CN104052325B - 大范围电压失真最小化的级联型多电平逆变器的设计方法 - Google Patents

大范围电压失真最小化的级联型多电平逆变器的设计方法 Download PDF

Info

Publication number
CN104052325B
CN104052325B CN201410245719.1A CN201410245719A CN104052325B CN 104052325 B CN104052325 B CN 104052325B CN 201410245719 A CN201410245719 A CN 201410245719A CN 104052325 B CN104052325 B CN 104052325B
Authority
CN
China
Prior art keywords
modulation
inversion module
angle
index
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410245719.1A
Other languages
English (en)
Other versions
CN104052325A (zh
Inventor
李国杰
杭丽君
冯琳
韩蓓
汪可友
江秀臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201410245719.1A priority Critical patent/CN104052325B/zh
Publication of CN104052325A publication Critical patent/CN104052325A/zh
Priority to US14/569,609 priority patent/US9654025B2/en
Application granted granted Critical
Publication of CN104052325B publication Critical patent/CN104052325B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/373Design optimisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Inverter Devices (AREA)
  • Architecture (AREA)

Abstract

一种大范围电压失真最小化的级联型多电平逆变器的设计方法,该方法基于KKT(Karush-Kuhn-Tucker)条件法,大大简化了导通角的计算量、计算过程简单,易于实现在线计算,同时基波电压适应范围宽,实现了大电压范围下的级联型逆变器最小化总谐波,改善了并网点电压的电能质量。

