学 一种可见光短波段硅基雪崩光电二极管阵列及其制备方法
CN114426255A (zh) * 2020-10-28 2022-05-03 中国科学技术大学 一种微纳米结构定点缺陷掺杂的方法及nv色心传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176470A (zh) * 2011-03-26 2011-09-07 电子科技大学 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
CN103137773A (zh) * 2013-03-12 2013-06-05 电子科技大学 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN103400887A (zh) * 2013-08-08 2013-11-20 电子科技大学 一种背照式Si-PIN光电探测器及其制备方法
CN103746041A (zh) * 2014-01-24 2014-04-23 哈尔滨工业大学 一种硅基apd红外敏感增强的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683397B2 (en) * 2006-07-20 2010-03-23 Intel Corporation Semi-planar avalanche photodiode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176470A (zh) * 2011-03-26 2011-09-07 电子科技大学 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
CN103137773A (zh) * 2013-03-12 2013-06-05 电子科技大学 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN103400887A (zh) * 2013-08-08 2013-11-20 电子科技大学 一种背照式Si-PIN光电探测器及其制备方法
CN103746041A (zh) * 2014-01-24 2014-04-23 哈尔滨工业大学 一种硅基apd红外敏感增强的方法

Also Published As

Publication number Publication date
CN104064611A (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
CN104064611B (zh) 基于微纳米结构的Si-APD光电探测器及其制备方法
CN104064610B (zh) 以微纳米结构硅为光敏层的正照式Si‑PIN光电探测器及其制备方法
CN103400887B (zh) 一种背照式Si-PIN光电探测器的制备方法
Chen et al. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting
CN103137773B (zh) 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN106409938A (zh) 一种基于锥形超表面结构的光伏型光电探测器及其制备方法
CN103094374B (zh) 太阳能电池
CN106206831A (zh) 基于飞秒激光烧蚀红外增强Si‑PIN探测器及其制备方法
CN208705505U (zh) 一种集成有聚光和滤光功能的一体式微透镜
CN106098817A (zh) 光电子器件、半导体基板及其制作方法
CN110398794B (zh) 一种工作波长可定量调控的硅基吸波器及其制备方法
CN105115599A (zh) 一种基于MEMS微结构硅的Si-PIN四象限光电探测器及其制备方法
CN103779443B (zh) 超导纳米线单光子探测器的制备方法
Zhong et al. Enhanced near-infrared absorber: two-step fabricated structured black silicon and its device application
Wang et al. Single-layer nanowire polarizer integrated with photodetector and its application for polarization navigation
CN108321242A (zh) 基于石墨烯和耦合光栅的光探测器及其制作方法
CN106129168A (zh) 基于金属诱导刻蚀红外增强Si‑PIN探测器及其制备方法
CN105185845A (zh) 一种在P层和N层引入微结构硅的Si-PIN光电探测器及其制备方法
US9377542B1 (en) Radiation sensor having photonic crystal structure and fabrication method thereof
CN105742176A (zh) 蓝宝石窗片上制备菲涅尔透镜的方法及其应用
CN105830224B (zh) 光伏电池、特别是太阳能电池、以及制造光伏电池的方法
CN105891870B (zh) 利用表面等离激元调控的方向性发射闪烁体
CN110429156A (zh) 一种基于分形纳米线表面结构的Si-APD光电探测器及制备方法
CN111964794B (zh) 高吸收纳米结构热电堆及其制作方法
CN105425266A (zh) 一种光子晶体塑料闪烁体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160914

Termination date: 20190703

CF01 Termination of patent right due to non-payment of annual fee