Description

大范围电压失真最小化的级联型多电平逆变器的设计方法
技术领域
本发明涉及电力电子技术领域,特别是一种大范围电压失真最小化的级联型多电平逆变器的设计方法。
背景技术
随着电力电子技术的迅速发展,逆变器的应用越来越广泛。基于脉宽调制(pulsewidthmodulation,PWM)技术的级联型逆变器在中/高功率等级的系统广受欢迎。根据开关频率,可以将级联型逆变器的调制分为高频调制和低频调制。常见的高频调制有正弦载波调制(sinusoidalpulsewidthmodulation,SPWM)、特定谐波消除脉宽调制(selectedharmoniceliminationPWM,SHEPWM)、空间电压矢量调制(spacevectorpulsewidthmodulation,SVPWM)等。相对于高频调制而言,低频阶梯调制能减小开关损耗和器件的开关应力,延长其使用寿命,提高系统效率。
在阶梯调制中,各电平导通角的计算是一个研究热点。导通角计算方法包括选择谐波消去法(selectedharmonicelimination,简称为SHE)、等面积法、最小面积差法以及最小总谐波失真法(totalharmonicdistortion,THD)。SHE法的目的是消去电压输出波形中的低次谐波,由于需要解多元非线性超越方程组,它的计算非常复杂。等面积法要求在每一个特定的时间区间内,参考正弦电压和阶梯调制波积分相同,但是它没有优化谐波失真,可能带来电压基频幅值失真。最小面积差法的主要目标是在每一个电平上,参考正弦电压和阶梯电压之差的积分最小,它同样会引入电压基波幅值失真。
大量逆变器的并网,将给系统带来谐波问题。总谐波失真是衡量逆变器输出波形质量的重要参数,研究最小化失真的级联型多电平逆变器非常迫切。但是,已有的级联逆变器输出电压畸变大,对并网点的电能质量造成了一定的影响。
发明内容
针对上述问题,本发明的目的是提供一种大范围电压失真最小化的级联型多电平逆变器的设计方法,该方法基于KKT(Karush-Kuhn-Tucker)条件法,大大简化了导通角的计算量、计算过程简单,易于实现在线计算,同时基波电压适应范围宽,实现了大电压范围下的级联型逆变器最小化总谐波,改善了并网点电压的电能质量。
本发明的技术解决方案如下:
一种大范围电压失真最小化的级联型多电平逆变器的设计方法,所述的级联型多电平逆变器由N个逆变模块、N个直流电压源和一个控制器组成,每个逆变模块由四个全控开关器件及反并联二极管构成的H桥构成;所述逆变模块的直流母线正极与对应的直流电压源的正极相连,直流母线负极与对应的直流电压源的负极相连,所述逆变模块的导通角控制端与控制器对应的导通角信号控制端相连,所述逆变模块的交流输出端与所述的控制器对应的交流电压信号输入端相连;所述控制器的输出的导通角信号控制端与所述的对应的逆变模块的导通角的控制端相连,其输入的交流电压信号输入端与对应的逆变模块的交流输出端相连,其特点在于:所述的设计方法包括如下步骤:
1)按公式(12)计算调制系数m的下界点Mmin(S),须满足λ≥2S-1,
M m i n ( S ) = 4 π Σ j = 1 S 1 - ( 2 j - 1 2 S - 1 ) 2 - - - ( 12 )
其中,S为阶梯级数,S=1,2,...,H,H为级联型多电平逆变器的最高电平数,j为电平数;
2)选择阶梯级数S0,所述的调制系数m∈(Mmin(S0),Mmin(S0+1)],当调制系数m处于区间(0,Mmin(H+1)]的情形,S0满足当调制系数m在区间内时,则选择S0=H,其中j为电平数,j=0,1,2,…,H,λ为参数;
3)通过公式(11)计算参数λ:
Σ j = 1 s 0 1 - ( 2 j - 1 λ ) 2 = π 4 m - - - ( 11 )
4)按公式(10)计算各导通角θj的正弦,其中j=1,2,…,H,如果θj的正弦超过了1,令其为1:
sinθ i * = 2 j - 1 λ , j ∈ J ‾ ( θ * ) - - - ( 10 )
5)根据反三角函数确定各级电平的导通角θj,j=1,2,...,H;
6)由式子H=2N-1,确定所述的逆变模块和直流电压源的数量N。
本发明的原理如下:
本发明大范围电压失真最小化的级联型多电平逆变器的电压总谐波失真由公式(1)表示,在特定的调制系数m下,在总谐波失真(totalharmonicdistortion,THD)最小的条件下求得一组导通角θk,k=1,2,...,2N-1,;
T H D = Σ n = 3 + ∞ U n 2 U 1 2 = Σ n = 1 + ∞ U n 2 - U 1 2 U 1 2 2 m 2 [ F 2 - 2 π Σ k = 1 F ( 2 k - 1 ) θ k ] - 1 - - - ( 1 )
式中,m为调制系数,Un为级联型多电平逆变器输出电压的n次谐波分量,F是正半周最高电平数量,θk是输出电压从(k-1)Vbs阶跃至kVbs的导通角,Vbs为最小直流电压源电压值;
设Vbs=1,级联型多电平逆变器的最高电平数H=2N-1;它等价于以下最优化问题:
min f ( θ ) = - Σ k = 1 H ( 2 k - 1 ) θ k - - - ( 2 )
s u b j e c t t o h ( θ ) = m π 4 - Σ k = 1 H [ c o s ( θ k ) ] = 0 - - - ( 3 )
g0(θ)=-θ1≤0(4)
gj(θ)=θjj+1≤0,j=1,2,...,H-1(5)
g H ( θ ) = θ H - π 2 ≤ 0 - - - ( 6 )
其中θ=[θ1θ2...θH]T,f(θ),g(θ)和h(θ)都是关于θ的连续可导函数;
设θ*是f(θ)的一个局部极值点,则存在λ以及μj≥0(j=0,1,2,...,H)满足:
▿ f ( θ * ) + λ ▿ h ( θ * ) + Σ j = 0 H μ j ▿ g j ( θ * ) = 0 - - - ( 7 )
μjgj*)=0,j∈J={0,1,...,H}(8)
对于一个特定的解θ*,定义有效子集J(θ*)={j∈J,gj*)=0};
由(7)式得:
- ( 2 j - 1 ) + λsinθ j * - μ j - 1 + μ j = 0 - - - ( 9 )
其中,θ12,…,θS都非零并且彼此不同,对于任意的j>S,j∈J(θ*)且gj*)=0,则 θ S + 1 * = θ S + 2 * = ... = θ H * = π 2 , S为阶梯的级数;
讨论非有效子集由(5)式得:
sinθ j * = 2 j - 1 λ , j ∈ J ‾ ( θ * ) - - - ( 10 )
在h(θ)的约束条件下,有
Σ j = 1 s 1 - ( 2 j - 1 λ ) 2 = π 4 m - - - ( 11 )
上述式子(10)即为本申请提出的一种大范围电压失真最小化的级联型多电平逆变器的控制器最小化总谐波的导通角的设计的依据。
与现有技术相比,本发明的特点如下:
1.本发明大范围电压失真最小化的级联型多电平逆变器的设计方法是基于(Karush-Kuhn-Tucker,KKT)条件最优化方法的阶梯调制算法,经过严格的数学推导,得到相应的导通角计算方法,从而得到了总谐波的解析表达方法。所提出的阶梯调制策略能够在任意调制系数下最小化阶梯波输出的总谐波失真,它具有严格的数学推导,算法简单、适应电压范围宽,为在线计算导通角、控制级联型多电平逆变器的总谐波提供了科学的依据,所提出的大范围电压失真最小化的级联型多电平逆变器具有在基波电压大范围下谐波都很小的特点。
2.计算简单,大大简化了计算工作量;
3.适应基波电压范围宽;
4.改善了并网点电能质量。
附图说明
图1是本发明一种大范围电压失真最小化的级联型多电平逆变器示意图。
图2是本发明的控制器的计算方法步骤。
图3调制系数m=5时的输出电压及其各次谐波含量。
图4调制系数m=15时的输出电压及其各次谐波含量。
图5总谐波失真随调制系数变化曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
先请参阅图1,图1是本发明一种大范围电压失真最小化的级联型多电平逆变器的单相示意图,三相由独立的3个单相构成。图2为一种大范围电压失真最小化的级联型多电平逆变器的控制器导通角计算步骤。
计算方法具体实现如下:
对于特定的S,有对应的调制系数的区间M(S)使得式(10)和(11)成立。设其下界为Mmin(S),上界为Mmax(S)。要使(11)的等号左侧为一实数,须满足λ≥2S-1。所以M(S)的下界为
M m i n ( S ) = 4 π Σ j = 1 S 1 - ( 2 j - 1 2 S - 1 ) 2 - - - ( 12 )
当M(S)达到最大值时,λ→+∞。即
M m a x ( S ) = 4 π S - - - ( 13 )
当λ=2S-1时,显然则gS*)=0,S∈J(θ*),与上文中的假设矛盾。所以M(S)不能完全达到它的下界。而当λ→+∞时,与θ12,…,θS非零相矛盾,所以M(S)不包含它的上界。因此,与S相对应的调制系数的区间M(S)为M(S)=(Mmin(S),Mmax(S))。当N=4时,H=2N-1=15,各级S所对应的Mmin(S)和Mmax(S)如表1所示。
表1Mmin(S)和Mmax(S)
S Mmin(S) Mmax(S)
1 0 1.2732
2 1.2004 2.5465
3 2.2661 3.8197
4 3.3016 5.0930
5 4.3247 6.3662
6 5.3413 7.6394
7 6.3539 8.9127
8 7.3639 10.1859
9 8.3721 11.4592
10 9.3789 12.7324
11 10.3848 14.0056
12 11.3899 15.2789
13 12.3944 16.5521
14 13.3984 17.82544 -->
15 14.4019 19.0986
16 15.4051 20.3718
对某个特定的调制系数m,满足m∈M(S')的任意S'均是一个合理的阶梯级数的选择。我们可以求得所有的满足m∈M(S')的S',并通过式(12)求得与m和S'对应的λ,将λ代入(10)得到一组局部最优解{θ*}。这一组局部最优解是全局最优解的备选解。
总谐波失真最小化的导通角计算方法的具体步骤如下:
1)根据(12)计算调制系数的分界点Mmin(S),其中S=1,2,...,H。
2)选择合适的阶梯级数S0,此时调制系数m∈(Mmin(S0),Mmin(S0+1)]。
3)通过(11)计算参数λ。
4)根据(10)计算各导通角的正弦,如果超过了1,令其为1。
5)根据反三角函数求得各级电平的导通角θk,k=1,2,...,H。
需要指出的是,上述算法只适用于调制系数处于区间(0,Mmin(H+1)]的情形。当调制系数在区间内时,只能选择S=H来进行求解。我们将此区间定义为阶梯调制的过调制区间。
根据所提出的解析计算公式(10),可计算出对应与调制系数的级联多电平逆变器输出电压各次谐波含量,图3为调制系数m=5时的级联多电平逆变器输出电压及其各次谐波含量,图4为调制系数m=15时的输出电压及其各次谐波含量,图5为级联多电平逆变器输出电压总谐波失真随调制系数变化曲线。因此,本发明具有计算简单、准确的级联多电平逆变器输出电压THD的解析公式,实现在线计算导通角。

Claims (1)

1.一种大范围电压失真最小化的级联型多电平逆变器的设计方法,所述的级联型多电平逆变器由N个逆变模块、N个直流电压源和一个控制器组成,每个逆变模块由四个全控开关器件及反并联二极管构成的H桥构成;所述逆变模块的直流母线正极与对应的直流电压源的正极相连,直流母线负极与对应的直流电压源的负极相连,所述逆变模块的导通角控制端与控制器对应的导通角信号控制端相连,所述逆变模块的交流输出端与所述的控制器对应的交流电压信号输入端相连;所述控制器的输出的导通角信号控制端与所述的对应的逆变模块的导通角的控制端相连,其输入的交流电压信号输入端与对应的逆变模块的交流输出端相连,其特征在于:所述的设计方法包括如下步骤:
1)按公式(12)计算调制系数m的下界点Mmin(S),须满足λ≥2S-1,
M m i n ( S ) = 4 π Σ j = 1 S 1 - ( 2 j - 1 2 S - 1 ) 2 - - - ( 12 )
其中,S为阶梯级数,S=1,2,...,H,H为级联型多电平逆变器的最高电平数,j为电平数;
2)选择阶梯级数S0,所述的调制系数m∈(Mmin(S0),Mmin(S0+1)],当调制系数m处于区间(0,Mmin(H+1)]的情形,S0满足当调制系数m在区间内时,则选择S0=H,其中j为电平数,j=0,1,2,…,H,λ为参数;
3)通过公式(11)计算参数λ:
Σ j = 1 s 0 1 - ( 2 j - 1 λ ) 2 = π 4 m - - - ( 11 )
4)按公式(10)计算各导通角θj的正弦,其中j=1,2,…,H,如果θj的正弦超过了1,令其为1:
sinθ j * = 2 j - 1 λ , j ∈ J ‾ ( θ * ) - - - ( 10 )
J(θ*)是θ*的有效子集,是θ*的有效子集的补集;
5)根据反三角函数确定各级电平的导通角θj,j=1,2,...,H;
6)由式子H=2N-1,确定所述的逆变模块和直流电压源的数量N。
CN201410245719.1A 2014-06-05 2014-06-05 大范围电压失真最小化的级联型多电平逆变器的设计方法 Active CN104052325B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410245719.1A CN104052325B (zh) 2014-06-05 2014-06-05 大范围电压失真最小化的级联型多电平逆变器的设计方法
US14/569,609 US9654025B2 (en) 2014-06-05 2014-12-12 Method for designing cascaded multi-level inverter with minimized large-scale voltage distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410245719.1A CN104052325B (zh) 2014-06-05 2014-06-05 大范围电压失真最小化的级联型多电平逆变器的设计方法

Publications (2)

Publication Number Publication Date
CN104052325A CN104052325A (zh) 2014-09-17
CN104052325B true CN104052325B (zh) 2016-07-06

Family

ID=51504793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410245719.1A Active CN104052325B (zh) 2014-06-05 2014-06-05 大范围电压失真最小化的级联型多电平逆变器的设计方法

Country Status (2)

Country Link
US (1) US9654025B2 (zh)
CN (1) CN104052325B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115001298A (zh) 2016-01-14 2022-09-02 捷普有限公司 低压低频多电平电源转换器
CN105790302B9 (zh) * 2016-04-11 2018-08-07 阳光电源股份有限公司 一种级联型光伏并网逆变器及其控制方法和控制装置
CN105720857B (zh) * 2016-04-22 2019-12-03 阳光电源股份有限公司 一种级联h桥逆变器及其故障处理方法
CN106253334B (zh) * 2016-08-19 2018-12-28 阳光电源股份有限公司 一种级联型光伏并网逆变器及其控制方法和控制装置
CN108988397B (zh) * 2017-05-31 2021-10-22 许继电气股份有限公司 一种储能变流器并联运行功率分配控制方法
CN107733403B (zh) * 2017-10-26 2021-05-11 中国人民解放军国防科技大学第六十三研究所 一种特定谐波消除多电平射频脉宽调制方法及调制器
CN110535367B (zh) * 2019-08-26 2021-03-26 南京理工大学 一种储能型级联光伏单相离网逆变器的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697271B2 (en) * 2000-08-16 2004-02-24 Northrop Grumman Corporation Cascaded multi-level H-bridge drive
CN102082523A (zh) * 2009-11-26 2011-06-01 广东易事特电源股份有限公司 混合控制级联多电平逆变器的控制方法和多电平逆变器
CN102157940A (zh) * 2011-03-28 2011-08-17 荣信电力电子股份有限公司 一种用于清除电力系统电压谐波的装置
CN201994667U (zh) * 2011-03-28 2011-09-28 荣信电力电子股份有限公司 一种用于清除电力系统电压谐波的装置
CN102723889A (zh) * 2012-07-03 2012-10-10 华为技术有限公司 逆变器及其pwm调制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411530B2 (en) * 2000-04-06 2002-06-25 Robicon Corporation Drive and power supply with phase shifted carriers
JP2006006035A (ja) * 2004-06-17 2006-01-05 Central Japan Railway Co インバータ制御方法
KR100825323B1 (ko) * 2007-03-05 2008-04-28 엘에스산전 주식회사 단위 셀 역률 동일 제어 장치를 가지는 캐스케이드 방식을이용한 멀티레벨 인버터 및 그 제어방법
US9685886B2 (en) * 2011-08-31 2017-06-20 Optistring Technologies Ab Photovoltaic DC/AC inverter with cascaded H-bridge converters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697271B2 (en) * 2000-08-16 2004-02-24 Northrop Grumman Corporation Cascaded multi-level H-bridge drive
CN102082523A (zh) * 2009-11-26 2011-06-01 广东易事特电源股份有限公司 混合控制级联多电平逆变器的控制方法和多电平逆变器
CN102157940A (zh) * 2011-03-28 2011-08-17 荣信电力电子股份有限公司 一种用于清除电力系统电压谐波的装置
CN201994667U (zh) * 2011-03-28 2011-09-28 荣信电力电子股份有限公司 一种用于清除电力系统电压谐波的装置
CN102723889A (zh) * 2012-07-03 2012-10-10 华为技术有限公司 逆变器及其pwm调制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Real-Time Calculation of Switching Angles Minimizing THD for Multilevel Inverters With Step Modulation;Yu Liu,Alex Q. Huang;《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》;20090228;第56卷(第2期);第285-292页 *
改进型基本梯级多电平逆变器;赵宏,潘俊民;《上海交通大学学报》;20051230;第39卷;第87-91页 *

Also Published As

Publication number Publication date
US20150357933A1 (en) 2015-12-10
US9654025B2 (en) 2017-05-16
CN104052325A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
CN104052325B (zh) 大范围电压失真最小化的级联型多电平逆变器的设计方法
EP2396882B1 (en) Method in a cascaded two-level converter, control device and computer program products
CN104065291B (zh) 具有低频振荡抑制功能的中点电压平衡控制系统及方法
CN104201919B (zh) 一种光伏逆变器的漏电流控制方法
CN103812377B (zh) 模块化多电平换流器桥臂电流的控制方法
CN104333245B (zh) 基于载波实现的过调制方法
CN106950512B (zh) 一种储能变流器并离网特性一体化检测系统及方法
Yaramasu et al. Finite state model-based predictive current control with two-step horizon for four-leg NPC converters
Kumar et al. Improved performance with fractional order control for asymmetrical cascaded H-bridge multilevel inverter
Albanna et al. Harmonic modeling of hysteresis inverters in frequency domain
CN104410311A (zh) 一种三电平逆变器不连续pwm调制中点平衡方法
CN103018583A (zh) 基于mmc柔性直流输电系统电平数选择验证方法
CN104065292A (zh) 三电平变换器中点电位平衡控制方法与装置
CN103929082A (zh) 基于小波调制的单相三电平逆变器信号调制方法
Ibrahim et al. Comparative analysis of PWM techniques for three level diode clamped voltage source inverter
Mukherjee et al. A 15-level asymmetric H-bridge multilevel inverter using d-SPACE with PDPWM technique
Atar et al. The analysis of three level inverter circuit with regard to current harmonic distortion by using ANFIS
Azad et al. THD minimisation in 15-level hybrid multilevel inverter using harmonic minimization technique
CN107040146A (zh) 级联h桥多电平变流器中各单元瞬时功率计算方法
Suroso et al. A single-phase multilevel current-source converter using H-bridge and DC current modules
CN109066699B (zh) 一种判断过调制对微源逆变器串联微电网电压影响的方法
Ahuja et al. MATLAB Simulation and Analysis of Nine-Level Inverter Using Different Schemes of Sinusoidal PWM
Hamidi et al. Power injection of renewable energy sources using modified model predictive control
CN104038092A (zh) 一种混合多电平逆变器功率均衡的控制方法
CN102710143B (zh) 中点电压偏差控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant