CN104040719A - 一种药物筛选方法及其用途 - Google Patents

一种药物筛选方法及其用途 Download PDF

Info

Publication number
CN104040719A
CN104040719A CN201280066634.6A CN201280066634A CN104040719A CN 104040719 A CN104040719 A CN 104040719A CN 201280066634 A CN201280066634 A CN 201280066634A CN 104040719 A CN104040719 A CN 104040719A
Authority
CN
China
Prior art keywords
tissue
pharmacomap
brain
test compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280066634.6A
Other languages
English (en)
Inventor
P·奥斯腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cold Spring Harbor Laboratory
Original Assignee
Cold Spring Harbor Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cold Spring Harbor Laboratory filed Critical Cold Spring Harbor Laboratory
Publication of CN104040719A publication Critical patent/CN104040719A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5041Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving analysis of members of signalling pathways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/82Translation products from oncogenes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明中公开了使用导致产生药学图谱的高分辨率技术在非人类动物中筛选药物的方法。本发明中进一步公开了预测候选药物化合物的治疗益处和/或毒性的方法。在具体实施方式中,本发明提供了基于测试药物的药学图谱与一个或多个具有已知临床结果的参考药物的药学图谱的比较来预测测试药物临床疗效的方法。

Description

一种药物筛选方法及其用途
本申请要求2011年11月11日递交的申请号为61/558,877的美国临时申请的优先权,该美国临时申请通过引用以其全文并入本文。
1.介绍
本文中描述了使用产生药学图谱(pharmacomaps)的高分辨率技术在非人类动物中筛选药物的方法。本文中进一步描述了预测候选药物化合物的治疗益处和/或毒性的方法。在具体实施方式中,本文提供了基于测试药物的药学图谱与一个或多个具有已知临床结果的参考药物的药学图谱的比较来预测测试药物临床疗效的方法。
2.背景技术
新药(new drugs or medications)的开发包括在动物上评价该新药的疗效。诸如小鼠的实验动物用来获得实验数据,使得随后在人体上的测试可以安全地实施。例如,一种新药可激活实验小鼠的某些脑细胞,这些脑细胞可以使用诸如c-fos和Arc(活性调节的细胞骨架蛋白,activity regulatedcytoskeletal protein)的即早基因(immediate early genes,IEG)来鉴定。传统地,通过诸如原位杂交或免疫组织化学的劳动密集型的和易于出错的技术,随后通过目测、标记和人类观察者给脑区亚组(subset)评分来检测IEG诱导。
3.发明内容
在一个方面,本文中提供了生成药学图谱的方法,其包括:(a)将化合物施与非人类动物;和(b)使用提供组织中细胞的单细胞分辨率的成像技术对非人类动物的组织进行成像,由此生成该化合物的药学图谱。在一些方面,本文中提供了生成药学图谱的方法,其包括:对非人类动物的组织进行成像,其中化合物被施与动物,且其中成像提供组织中细胞的单细胞分辨率,由此生成该化合物的药学图谱。在某些实施方案中,非人类动物在组织成像之前被处死。在另一些实施方案中,非人类动物没有被处死且在活的非人类动物的组织上实施成像技术。在具体实施方案中,本文中提供了生成药学图谱的方法,其包括:(a)将化合物施与非人类动物;(b)获取该动物的组织;(c)使用提供组织中细胞的单细胞分辨率的成像技术对获取的组织进行成像,由此生成该化合物的药学图谱。在某些实施方案中,化合物是具有已知的治疗和/或毒性效果的参考化合物。在某些实施方案中,非人类动物是转基因动物,例如,携带控制诸如荧光的可检测报告基因序列的表达的基因调节区域的非人类动物。在一些实施方案中,所使用的成像技术提供了组织中表达报告基因序列的细胞的单细胞分辨率。
在一个方面,本文中提供了为预测测试化合物的治疗效果和/或毒性效果生成测试化合物的药学图谱的方法,其包括:使用提供细胞的单细胞分辨率的成像技术来对组织进行成像,其中组织来自或处于被给予了测试化合物的非人类动物;通过使用一个或多个数据处理器并使用机器学习算法,识别通过应答测试化合物而被激活的细胞;通过使用一个或多个数据处理器生成被识别细胞在连续组织空间的体积内的表示(generating arepresentation of the identified cells into a volume of continuous tissuespace);通过使用一个或多个数据处理器实施统计学技术,以识别基于所获取组织的被识别细胞所生成的表示与对照组织的细胞的表示之间的比较具有显著差异的区域;和为预测测试化合物的治疗效果和/或毒性效果,通过使用一个或多个数据处理器,基于有显著差异的被识别区域生成测试化合物的药学图谱,以识别通过应答测试化合物而被激活的解剖学组织区域。在具体实施方案中,非人类动物是含有控制诸如荧光的可检测的报告基因序列的表达的基因调节区域的转基因动物。在某些实施方案中,生成被识别细胞在连续组织空间的体积内的表示的步骤包括将组织图像扭曲到连续组织空间的标准体积以配准与连续组织空间内被识别细胞相关的信息;和实施连续组织空间的体素化(voxelization)以生成连续组织空间的离散的数字化。在一些实施方案中,药学图谱包括含有一个或多个体素的连续组织空间的表示,并且包括识别在组织空间内激活的解剖学组织区域的药学图谱信息;其中激活的解剖学组织区域包括一个或多个体素;且其中体素包括一个或多个通过应答测试化合物而被激活的细胞。在某些实施方案中,生成测试化合物的药学图谱的步骤包括实施具有显著差异的被识别区域的解剖学分割。在一些实施方案中,机器学习算法包括卷积神经网络算法。在某些实施方案中,统计技术包括负二项式回归技术、随机域理论技术(和/或一个或多个t-检验。在具体实施方案中,成像技术包括连续双光子断层摄影术。在一些实施方案中,组织是整个器官,并且本文中所描述的成像技术提供了在整个器官(例如脑)中细胞的单细胞分辨率。在一个实施方案中,本文中所描述的方法导致生成整个器官的药学图谱(例如全脑(brainwide)的药学图谱)。
在一个实施方案中,生成测试化合物的药学图谱的方法被用于预测测试化合物的治疗效果和/或毒性效果,其包括:将测试化合物施与非人类动物;使用提供组织中细胞的单细胞分辨率的成像技术对组织进行成像;通过使用一个或多个数据处理器并使用机器学习算法,识别通过应答测试化合物而被激活的细胞;通过使用一个或多个数据处理器,生成被识别细胞在连续组织空间的体积内的表示;通过使用一个或多个数据处理器,实施统计学技术以基于所获取组织的被识别细胞所生成的表示与对照组织的细胞的表示的比较识别有显著差异的区域;和为预测测试化合物的治疗效果和/或毒性效果,通过使用一个或多个数据处理器,基于有显著差异的被识别区域生成测试化合物的药学图谱,以识别通过应答测试化合物而被激活的解剖学组织区域。在另一个实施方案中,生成测试化合物的药学图谱的方法被用于预测测试化合物的治疗效果和/或毒性效果,其包括:将测试化合物施与非人类动物;获取动物的组织;使用提供组织中细胞的单细胞分辨率的成像技术对组织进行成像;通过使用一个或多个数据处理器并使用机器学习算法,识别通过应答测试化合物而被激活的细胞;通过使用一个或多个数据处理器,生成被识别细胞在连续组织空间的体积内的表示;通过使用一个或多个数据处理器,实施统计学技术,以基于所获取组织的被识别细胞所生成的表示与对照组织的细胞的表示的比较识别有显著差异的区域;和为预测测试化合物的治疗效果和/或毒性效果,通过使用一个或多个数据处理器,基于有显著差异的被识别区域生成测试化合物的药学图谱,以识别通过应答测试化合物而被激活的解剖学组织区域。在一些实施方案中,生成被识别细胞在连续组织空间的体积内的表示的步骤包括将组织图像扭曲到连续组织空间的标准体积内,以配准与连续组织空间内的被识别细胞相关的信息;实施连续组织空间的体素化以生成连续组织空间的离散的数字化。在一些实施方案中,药学图谱包括包含了一个或多个体素的连续组织空间的表示,并且包括识别组织空间中激活的解剖学组织的药学图谱信息;其中,激活的解剖学组织区域包括一个或多个体素;并且其中体素包括一个或多个通过应答测试化合物而被激活的细胞。在一些实施方式中,生成测试化合物的药学图谱的步骤包括实施具有显著差异的被识别区域的解剖学分割。在具体实施方案中,机器学习算法包括卷积神经网络算法。在一些实施方案中,统计技术包括负二项式回归技术。在一个实施方案中,统计技术包括一个或多个t-检验。在一个实施方案中,统计技术包括随机域理论技术(random field theory technique)。在具体实施方案中,成像技术包括连续双光子断层摄影术。在这些实施方案的一些方案中,测试化合物被施与携带基因调节区域以控制诸如荧光的可检测的报告基因序列表达的转基因动物。在这些实施方案的一些方案中,所使用的成像技术提供组织中表达诸如荧光的可检测的报告基因序列的细胞的单细胞分辨率。
在另一个方面,本文中描述了用于预测测试化合物的治疗效果和/或毒性效果的方法,其包括将测试化合物施与非人类动物,使用提供单细胞分辨率的成像技术对动物的组织进行成像,借此产生测试化合物的药学图谱,和将测试化合物的药学图谱与参考化合物的药学图谱或者与参考化合物的药学图谱数据库进行比较。在另一方面,本文中描述了用于预测测试化合物的治疗效果和/或毒性效果的方法,其包括对非人类动物的组织进行成像,其中测试化合物被施与动物,且其中成像提供单细胞分辨率,由此生成测试化合物的药学图谱,和将测试化合物的药学图谱与参考化合物的药学图谱或者与参考化合物的药学图谱数据库进行比较。在某些实施方案中,非人类动物在组织被成像之前被处死。在另一些实施方案中,非人类动物没有被处死且成像技术在活的非人类动物的组织上实施。在一个具体实施方案中,本文中描述了用于预测测试化合物的治疗效果和/或毒性效果的方法,其包括将测试化合物施与非人类动物,获取动物的组织,使用提供单细胞分辨率的成像技术对所获取的组织进行成像,由此生成测试化合物的药学图谱,和将测试化合物的药学图谱与参考化合物的药学图谱或者与参考化合物的药学图谱数据库进行比较。在某些实施方案中,预测测试化合物的治疗效果和/或毒性效果的方法进一步包括通过使用一个或多个数据处理器,通过识别组织(例如所获取的组织)中的通过应答测试化合物而被激活的解剖学组织区域,生成测试化合物的药学图谱,其中,药学图谱包括组织(例如所获取的组织)的组织空间的表示,并且包括识别组织空间中激活的解剖学组织区域的药学图谱信息。在一些实施方案中,方法进一步包括通过使用一个或多个数据处理器,比较测试化合物的药学图谱与参考化合物的预先确定的药学图谱,其中参考化合物具有已知的与参考化合物的药学图谱相关联的治疗或毒性效果;和基于测试化合物和参考化合物的药学图谱的比较而预测测试化合物的治疗效果或毒性效果。在某些实施方案中,预测测试化合物的治疗效果或毒性效果的步骤包括生成参考化合物的已知治疗或毒性效果与参考化合物的药学图谱之间的参考化合物的相互关系矩阵。在具体实施方案中,所获取组织的组织空间的表示包括所获取组织的三维图像的生成,将三维图像扭曲到组织空间的标准体积,和组织空间的体素化以生成组织空间的离散数字化。在一个具体实施方案中,激活的解剖学组织区域包括一个或多个体素;且体素包括一个或多个通过应答测试化合物而被激活的细胞。
在某些实施方案中,机器学习算法被用于检测成像组织中的激活的细胞。在一个实施方案中,机器学习算法是卷积神经网络算法。
在某些实施方案中,上述的方法进一步包括将已成像的组织(例如所获取的组织)扭曲到连续组织空间的体积;实施连续组织空间的体素化以生成连续组织空间的离散的数字化;对离散的数字化使用统计学技术,以识别对照与经药物激活的组织区域之间有显著差异的区域;和使用解剖学分割以分配(assign)组织区域显著差异并且确定一个或多个组织区域的激活细胞的数量;其中,激活细胞的经确定的数量被用于比较测试化合物的药学图谱和参考化合物的药学图谱。
在另一个方面,本文中描述了用于预测测试化合物的治疗效果或毒性效果的方法,其中测试化合物被施与非人类动物(例如,含有基因调节区域以控制诸如荧光的可检测的报告基因序列的表达的转基因动物),其中动物的组织被获取(或者已经被获取了),该方法包括:使用提供组织中细胞(例如表达荧光报告基因序列的细胞)的单细胞分辨率的成像技术对所获取的组织进行成像;通过使用一个或多个数据处理器并使用机器学习算法,识别通过应答测试化合物而被激活的细胞;通过使用一个或多个数据处理器,生成被识别细胞在连续组织空间的体积内的表示;通过使用一个或多个数据处理器实施统计学技术,以基于所获取组织的被识别细胞所生成的表示与对照组织的细胞的表示的比较识别有显著差异的区域;和为预测测试化合物的治疗效果或毒性效果,通过使用一个或多个数据处理器,基于有显著差异的被识别区域生成测试化合物的药学图谱,以识别通过应答测试化合物而被激活的解剖学组织区域。在一些实施方案中,生成被识别细胞在连续组织空间的体积内的表示的步骤包括:将组织图像扭曲到连续组织空间的标准体积以配准与连续组织空间内的被识别细胞相关的信息;和实施连续组织空间的体素化以生成连续组织空间的离散的数字化。在某些实施方案中,药学图谱存储在计算机可读的存储介质中;其中计算机可读的存储介质包括存储连续组织空间的表示的体素数据的存储区;其中,计算机可读的存储介质包括存储识别通过体素数据表示的组织空间中的激活的解剖学组织区域的药学图谱数据的数据区;其中,激活的解剖学组织区域包括一个或多个体素,并且体素表示拥有一个或多个通过应答测试化合物而被激活的细胞的组织区域。在具体实施方案中,计算机可读的存储介质是存储在非瞬时存储介质中的数据库,或存储装置。在一些实施方案中,计算机可读的存储介质包含一个或多个参考化合物的药学图谱数据,其与参考化合物在组织的特定区域的治疗效果或毒性效果有关;其中,为了预测测试化合物的治疗效果或毒性效果,将测试化合物的药学图谱数据与一个或多个参考化合物的药学图谱数据进行比较。在某些实施方案中,生成测试化合物的药学图谱的步骤包括实施具有显著差异的被识别区域的解剖学分割。在具体实施方案中,机器学习算法包括以下之一:卷积神经网络算法、支持向量机、随机森林分类器和增压(boosting)分类器。在具体实施方案中,统计技术包括负二项式回归技术、一个或多个t检验和/或随机域理论技术。在一些实施方案中,成像技术包括以下之一:连续双光子断层摄影术、艾伦研究所连续显微镜术(Allen instituteserial microscopy)、全光组织学、自动化的宽场荧光显微镜术、激光层照荧光显微镜术(light-sheet fluorescence microscopy)、OCPI激光层照和微光学切片断层摄影术。
在一些实施方案中,非人类动物是转基因动物(例如诸如小鼠或大鼠的啮齿类动物)。例如,可以使用携带了控制可检测的(例如荧光)报告基因序列的表达的基因调节区域的转基因动物。在某些实施方案中,对所获取的组织的成像提供组织中表达可检测的(例如荧光)报告基因序列的细胞(如被测试化合物激活的细胞)的单细胞分辨率。在某些实施方案中,参考化合物具有已知的治疗和/或毒性效果。参考化合物可以是一种化合物或两种、三种、四做或多于四种的化合物。在参考化合物多于一种化合物的实施方案中,测试化合物的药学图谱可以与通过平均多个参考化合物所生成的参考化合物“虚拟”药学图谱进行比较。药学图谱的比较允许基于药学图谱的相似性预测测试化合物的治疗效果或毒性效果。
在某些实施方案中,根据本文中所述的方法成像的组织是非人类动物的脑、肾脏、肝脏、胰腺、胃、心脏或任何其它组织。在具体实施方案中,组织是非人类动物的整个器官(例如整个脑或整个肝脏)。在一些实施方案中,方法包括获取非人类动物的两个或多于两个的组织(例如脑组织和肝脏组织)。在一些实施方案中,所生成的药学图谱是整个脑(例如转基因动物的)的药学图谱。
在具体实施方案中,本文中所描述的方法中所使用的成像技术是连续双光子断层摄影术,然而,也可以使用本领域已知的或本文中所描述的其它成像技术(例如提供成像组织的单细胞分辨率的成像技术)。
在一些实施方案中,本文所述的方法被应用于携带了控制诸如荧光的可检测的报告基因序列表达的基因调节区域的转基因动物。在某些实施方案中,基因调节区域是即早基因(在没有从头合成蛋白(de novo proteinsynthesis)时通过应答外部刺激而被快速和短暂激活的基因,例如在10分钟内、20分钟内或30分钟内被激活的,且能够在激活刺激的1、2、3、4或6小时内得到表达的基因)的基因调节区域。基因调节区域可例如是启动子或启动子的一个区域。在具体实施方案中,即早基因是c-fos、FosB、delta FosB、c-jun、CREB、CREM、zif/268、tPA、Rheb、RGS2、CPG16、COX-2、Narp、BDNF、CPG15、Arcadlin、Homer-1a、CPG2或Arc。在其它的实施方案中,基因调节区域是在另一基因(例如即早基因)的下游被激活且可能需要其它基因(例如即早基因)的蛋白合成的晚期/次级基因的基因调节区域。在一些实施方案中,基因调节区域在刺激之后被激活超过30分钟、超过1小时或超过2小时的晚期/次级基因的基因调节区域。在一些实施方案中,晚期/次级基因在刺激后表达超过12小时、超过1、2、3、4、5天,或者超过1、2、3、4周。在具体实施方案中,基因调节区域是神经丝轻链(neurofilament light chain)、突触蛋白类(synapsins)、谷氨酸脱羧酶(GAD)、TGF-beta、NGF、PDGF、BFGF、酪氨酸羟化酶(tyrosinehydroxylase)、纤连蛋白(fibronectin)、纤溶酶原激活物抑制剂-1(plasminogenactivator inhibitor-1)、过氧化物歧化酶(SOD1)或者胆碱乙酰基转移酶的基因调节区域。在一些实施方案中,报告基因序列编码绿色荧光蛋白(GFP),尽管可以使用提供了本领域已知的或者本文中所描述的诸如荧光的可检测的信号的任何标记。
在一个具体实施方案中,本文中所描述的方法被用于预测测试化合物的治疗效果,其中参考化合物具有已知的治疗效果(例如在人类中)。在另一些实施方案中,本文中所述的方法被用于预测测试化合物的毒性效果,其中,参考化合物具有已知的毒性效果(例如在人类中)。在另一个具体实施方案中,本文中所描述的方法被用于预测测试化合物的最佳剂量(例如,治疗上有效的剂量和/或不会导致或导致最小的毒性或副作用的剂量)。在一些实施方案中,本文中所描述的方法被用于预测测试化合物的最佳剂量(例如,治疗上有效的剂量和/或不会导致或导致最小的毒性或副作用的剂量),其中参考化合物(其可以是不同剂量的与测试化合物相同的化合物,或者不同的化合物)具有已知的治疗效果或毒性效果(例如在人类中)。
在一些实施方案中,测试化合物和/或参考化合物的治疗效果是对脑失调或症状(例如中枢神经系统失调)的治疗效果。在一些实施方案中,测试化合物和/或参考化合物的治疗效果是对于脑失调或症状以外的失调或症状的治疗效果。在具体实施方案中,测试化合物和/或参考化合物的毒性效果是影响脑功能的毒性效果。
任何化合物都可以使用所述的方法来筛选或分析。在一些实施方案中,该化合物是打算用于治疗失调或症状(例如脑失调)的化合物。在其它的实施方案中,化合物是不打算用于治疗特定的失调或症状(例如脑失调或症状)的化合物。在这些实施方案的一些中,化合物打算用于治疗脑疾病或症状以外的任何疾病或症状(例如癌症、心脏病等),并且如本文所述生成了脑的药学图谱。例如,这样的药学图谱可用于分析化合物是否具有或被预测具有任何脑相关的不良反应(例如中枢神经系统不良反应)。
目前用于治疗失调的任何化合物都可以被用作参考化合物。另外,没有被用于治疗失调的任何化合物(例如因毒性而在临床前测试中失败的化合物)可以被用作参考化合物。在一些实施方案中,参考化合物是用于治疗脑失调的药物。在其它的实施方案中,参考化合物是没有被用于治疗脑失调的药物。在具体实施方案中,参考化合物是没有被用于治疗脑失调的且具有已知毒性效果(例如影响脑功能的已知毒性)的药物。在一些实施方案中,测试化合物是被用于或者被考虑用于治疗脑失调的药物。在某些实施方案中,测试化合物被预测具有对脑失调或症状(例如中枢神经系统失调)的治疗效果。在其它的实施方案中,测试化合物没有被预测具有对脑失调或症状(例如中枢神经系统失调)的治疗效果。本文中所述的方法可以用数个测试化合物进行重复。为每一个测试化合物所获得的药学图谱可以被编辑成单独的数据库。
在一些实施方案中,本文中所提供的方法可以基于测试药物的药学图谱与一个或多个具有已知临床结果的参考药物的药学图谱(或者与具有已知临床结果的参考药物的药学图谱的数据库)的比较结果而用于选择和/或设计新药物。
4.附图说明
图1阐明了药学图谱数据表示和分析过程的操作;
图2描述了计算机实施的环境,其中使用者可以与药学图谱数据表示和通过网络被托管在一个或多个服务器上的分析系统进行交互;
图3阐明了生成药学图谱数据表示的操作;
图4阐明了能够被用于生成药学图谱数据表示的不同技术;
图5阐明了能包含药学图谱数据的数据;
图6阐明了用具有多种目的的参考的药学图谱来分析测试的药学图谱的操作,所述目的例如去确定测试化合物的可能效果;
图7阐明了测试的药学图谱信息和参考的药学图谱被存储在各自的数据库的实施过程;
图8阐明了测试的药学图谱信息和参考的药学图谱被存储在同一数据库的实施过程;
图9阐明了测试的药学图谱信息已经生成且已经被一个与实施测试-参考药学图谱分析的公司不同的公司存储的实施过程;
图10阐明了测试的药学图谱信息已经生成且已经被与实施测试和参考药学图谱分析的公司相同的公司存储的实施过程;
图11.STP断层摄影术:(a)方法的简图;计算机控制的XYZ载物台将脑样品移动到双光子显微镜的物镜下,以便俯视图被成像成一个拼接图案;该载物台也把脑传送到用于切片的嵌入式振动刀片的薄片切片机;(b)包含260个冠状切面(coronal section)的GFPM STP-断层摄影术的数据集(dataset)的2D照片组接(montage);(c)3D重建后GFPM数据集的冠状的、水平的和矢状的视图;(d)用20倍物镜以0.5μm取样成像的冠状切面。左:冠状切面的3D视图以及其在小鼠脑中的位置(离前囟点(Bregma)大约-2.5mm)。面板1和2:标记区域的全视图;比例尺=250μm。面板1’和2’:显示树突棘(1’和1”)和细小的轴突纤维(axon fibers)(2’)的可视化的放大图;比例尺=25μm(1’)和5μm(1”)。
图12.成像树突棘的不同XY取样分辨率的例子。使用20x物镜以(a)0.5μm和(b)1μm的XY分辨率或者使用10x物镜以(c)1μm和(d)2μm的XY分辨率对GFPM小鼠脑进行成像。比例尺数字是微米级。注意列(a)(20x,0.5μm)与图11中示出的相同。左边面板中的箭头指向右边面板中被放大的区域。
图13.成像轴突的不同XY取样分辨率的例子。在与图12中所示的同样的数据集中选择仅包含轴突(箭头标注)的区域。比例尺数字是微米级。轴突纤维的反向灰度图像含有指示截面的黑条,该截面被用于在最右边的面板中示出的曲线图(plot profiles)(曲线图是在tif16位图像上使用ImageJ且不使用数码变焦进行的测量)中评价成像GFP-标记的轴突的分辨率。每一种情况的5个曲线图测量的平均值(±SEM)为(μm):1.2±0.1(a),1.9±0.2(b),2.7±0.3(c),和3.9±0.3(d)(注意,对于巨大的10x镜头来说,背孔(backaperture)远未填满)。
图14.通过CTB-Alexa-488逆行追踪。(a)包含注射部位(1)和一些逆行标记的区域(2-4)的冠状切面的3D图。左下:切面在整个脑中的位置(离前囟点大约-1.15mm)。(b)注射部位的冠状和矢状图。(c)在(a)中被标记的皮质区域,其包括(1)初级躯体感觉皮质(S1BF)的桶状区中的注射部位,(2)同侧的次级躯体感觉皮质(S2),(3)颗粒岛叶皮质(GI)和(4)对侧的S1BF。面板(2-4)与从含有CTB标记细胞的上颗粒和下颗粒皮质层的放大区一起显示。面板(1)中的比例尺为250μm,且面板(2)的放大图中的比例尺为50μm。
图15.通过CTB-Alexa-488逆行追踪(显示了与图14中相同的脑)。(a)包含逆行标记的脑区域的所挑选冠状切面的3D图。(b)在(a)中所标记的脑区,其包括:(1)同侧的和(2)对侧的腹外侧额眶部皮质(VLO)(前囟点=+2.2mm);(3)初级运动皮质(M1)(前囟点=+1.6mm);(4)屏状核(Cla)和(5)M1(前囟点=+1.4);(6)鼻外皮质(Ect);(7)次级躯体感觉皮质(S2);(8)初级躯体感觉皮质(S1BF)的桶状区;(9)腹后内侧丘脑(ventral posteromedial thalamus)(VPM)和丘脑后部(PO)(前囟点=-1.8mm)。上文未描述来自S1BF的对侧VLO的逆行标签;参见关于比较的先前研究(Welker et al.,Exp.Brain research.Exp.Hirnforschung73:411-435(1988);Aronoff et al.,Eur.J.Neurosc.31:2221-2233(2010))。面板(1)中的比例尺为250μm,且面板(1)的放大图中的比例尺为50μm。前囟点的估计值是基于与Paxinos和Franklin20的小鼠脑数据集的比较获得的。
图16.通过AAV-GFP顺行追踪和脑扭曲(brain warping)。(a)包括注射部位(1)和一些顺行标记的区域(2-5)的冠状切面的3D视图。左下:切面在整个脑中的位置(离前囟点大约-1.9mm)。(b)注射部位的冠状和矢状图。(c)在(a)中被标记的脑区域,其包括(1)注射部位(S1BF),(2)同侧的尾壳核(CP),(3)内囊(ic)中的轴突纤维,(4)腹后内侧丘脑(VPM)和丘脑后部(PO),和(5)对侧的桶状皮质(S1BF)。为了轴突纤维和静脉曲张的更好可视化,放大图示出了反相灰度图。(1)以及(2)的放大图中的比例尺为250μm。(d)来自通过将AAV-GFP脑扭曲到CTB-Alexa-488脑上所生成的组合的“虚拟的”2-示踪物数据集的一个切面。(e)在(d)中被标记的脑区域,其包括带有重叠顺行标签(AAV-GFP)和逆行标签(CTB-Alexa-488)的运动皮质(M1)。
图17.通过AAV-GFP顺行追踪(显示与图16中相同的脑)。(a)包含顺行标记的脑区域的所挑选的冠状切面的3D图。(b)在(a)中被标记的脑区域,其包括:(1)和(2)腹外侧额眶部皮质(VLO)(前囟点=+3.2和+2.1mm,分别地);(3)运动皮质(M1)和(4)对侧的M1(前囟点=1.1mm);(5)桶状皮质(S1BF),(6)尾壳核(CP),和对侧的(7)S1BF和(8)CP(前囟点=-1.4mm);(9)鼻周皮质(PRh),(10)腹后内侧丘脑(VPM)和丘脑后部(PO),和(11)未定带(ZI)(前囟点=-2.5mm);(12)顶叶前核前部(APT)(前囟点=-3.1mm);(13)上丘(SC);和(14)脑桥核(PN)(前囟点=-4.1mm);(15)PN(前囟点=-4.4mm);和(16)脊髓三叉神经核(spinal trigeminal nucleus)(SP5)(前囟点=-5.8mm)。前面没有描述来自S1BF的对侧运动皮质的顺行标签,参见关于比较的先前研究(Welker et al.,1988;Aronoff et al.2010)。为了轴突纤维和静脉曲张的更好可视化,放大图示出了反相灰度图。(1)以及(2)的放大图中的比例尺都为250μm。前囟点的估计值基于Paxinos和Franklin20的小鼠脑数据集。
图18.评价在切片之前和之后Z-平面的一致性。(a,a’)在脑表面之下Z-深度90μm的位置所成像的光学平面。(b,b’)在切出单独的50μm厚切面后,在脑表面之下Z-深度40μm的位置所成像的光学平面。(c,c’)叠加图示出了两个平面的紧密重叠部分,证明在切片之前和之后光学Z-平面的高度一致性。注意标记的树突的紧密重叠部分(长箭头)。比例尺为(a)200μm和(b)100μm。图片取自SST-ires-Cre::Ai93嗅球(olfactorybulb)。
图19.扭曲精度的量化。在嗅球、皮质、侧脑室、前连合、侧间隔、穹窿、海马、视束、杏仁体和小脑区域的两个不同脑中手工选择42个目标标志点(landmark point)。扭曲之前和之后,每一对相应点之间的距离被标绘出来。扭曲之前和之后位移量的平均值((±SEM)分别是749.5±52.1和102.5±45.0(上面的线:扭曲之前;下面的线:扭曲之后)。
图20.脑扭曲。通过将AAV-GFP脑扭曲到CTB-Alexa-488脑上所生成的组合的“虚拟的”2-示踪物数据集。在两个脑中注射部位的冠状的、矢状的和水平的图。来自两个已扭曲的脑的带有重叠的顺行的(AAV-GFP,暗色调信号)和逆行的(CTB-Alexa-488,浅色调信号)示踪物的运动皮质在所选择的2D切面中显示。重叠部分可以被视为在暗色调信号和浅色调信号之间的界面上的明亮的信号,其通过联络测线(cross-line)被准确地找到。
图21.CTB-Alexa的计算探测。机器学习算法被训练为基于最初的人标记来探测CTB-Alexa-488标签和自动地探测CTB-阳性的细胞。预测之前(左)和之后(右)的示例图,和叠加图(下方)。
图22.全标本包埋(whole-mount)双光子显微镜术。整个脑通过插入了基于振动切片机的组织切片的自动拼接图案成像技术来成像,以除去已成像的区域。
图23.测试数据集。(A)所有细胞中带有GFP标记的组蛋白H2BGFP转基因小鼠脑以100μm平等分布的130个切片进行成像(x-y分辨率1μm)。(B)带有放大自9x13的拼接图案的单独FOV的冠状切面。(C)以3D方式重新排列的切面。
图24.图像变形(morphing)。(A)在图23中生成的脑和MRI脑图谱集(MRI brain atlas)之间的内调整(internal alignment)。左边:通过上述方法成像的切面;中间:变形后的MRI切面;右边:两个的叠加图。(B)来自MRI图集的解剖学分割的例子。(C)测试样品的解剖学分割的例子。
图25.激活的脑区域的c-fos-GFP标签。在经氟哌啶醇(A-B),而不是生理盐水(C-D)处理的c-fos-GFP小鼠的脑纹状体(A)和侧间隔(B)中诱导强标记。如图23所示对脑进行成像。(比例尺=在A中200μm;在插入图中50μm)。
图26.c-fos-GFP的自动化检测。A)通过被训练为从人观察者所标记的实况数据集(ground truth datasets)探测c-fos-GFP的卷积神经网络(中间)来分析原始的c-fos-GFP表达数据(左)。输出的探测结果在右边显示出来。(B)示出了当前算法(current algorithm)的代表性结果的输入和输出数据的放大图:12个细胞中9个被正确地识别,1个没找到(左边的箭头,伪阴性结果)和两个相互靠近的细胞被认为是一个(右边的箭头;伪阴性结果)。
图27.在被注射了(A)生理盐水或(B)氟哌啶醇(1mg/kg)的小鼠的脑中的c-fos-GFP分布。(C)在每个单独的冠状切面的两个样品之间的c-fos-GFP细胞的初步定量。星号(asterix)标出了脑纹状体(B,C)中c-fos-GFP表达的大致位置。另外,注意在(C)中,在尾侧切面(caudal section)中氟哌啶醇所诱发的c-fos-GFP诱导的广泛分布。
图28.图像体素化。A-C:19个不同的脑(A)被配准到1个脑以生成一个参考脑(C)(20个脑的平均)。D-F:预测结果(F,c-fos-GFP细胞的质心)被基于从样品(D)到参考脑(E)指示参数配准到一个参考脑(E)。(G)每个体素的直径为100μm并且每个体素之间的距离为20μm。(H)经体素化的脑图像。
图29.实验设计的原理流程图。
图30.一系列2D切面的重建。以一系列的2D切面重建已成像的脑,通常是每一个小鼠脑280到300个切面。
图31.c-fos-GFP的计算探测。(A)卷积神经网络基于人的标记学习了c-fos-GFP标签的包含和排除标准。(B)c-fos-GFP探测的例子。左:灰度面板示出原始数据;右:黑&白面板示出计算机所生成的预测,以及下面的面板示出叠加图。
图32.原始数据扭曲到参考脑数据集。连续的2D切面数据集重建在3D中,并且被扭曲到以20个通过STP断层摄影术扫描的野生型脑的平均值而生成的3D参考脑体积中。这个扭曲操作使用elastix软件基于组织自发荧光来完成。
图33.配准到3D参考脑的c-fos-GFP数据。c-fos-GFP数据配准到参考脑创造了c-fos-GFP分布的3D表示,c-fos-GFP的药学图谱。分别带有176,771和545,838个c-fos-GFP细胞的经生理盐水和氟哌啶醇(1mg/kg)处理的脑的c-fos-GFP的药学图谱。
图34.3D c-fos-GFP数据的体素化。以X-Y-Z=450x650x300体素,每个体素的尺寸为20x20x50微米的均等间隔的网格,将3D脑体积体素化,以生成连续的脑空间的离散数字化。(A)以3D表示的已体素化的经生理盐水和氟哌啶醇处理的脑中c-fos-GFP的热点图(heat-map)分布。(B)以2D照片组接表示的相同的脑。
图35.统计学比较。注射了氟哌啶醇(n=7)和生理盐水(n=7)的小鼠之间的统计学差异的热点图。通过一系列负二项式回归完成了两组之间的统计学比较。在体素彼此具有一定程度正相关的假设之下,通过设定0.01的错误发现率(FDR)来校正I型错误。
图36.调查社会性脑通路(social brain circuitry)的社会性刺激。(A)检查社会性曝光(social exposure)之后c-fos-GFP变化的实验设计。(B)三个不同的c-fos-GFP小鼠组(N=每组7只小鼠)。
图37.以细胞分辨率来检查整个脑的连续双光子断层摄影术。(A)连续双光子断层摄影术的原理图,(B-D)在获取一系列独立的图像拼块(imagetiles)(B)之后的连续的2D重建(C)的照片组接图(D)。(E)整个脑的3D重建。
图38.用于自动检测c-fos-GFP细胞的机器学习算法。(A)计算机学习了基于初始的人标记的c-fos-GFP细胞的包含和排除的标准并且自动地检测阳性细胞以获得新的数据集(预测)。(B-D)在预测一部分皮质(B)之前(C)和之后(D)的示例图。
图39.图像配准到参考脑。(A-B)19个不同的脑(A1和A2)被配准到一个脑(A),以生成一个参考脑(B)(20个脑的平均)。(C-E)预测结果(E,c-fos-GFP细胞的质心)被配准到参考脑(D),基于从一个样品(C)到参考脑(D)的配准参数。
图40.测量c-fos-GFP细胞增加的体素化。(A)每个体素的直径为100μm并且每个体素之间的距离为20μm。(B-C)每个体素化的脑图像(B)被配准到参考脑(C)的相同空间中。
图41.识别对社会性曝光应答的脑区域的体素取向(voxel-wise)统计分析。(A-D)来自处理对照(A)、物体对照(B)和社会性刺激(C)组的被配准到参考脑(D)的平均的体素化结果。(E)图片拼接示出了与其它两个对照组(A和B)相比社会性曝光之后被激活的脑区域(C)。(F)被激活的脑区域和参考脑的3D叠加图。
图42.孤独症小鼠模型中的共享脑区域在社会性刺激后没有显示出明显的c-fos增加。(A-B)携带神经连接蛋白4KO(A)和神经连接蛋白3R451C(B)的孤独症小鼠模型中的c-fos密度的总结,*p<0.05。脑区域下方的下划线/条纹指示了在野生型的同窝仔而不是在Ngn4KO(A)和Ngn3R451C(B)小鼠模型中有明显c-fos增加的脑区域。(C)在神经连接蛋白4野生型同窝仔中的c-fos免疫组织化学显示了中央杏仁体和下边缘皮质的明显增加,然而,神经连接蛋白4KO在社会性曝光之后没有显示相似的增加。比例尺=200μm。
图43.3D图像重建。整个脑以8个区进行成像。将每个区进行扫描,以包括脑区域而不包括固定介质。使用基于SIFT的方法将不同切片的区对齐到一个参考区,并且整个脑以3D的方式重建。
图44.GAD-Gre的检测和定量。(A)来自脑不同区域的随机选择的3D拼块被人观察者标记上GAD-Gre信号。(B)该实况数据被用于训练卷积神经网络来检测GAD-Gre信号。该训练使用图像的数据集来完成,然后被用于其它的脑图像。
图45.解剖学分割。使用交互信息作为约束条件且因此使用同样的扭曲参数将MRI图像集在自发-荧光通道上扭曲到脑图像上(在x&y方向以20微米、在z方向以50微米重新取样);脑区域标记也被扭曲。产生的标记然后被重新采样到原始的x,y,z分辨率且完成区域取向(region wise)计数。
图46阐明了生成药物的药学图谱的示例过程。
图47分别阐明了氟哌啶醇、利培酮和阿立哌唑的示例的药学图谱。
图48示出了不同剂量的氟哌啶醇的示例的药学图谱。
图49阐明了生成预测新药物的治疗和负作用的药学图谱的综合数据库的实施例。
图50阐明了药物的负作用和适应症的示例的主成分分析(PCA)。
图51阐明了药物的负作用的示例的表示。
图52阐明了测定氟哌啶醇、利培酮和阿立哌唑的药学图谱之间的相似性的数据的实例。
具体实施方式
本文的一个方面提供了在诸如动物模型的非人类动物中分析参考化合物和测试候选药物的高分辨率、定量的方法。本文的一个方面提供了以单细胞分辨率在非人类动物的组织(例如整个脑)中无偏见和定量映射(mapping)药物引起的反应的技术。该方法允许生成每一个测试化合物的三维细胞活性模型或药学图谱。本文的另一个方面提供了基于测试化合物的药学图谱与一个或多个具有已知临床结果的参考化合物的药学图谱间的相似性的计算分析来预测测试化合物临床结果的技术。新候选药物(例如测试化合物)与具有已知临床结果的药物(例如参考化合物)之间的相互关系可被用于例如选择具有改善现有治疗方法的最大机会的最佳候选药物。
用于本文所述方法的非人类动物可以是诸如小鼠或大鼠的啮齿类动物。在一些实施方案中,非人类动物是转基因动物,例如被工程化以携带外源基因的非人类动物。在某些实施方案中,用于本文中所述方法的非人类动物已经被工程化,以携带在基因调节区域控制之下的诸如荧光的可检测的报告基因序列。在具体实施方案中,分析的组织的细胞的药物所引起的刺激导致了引发报告基因的蛋白表达的基因调节区域的转录活化。在这些实施方案的一些中,基因调节区域是诸如即早基因(IEG)的启动子的基因调节区域,例如在没有从头蛋白合成时通过应答外部刺激而被快速激活和表达的基因(例如IEG的mRNA可以在例如5、10、20、30、40、50或60分钟内被生产出来,并且蛋白在给药后的30或45分钟内,或者1、2、3、4、5或6小时内得到表达。)。在其它实施方案中,基因调节区域是诸如晚期基因的启动子的基因调节区域,例如在即早基因的下游被激活或者在刺激后被激活超过30分钟的基因(这样的基因在给药后可以表达超过12小时,超过1、3、5天,或者1、2、3、4周)。在这样的实施方案中,报告基因的表达为药物引起的细胞活化提供读出(read-out)。
在其它实施方案中,天然的、内源基因的药物引起的表达和/或活性在非人类动物的组织中得到分析。在这些实施方案的一些中,非人类动物不是转基因动物。在这些实施方案中,细胞活性的药物引发模式的分析使用本领域已知的技术来实施,例如免疫组织化学或原位杂交。
在某些实施方案中,本文所述方法中使用的非人类动物是具有野生型表型的动物(例如,没有携带与疾病状态相关的突变)。在其它的实施方案中,用于本文所述方法的非人类动物是具有突变型表型的动物(例如,携带与疾病状态相关的突变)。例如,能够如本文所述使用的非人类动物可以是脑疾病或症状的动物模型、任何类型癌症的动物模型或者心脏症状、糖尿病或中风的动物模型。在一些实施方案中,具有野生型表型的非人类动物或具有突变表型的非人类动物为用于本文所述的方法,被工程化以携带处于基因调节区域调控下的诸如荧光的可检测的报告基因序列。在其它的实施方案中,用于本文所述方法中的具有野生型表型的非人类动物或具有突变型表型的非人类动物没有携带处于基因调节区域调控下的诸如荧光的可检测的报告基因序列。
在一些实施方案中,用于本文所述方法中的非人类动物遭受条件化行为(例如,条件化恐惧或条件化“习得性无助”),诸如已知的或预期引起与疾病状态(例如,诸如精神病或抑郁的脑疾病)类似的状态的条件化行为。在一些实施方案中,本文所述的方法被用于预测在非人类动物中药物的治疗的(对抗疾病状态)或毒性效果,该非人类动物已经遭受已知的或预期诱发与疾病状态类似的状态的条件化行为。例如,本文所述的方法被用于在遭受条件化恐惧的非人类动物中检验或筛选抗焦虑药,或在遭受条件化“习得性无助”的非人类动物中检验或筛选抗抑郁剂。
在具体实施方案中,药物被施与一组非人类动物,其中,该组中一定数量的动物被处死且根据本文所述的方法(例如,被成像以生成药学图谱)分析,并且其中,该组中一定数量的动物没有被处死且改为使用本文所述的或本领域已知的任何方法来评价和/或监控它们的行为。在这样的实施方案中,根据本文所述的方法所生成的药学图谱可以与非人类动物中对药物的行为反应进行比较或者相互关联。
在某些实施方案中,化合物(例如测试化合物或参考化合物)被施与非人类动物(例如转基因动物),并且,在给药后的某一时间段之内(例如,给药后的1小时、2小时、3小时、4小时、6小时、8小时、10小时、12小时、18小时、24小时、2天、3天、5天、1周、2周、1个月或两个月之内),使用本文所述的或本领域已知的任何方法来处死该动物。随后,通过本文所述的或本领域已知的任何方法来获取被处死动物的一个或多个组织。在具体实施方案中,组织是动物的整个器官(例如脑和/肝脏)。所获取的组织可以使用本文中所述的或本领域已知的任何方法进行分析(例如,被成像)。在一个具体实施方案中,所使用的成像技术提供了所获取的组织(例如,整个器官)的细胞的非常高的(例如,单细胞的)分辨率。
在其它实施方案中,在化合物给药之后非人类动物没有被处死,并且使用本文所述的或本领域已知的任何技术对活动物的一个组织或一些组织(例如,整个器官)进行分析(例如,被成像)。在某些实施方案中,在化合物(例如,参考或测试化合物)施与非人类动物之后,获取来自该动物的一个组织或一些组织,并使用本文所述的或本领域已知的任何技术对其进行成像,但是动物没有被处死。在这些实施方案的一些中,所使用的成像技术提供了被分析组织的细胞的非常高的(例如,单细胞的)分辨率。
在另外一些实施方案中,在化合物给药后,非人类动物被处死,但是没有获取用于分析(例如,成像)的组织。
在一些实施方案中,使用本文所述的或本领域已知的任何技术,对没有经过药物(例如,测试药物或参考药物)处理的非人类动物的组织进行分析(例如,被成像)。从被处死的非人类动物获取待分析(例如,被成像)的组织。或者,从活的动物获取待分析的组织。在其它的实施方案中,组织在活的动物中被分析(例如,被成像)。
自动的显微镜术(例如,连续双光子(STP)断层摄影术)能够被用于经过测试药物或参考药物处理的动物(例如,被工程化以经应答刺激而表达诸如荧光的可检测的报告基因的转基因动物)的组织的高分辨率成像。在某些实施方案中,自动的显微镜术可以与图像处理和分析所获得的数据集的计算方法结合。所使用的方法提供了关于被激活细胞在所成像组织的三维空间中分布模式(distribution pattern)的高分辨率信息,由此生成测试化合物的药学图谱。在一个具体实施方案中,药学图谱代表在已成像组织的特定区域中因应答刺激(例如,诸如参考化合物或测试化合物的药物的给药)而表达诸如荧光的可检测的报告基因的被激活细胞的数目。在某些实施方案中,所达到的分辨率是单细胞分辨率。在一些实施方案中,所达到的分辨率是1微米x-y分辨率。在具体实施方案中,所达到的分辨率是约0.2微米和约20微米之间、约0.2微米和约15微米之间、约0.25微米和约15微米之间、约0.25微米和约10微米之间、约0.25微米和约7.5微米之间、约0.25微米和约5微米之间、约0.25微米和约3微米之间、约0.25微米和约2微米之间、约0.25微米和约1微米之间、约0.3微米和约15微米之间、约0.3微米和约10微米之间、约0.3微米和约5微米之间、约0.3微米和约3微米之间、约0.3微米和约1微米之间、约0.4微米和约15微米之间、约0.4微米和约10微米之间、约0.4微米和约7.5微米之间、约0.4微米和约5微米之间、约0.4微米和约3微米之间、约0.4微米和约2微米之间、约0.4微米和约1微米之间、约0.5微米和约15微米之间、约0.5微米和约10微米之间、约0.5微米和约7.5微米之间、约0.5微米和约5微米之间、约0.5微米和约3微米之间、约0.5微米和约2微米之间或约0.5微米和约1微米之间x-y分辨率。在一些实施方案中,所达到的最高的分辨率为0.2、0.25、0.3、0.4或0.5微米x-y分辨率。在一些实施方案中,所达到的最低分辨率为20、15、12.5、12、11、10、9、8、7、6、5、4、3、2、1.5、1.25、1、0.75或0.5微米x-y分辨率。
在一些实施方案中,所成像的组织是整个器官,例如非人类动物的脑、心脏、肝脏或任何其它器官。该方法在整个器官(例如整个脑)上的应用允许以单细胞分辨率(如所测量的,例如,通过受到即早基因启动子调控的诸如荧光的可检测的报告基因的表达)构建药物引起的整个器官的细胞活化的详细剂量-反应药学图谱。在其它实施方案中,已成像的组织是器官的一块(piece)、部分(part)或节(section)。
更进一步地,统计方法可以用于比较由测试化合物所生成的组织/药学图谱的活化模型与由参考化合物所生成的组织/药学图谱的活化模型,其中,参考化合物具有已知的治疗或毒性效果(例如,在人类内)。该方法允许基于测试化合物与一个或多个参考化合物的药学图谱的相似性和/或差异来预测测试化合物的治疗效果和/或毒性效果。在具体实施方案中,参考化合物在结构上或功能上与测试化合物相似,使得它们有望激活已成像的器官或组织的相似区域。
在具体实施方案中,在本文所述方法中所使用的成像技术是STP断层摄影术(该技术的一般描述参见专利号为7,724,937的美国专利,或者Ragan etal.,Nature Methods9(3):255-258(2012),每个文献以其全文通过引用的方式并入本文中。)STP断层摄影术整合快双光子成像和已固定组织的基于振动切片机的切片法。使用该方法,首先,组织的整体俯视图可以以视图的个别区域的拼接图案被成像;然后,该组织可以被移向切掉已成像切片的内置振动切片机;接着,该组织可以在显微镜下被移回且可以重复拼接成像和切片的循环,直到整个组织被成像。
在某些实施方案中,固定的组织或器官(例如,整个脑)被包埋到例如琼脂中,以使用诸如STP断层摄影术的高通量成像技术进行成像。将组织包埋在琼脂中是有利的,因为它使来自荧光报告基因的荧光信号得到最大化的保存。在一些实施方案中,琼脂包埋的器官或组织在成像之前进行了交联(例如,共价交联)。在一个实施方案中,组织或器官(例如,整个脑)的表面被共价交联到琼脂糖。组织-琼脂界面的交联可使得该组织在已成像的组织的切片过程中保持牢牢地包埋。在某些实施方案中,本发明打算使用全标本包埋显微镜术,其中,使用STP断层摄影术将整个器官或组织(例如,整个脑)自动成像。
在某些实施方案中,本文所述的方法达到了组织成像的全标本包埋模式、成像的高速度和数据收集的全面自动化。全标本包埋成像允许在已成像区域的机械切片之前对组织或器官(例如,脑)的完整顶部成像,其消除了在传统连续显微镜术中在操作切下的脑切片时发生的所有组织损伤和失真矫作物(distortion artifacts)。更进一步地,在一些实施方案中,本文所述的方法达到了大量数据(例如,每个小鼠脑100GB)的快速(1.4kHz)收集(使用,例如,STP断层摄影术)。进一步地,在一些实施方案中,本文打算使用的方法允许成像和切片的完全自动化,将小鼠脑切片的劳动密集型的连续显微镜术转变成能够容易地被放大的高通量方法。在这些实施方案的一些中,所使用的成像技术是STP断层摄影术。
在另一方面,本文提供了通过所述提供了定量读出的成像技术所获得的数据的自动化计算处理和分析。在一些方面,所述方法提供了软件的集成装置,其包括通过机器学习算法自动化检测活化的诸如荧光的可检测的报告基因阳性的细胞,将已成像的组织扭曲到一个标准组织体积,组织的体积的体素化,以生成连续组织空间的离散的数字化,使用统计学以识别对照与药物激活的组织之间具有显著差异的区域,使用解剖学分割以将这些差异分配到组织的特定区域,并且将数据表示成组织的每个解剖学结构和区域的活化细胞的数量。
所述的成像和图像处理的方法是快速的、敏感的、便宜的且拥有最小的劳动需求。所生成的药学图谱的容量(measurements)使得非人类动物中通过应答例如相关药物而活化的细胞的详细比较得以实现,相关药物是诸如旨在改善效果或限制副作用的相同药物的化学改造版本。
所述方法也可以用于被或已经用于临床中且具有已知临床结果(例如,在人类中)的药物的筛选。这样的筛选可以用于参考药学图谱数据库的构建。例如,可以构建具有已知治疗和/或毒性效果的参考药物的大规模药学图谱数据库(例如,包含了超过10、20、30、40、50、60、70、80、90、100、120、150、200、250、300、500、750或者超过1000个具有已知临床结果的药物的药学图谱的数据库)。在具体实施方案中,临床结果是治疗效果或毒性效果。在一些实施方案中,本文进一步生成连接参考药物的药学图谱和参考药物的临床效果的计算相关矩阵。这样的药学图谱数据库可以用来提供非人类动物中药物的效果和药物的临床效果(例如,在人类中)之间的预测性比较。
在某些实施方案中,本文所述的方法可以用来确定药物施与受试者的最佳剂量(例如,当施与受试者时,提供最佳治疗效果和/或最低毒性效果的剂量)。在一些实施方案中,本文所述的方法可以用来筛选处于两个、三个或更多剂量的药物(例如,预测测试药物的两个、三个或更多剂量的治疗效果和/或毒性效果),和选择被预测达到治疗效果和/或被预测造成最小或没有造成毒性(例如,最小或没有严重的副作用)的剂量。在一些实施方案中,使用本文所述方法生成的参考药学图谱数据库包括以两个、三个或更多剂量(例如中剂量、低剂量和/或高剂量;或治疗有效的剂量,非治疗有效的剂量,和/或已知导致一个或多个副作用的剂量)给药的参考药物的药学图谱。
在具体实施方案中,可以将本文所述的药学图谱与关于测试的化合物的结构的、物理的和化学的属性(SPCP)的信息组合。在其它具体实施方案中,可以将本文所述的药学图谱与关于测试的化合物的属性(例如,副作用)的任何可利用信息组合。例如,可以将本文所述的药学图谱与关于测试的化合物的属性的信息组合,所述信息可以通过诸如Pubchem、BioAssays或ChemBank的数据库(其例如可以包含关于药物所诱发的药物-靶标相互作用和/或细胞表型的信息)获得。在一个实施方案中,可以将本文所述的药学图谱与关于测试的化合物的副作用的信息(例如可以从诸如SIDER的数据库获得的信息)组合。在一个具体实施方案中,可以将本文所述的药学图谱与来自SIDER数据库的数据组合。
影响脑功能的药物的筛选
在一个特定方面,本文提供了能够可靠地预测影响脑功能的药物在患者(例如,人)中的治疗和/或毒性结果的药物筛选方法。在这样的实施方案中,应答药物给药的非人类动物脑中的细胞活性被分析。例如,影响脑功能的药物能够施与非人类动物(例如,小鼠);脑组织(例如,整个脑)可以使用本领域已知的任何技术来获取并且以生成药物的药学图谱的高分辨率来进行成像。药物激活的神经元(例如,在整个小鼠脑中)的详细图谱的生成可以用于可靠地连接非人类动物模型中的药物诱发的脑活化和人类中药物诱发的临床效果。本文提供的一个药物筛选方法包括:1)具有已知的人类结果的药物(“参考药物”或“参考化合物”)的动物脑药学图谱的数据库的生成,2)连接参考动物脑药学图谱和参考药物人类效果的计算相关性矩阵的生成,和3)使用这个相关性矩阵、通过将它们的药学图谱与参考药学图谱数据库进行比较来预测新的测试药物(或参考药物的新组合)的治疗效果。
在具体实施方案中,上述药物筛选可以通过转基因动物脑的离体(ex-vivo)成像来实现,该转基因动物表达受到即期基因(IEG)(例如c-fos或Arc)的活性调节启动子控制的可检测(例如荧光)报告基因(例如GFP)。在其它具体实施方案中,这可以通过转基因动物脑的离体成像来实现,该转基因动物表达受到晚期基因的活性调节启动子的制的可检测(例如荧光)报告基因(例如GFP)。晚期基因可以是在另一个基因(例如即早基因)的下游被激活且需要该另一个基因的蛋白合成,或者通过其它慢(超过30分钟)细胞信号机制被激活的任何基因。自动化的高通量成像技术(例如,允许整个脑的成像的)能够被用于成像这样的转基因动物(其表达诸如荧光的可检测报告基因,如在被已筛选药物激活的神经元中IEG表达的细胞标记物)的脑组织。在一个实施方案中,技术是STP断层扫描术。接下来,在脑组织中诸如荧光的可检测报告基因表达的计算分析可以使用机器学习算法来执行。然后,可以生成3D动物模型-脑药学图谱(3D animal model-brainpharmacomaps),其中,这样的药学图谱代表应答已筛选药物的、特定的区域中表达报告基因的活化的神经元的数目。在一些实施方案中,本文中述方法中所使用的成像技术提供了细胞全脑分辨率(例如,以每天一整个脑数据集的处理量)。在一些实施方案中,使用本文所述方法获得的已筛选药物的药学图谱包括非人类动物整个脑中表达可检测报告基因的细胞(例如,药物激活的细胞)的精确的数目和/或位置。
通过使用上述的方法,具有已知临床结果(例如,在人类中)的参考药物的药学图谱可以被编辑以制作参考数据库。参考药物可以是被或已经用于治疗脑失调的任何药物,以及在临床试验中失败的药物,只要存在关于药物的临床效果(例如,在人类中)的信息。然后,每一种药物的转基因动物脑药学图谱和已知的临床效果可以在同一矩阵中进行绘图,从而生成在小鼠脑中的神经活化和临床结果(例如,在人类中)的相互关系。在某些实施方案中,如果N个不同药物(例如,5、6、7、8、9、10个或者超过5、6、7、8、9、10个)显示出在小鼠脑区域X和Y的重叠的活化,并且已知能产生共同的治疗效果,那么可以预测在小鼠脑中同时发生的X和Y活化代表这些药物共同的人类结果。同样地,如果N个药物(例如,2、3、4、5、6、7、8、9或者10个)共有其它n个药物(例如,3、4、5、6、7、8、9、10或者超过3、4、5、6、7、8、9、10个)没有观察到的一个治疗效果,并且在另外的脑区域Z上显示了活化,可以假定小鼠脑区域Z代表N个药物的选择性效果。当前用在脑失调的疗中的任何药物可以被利用来制作参考数据库。此外,没有用在脑失调治疗中的任何药物(例如,在临床前测试中失败的那些药物)可以被利用来制作参考数据库(例如,具有诸如毒性效果的已知临床结果的药物)。随后,测试药物的小鼠脑药学图谱模式可以与参考数据库进行比较,并且模板药物活化模式的重叠部分可以用于预测测试药物的可能的治疗效果和/或毒性效果。该方法可以用于新药物,以及已经用在临床中的药物的新组合。
可以使用所述方法来筛选或分析任何化合物。在一些实施方案中,化合物是打算用于治疗脑失调或症状的化合物。在其它实施方案中,化合物是没有打算用于治疗脑失调或症状的化合物。在这些实施方案的一些中,打算将化合物用于治疗不是脑疾病或症状的任何疾病或症状(例如,癌症、心脏病等),并且如本文所述生成脑的药学图谱。例如,这样的药学图谱可以用于分析化合物是否具有或被预测具有任何脑相关的副作用(例如,CNS副作用)。
上述的用于筛选影响脑功能的药物的方法也可以应用于筛选影响患者的任何其它组织或器官的药物。
5.1 转基因动物
根据本文提供的方法使用的转基因动物是其中动物的一个或多个细胞包含转基因的非人类动物。
5.1.1 转基因
本文提供的方法使用的转基因动物包含转基因,转基因包含能够控制诸如可检测的(例如荧光)报告基因的报告基因序列的表达的一个或多个基因调节区域。在某些实施方案中,基因调节区域是即早基因(即,通过应答刺激(例如,应答参考药物)而被短暂地和快速地激活的基因)的基因调节区域。在某些实施方案中,基因调节区域是晚期/次级基因(例如在另一个基因的下游被激活且可能需要另一个基因(例如即早基因)的蛋白合成的基因或者通过其它慢细胞信号机制(例如,在刺激后超过30分钟、超过45分钟、超过1小时、超过3小时或者超过6小时被激活)被激活的基因)的基因调节区域。晚期/次级基因可以在刺激后的1、2、3、4、6、8、10、12或者24小时之内得到表达。晚期/次级基因可以在刺激后表达超过12小时、1天、1周、2周、3周或4周。
在一个方面,本文提供的方法中使用的转基因动物包含转基因,转基因包含一个或多个即早基因的基因调节区域。在某些实施方案中,基因调节区域可以来自在刺激之后被立即激活的即早基因。在某些实施方案中,基因调节区域可以来自在刺激后的即早基因。在某些实施方案中,基因调节区域可以来自在刺激后的约10秒、20秒、30秒、40秒、50秒或1分钟被激活的即早基因。在某些实施方案中,基因调节区域可以来自在刺激后的2分钟、3分钟、4分钟、5分钟、10分钟、15分钟、20分钟、25分钟、30分钟、45分钟或1小时之内被激活的即早基因。在某些实施方案中,即早基因被刺激直接激活且不需要另一个基因的蛋白合成。在某些实施方案中,基因调节区域可以来自在刺激后约0秒到约10秒、约1秒到约10秒、约10秒到约20秒、约30秒到约40秒、约50秒到约1分钟或者约1秒到约1分钟被激活的即早基因。在某些实施方案中,基因调节区域可以来自在刺激后约1分钟到约2分钟、约1分钟到约5分钟、约5分钟到约10分钟、约10分钟到约20分钟、约20分钟到约30分钟、约1分钟到约30分钟、约1秒钟到约30分钟,或者约1秒钟到约45分钟被激活的即早基因。
在某些实施方案中,基因调节区域可以来自在刺激后约30分钟到约1小时、约1小时到约1.5小时、约1小时到2小时、约2小时到3小时或者约3小时到约4小时被激活的基因。在某些实施方案中,基因调节区域可以来自刺激后约45分钟、约1小时、约1.5小时、2小时、2.5小时、3小时、3.5小时或4小时被激活的基因。
当在本文中用于调整数值或数值范围时,术语“约(about)”和“大约(approximately)”表明与该数值或范围存在合理偏差,通常在该数值或范围之上10%和之下10%,而仍在所述的数值或范围预期的意义之内。
其基因调节区域可以被利用的示例性的即早基因包括但不限于编码CREB、c-fos、FosB、delta FosB、c-jun、CREM、zif/268、tPA、Rheb、RGS2、CPG16、COX-2、Narp、BDNF、CPG15、Arcadlin、Homer-1a、CPG2和Arc的基因。这样的基因调节区域是本领域技术人员所熟知的。在一个具体实施方案中,根据本文所述方法使用的即早基因是c-fos。本领域技术人员将认识到,来自目前已知的或随后被发现的其它即早基因的基因调节区域可以根据本文所述的方法利用。
在另一个方面,在本文中提供的方法中使用的转基因动物包含一个或多个晚期/次级基因(即,不是即早基因的基因)的基因调节区域。在一些实施方案中,晚期/次级基因是在诸如即早基因的另一个基因的下游被激活的(且,例如需要诸如即早基因的另一个基因的蛋白合成的)基因。在一些实施方案中,晚期/次级基因是通过另外的慢细胞信号机制(例如在刺激后超过30分钟、超过45分钟、超过1小时、超过2小时、超过4小时、超过6小时或者超过12小时被激活)被激活的基因。在某些实施方案中,基因调节区域可以来自在刺激后的45分钟、1小时、2小时、3小时、4小时、6小时、8小时、10小时、12小时或24小时之内被激活的晚期/次级基因。在某些实施方案中,基因调节区域可以来自在刺激后约1小时、2小时、3小时、4小时、4.5小时、5小时、6小时、7小时、8小时、9小时、10小时、11小时、12小时、13小时、14小时、15小时、16小时、17小时、18小时、19小时、20小时、21小时、22小时、23小时或1天得到表达的晚期/次级基因。在某些实施方案中,基因调节区域可以来自在刺激后表达约2天、3天、4天、5天、6天或一周的晚期/次级基因。在某些实施方案中,基因调节区域可以来自在刺激后表达约2周、3周、4周、1个月或超过1个月的晚期/次级基因。在某些实施方案中,基因调节区域可以来自在刺激后约1小时到约4小时、4小时到约6小时、约6小时到约12小时、约12小时到约1天、约1天到约2天、约3天到约5天、约5天到约1周、约1周到约2周、约2周到约3周,或者约3周到约1个月得到表达的晚期/次级基因。
其基因调节区域可以被利用的示例性的晚期/次级基因包括但不限于编码神经丝轻链(neurofilament light chain)、突触蛋白(synapsins)、谷氨酸脱羧酶(GAD)、TGF-beta、NGF、PDGF、BFGF、酪氨酸羟化酶、纤连蛋白、溶酶原激活物抑制剂-1(plasminogen activator inhibitor-1)、过氧化物歧化酶(SOD1)和胆碱乙酰基转移酶(choline acetyltransferase)。这些基因调节区域是本领域技术人员所熟知的。本领域技术人员将认识到,来自目前已知的或随后被发现的其它晚期/次级基因的基因调节区域可以根据本文中所述的方法被利用。在一些实施方案中,基因调节区域是人的晚期/次级基因的基因调节区域。
在一些实施方案中,在一个特定的组织或一些组织中(例如,脑、肝脏、心脏或任何其它的组织),即早基因和晚期/次级基因的基因调节区域被激活。参见Loebnch&Nedivi,Physiol.Rev.89:1079-1103(2009);Clayton,Neurobiology,Learning和Memory74:185-216(2000)。
在另一方面,本文所提供的方法中使用的转基因动物包含转基因,该转基因包含即早基因和晚期/次级基因的基因调节区域。
在某些实施方案中,该转基因包含基因的完整启动子。
在某些实施方案中,该转基因包含基因的完整启动子以及基因的其它核酸。例如,基因调节区域包括目的基因的启动子并且另外包含该基因的约或至少10、20、30、40、50、60、70、80、90、100、150、200、300、400、500、1000、2000、3000、4000或者5000个核酸。
在某些实施方案中,转基因包含基因的完整启动子以及该基因和/或临近的DNA序列的(例如,以其天然状态出现(例如,在受试者体内)或者以工程化DNA构造体出现(例如,质粒或DNA的扩增片段)的基因上游或者下游的DNA序列、内含子或外显子)其它的核酸。例如,基因调节区域包括目的基因的启动子并且另外包含该基因和/或临近的DNA序列的约或至少10、20、30、40、50、60、70、80、90、100、150、200、300、400、500、1000、2000、3000、4000或者5000个核酸。
在某些实施方案中,转基因包含基因的启动子以及其它核酸的数十到数百的千碱基。在一个具体实施方案中,这样的基因调节区域作为(或者作为其部分)细菌人工染色体(BAC)或作为(或者作为其部分)酵母人工染色体(YAC)生成。
在一些实施方案中,转基因包含基因的诸如启动子的基因调节区域的片段(例如,天然基因启动子的片段)。在具体实施方案中,基因调节区域的片段有效促进基因的转录。在一些实施方案中,该片段构成基因的基因调节区域(例如,天然启动子)的超过20%、30%、40%、50%、60%、70%、75%、80%、90%、95%、98%、99%。在一些实施方案中,本文所述方法中使用的基因的基因调节区域是已经突变了的天然的基因调节区域(例如,基因调节区域的一个或多个核苷酸已经被删除或替代,或者一个或多个核苷酸已经被添加到天然的调节区域)。
在某些实施方案中,转基因包括转基因动物(例如,转基因小鼠)的天然的基因启动子,其中,天然的基因启动子被连接到报告基因。生成这样的转基因小鼠的方法是本领域已知的并且如本文所描述(参见,例如第5.1.3部分)。
5.1.2 可检测的报告基因
本领域技术人员已知的任何报告基因均可以被用在本文所述的基因调节区域-报告基因构建体中。报告基因是指编码通过其存在或活性可以容易地检测到的蛋白的核苷酸序列。在具体实施方案中,报告基因包括基因的编码区(例如,不含有内含子序列的基因序列)。可以获得报告基因并且通过本领域技术人员所熟知的任何方法来确定报告基因的核苷酸序列。
在一个具体实施方案中,报告基因是荧光报告基因。荧光报告基因的例子包括但不限于编码绿色荧光蛋白(“GFP”)及其衍生物(例如,荧光蛋白、红色荧光蛋白、蓝绿色荧光蛋白和蓝色荧光蛋白)、荧光素酶(例如,萤火虫荧光素酶(firefly luciferase)、海肾荧光素酶(renilla luciferase)、基因改造的荧光素酶和叩头虫荧光素酶(click beetle luciferase))和珊瑚来源的蓝绿色和红色荧光蛋白(以及来源于珊瑚的红色荧光蛋白的变体,例如黄色、橙色和远红外的变体)的核苷酸序列。在一个具体实施方案中,编码GFP的核苷酸序列来源于水母(jellyfish Aequorea)(例如,维多利亚水母(AequoreaVictoria))或者珊瑚(例如,八放珊瑚(Renialla reniforms)、石珊瑚(Galaxeidae))。在一些实施方案中,编码蓝绿色荧光蛋白的核苷酸序列来源于造礁珊瑚(例如,海葵(Anemonia majano),羽珊瑚(Clavularia)或石珊瑚(Acropara))。在一些实施方案中,编码红色荧光蛋白的核苷酸序列来源于珊瑚(例如,香菇珊瑚(Discosoma)、紫点海葵(Heteractis crispa))。
在另一个具体实施方案中,可检测的报告基因不是荧光报告基因,例如该报告基因是催化性的报告基因。催化性的报告基因的例子包括但不限于β-半乳糖苷酶(“β-gal”)、β-葡萄糖醛酸酶、β-内酰胺酶、氯霉素乙酰转移酶(“CAT”)、辣根过氧化物酶和碱性磷酸酶(“AP”)。
本领域技术人员可以理解,本文中述的调节区域-报告基因构建体中被利用的报告基因可以使用本文中所述的方法容易地检测,并且这样的检测表明应答刺激(例如,药物)的基因调节区域的活化。
5.1.3 制备调节区域-报告基因构建体的方法
用于生产本文所述转基因动物的调节区域-报告基因构建体可以使用本领域技术人员知道的任何方法来制作,包括熟知的分子生物学方法(例如,在Sambrook et al.Molecular Cloning A Laboratory Manual,2nd Ed.Cold SpringLab.Press,1989年12月中所描述的方法)。可以生成包含调节区域-报告基因构建体的DNA构建体(例如,质粒)。与所选的基因调节区域(例如,c-fos调节区域)和所选的报告基因(例如,GFP)对应的核苷酸序列可以使用本领域已知的方法(例如,聚合酶链反应(PCR))获得,并且随后通过诸如DNA连接的本领域已知的方法彼此连接。这样的构建体然后被用于制备转基因动物的方法中(参见5.1.3部分)。
在一些实施方案中,使用细菌人工染色体(BAC)或酵母人工染色体(YAC)生成携带调节区域-报告基因构建体的转基因动物。
5.1.4 制备转基因非人类动物的方法
任何转基因、非人类动物可以根据本文所述的方法来使用。例如,根据本文所述方法使用的转基因动物可以是但不限于小鼠、大鼠、鸡、猴、猫、狗、鱼(例如,斑马鱼)、豚鼠或兔。在具体实施方案中,根据本文所述方法被使用的转基因动物是小鼠。在另一个具体实施方案中,根据本文所述方法使用的转基因动物是大鼠。在另一个具体实施方案中,根据本文所述方法使用的转基因动物是猴。
可以使用本领域已知的技术将所期望的调节区域-报告基因构建体引入到动物中,从而生产转基因动物的起始系(founder line)。这样的技术包括但不限于:原核显微注射(pronuclear microinjection)(参见例如,Manipulatingthe Mouse Embryo,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1986);细胞核移植入来自被诱导休眠的经培养的胚胎、胎儿或成年细胞的无核卵母细胞中(Campbell,et al.,1996,Nature380:64;Wilmut,et al.,Nature385:810);逆转录病毒介导的基因转移到生殖细胞系中(Van der Puttenet al.,Proc.Natl.Acad.Sci.USA82:6148-6152,1985);在胚胎干细胞中的基因打靶(Thompson et al.,Cell56:313-321,1989);胚胎的电穿孔(Lo,Mol.CellBiol.3:1803-1814,1983)和精子介导的基因转移(Lavitrano,et al.,Cell57:717-723,1989)等等。关于生成转基因动物的技术的综述参见Gordon,Intl.Rev.Cytol.115:171-229,1989。
在某些实施方案中,根据本文所述方法使用的转基因动物在其所有细胞中都含有转基因。在另外的实施方案中,根据本文所述方法使用的转基因动物在一些但不是所有的细胞中含有转基因,例如转基因动物是嵌合体动物。转基因可以整合为单个转基因或串联体(例如,头接头的串联体或头接尾的串联体)中被整合。该转基因也可以选择性地导入并且在一个特定细胞类型中被激活,通过下述例如Lasko等人的教导(Lasko,et al.,1992,Proc.Natl.Acad.Sci.USA89:6232)。这样的细胞类型特异的活化所需要的调节序列将取决于特定的目的细胞类型,并且对于本领域技术人员来说是显而易见的。
根据上述方法成功获得的转基因动物可以使用本领域已知的方法来测量,例如,通过使用Northern blot或PCR评价转基因的表达,或者通过评价转基因所编码的可检测标记物(例如,绿色荧光蛋白)的表达或功能。在某些实施方案中,转基因保持稳定地整合并且在多次传代的过程中得到表达。
根据本文所提供的方法使用的转基因动物可以是任何年龄或成熟状态。在某些实施方案中,根据本文所提供的方法使用的转基因动物年龄范围在从约0个月到约1个月大、从约1个月到约3个月大、从约3个月到约6个月大、从约6个月到约12个月大、从约6个月到约18个月大、从约18个月到约36个月大、从约1岁到约2岁大、从约1岁到约5岁大或者从约5岁到约10岁大。
在某些实施方案中,根据本文所提供的方法使用的转基因动物拥有本文中所提供的单个转基因。在其它实施方案中,根据本文所提供的方法使用的转基因动物拥有不止一个本文所提供的转基因。在一个具体实施方案中,根据本文所提供的方法使用的转基因动物拥有两个本文所提供的转基因。在另一个具体实施方案中,根据本文所提供的方法使用的转基因动物拥有三个本文所提供的转基因。在另一个具体实施方案中,根据本文所提供的方法使用的转基因动物拥有四个本文所提供的转基因。在另一个具体实施方案中,根据本文所提供的方法使用的转基因动物拥有五个以上本文所提供的转基因。
在某些实施方案中,根据本文所提供的方法使用的转基因动物具有对用在本文所述方法中的测试化合物的鉴定有用的特性。在一个具体实施方案中,根据本文所述方法使用的转基因动物怀孕了。在另一个具体实施方案中,根据本文所述方法使用的转基因动物是年轻的,例如,动物处于本领域技术人员认为对于该特定类型的动物来说是年轻的年纪。在另一个具体实施方案中,根据本文所述方法使用的转基因动物是年老的,例如动物处于本领域技术人员认为对于该特定类型的动物来说是年老的年纪。在另一个具体实施方案中,根据本文所述方法使用的转基因动物是中年的,例如该动物处于本领域技术人员认为对于该特定类型的动物来说是中年的年纪。
在另一个具体实施方案中,根据本文所述方法使用的转基因动物已经被工程化以使其具有某种疾病或症状,或者易于形成/获得某种疾病或症状,例如转基因动物代表一种给定疾病或症状的动物模型。
在一个具体实施方案中,根据本文所述方法使用的转基因动物是脑疾病或症状的动物模型。这类动物模型包括但不限于抑郁症(参见,例如,Hua-Cheng et al.,2010,"Behavioral animal models of depression,"Neurosci BullAugust1,2010,26(4):327-337;Vollmayr et al.,“Neurogenesis and depression:what animal models tell us about the link,”Eur Arch Psychiatry Clin Neurosci2007,257:300-303;Cryan et al.,“The tail suspension test as a model forassessing antidepressant activity:review of pharmacological and genetic studiesin mice,”Neurosci Biobehav Rev2005,29:571-625;Dulawa et al.,(2005),“Recent advances in animal models of chronic antidepressant effects:thenovelty-induced hypophagia test,”Neurosci.Biobehav.Rev.29,771–783;Willner et al.,“Chronic mild stress-induced anhedonia:a realistic animal modelof depression,”Neurosci Biobehav Rev1992,16:525-534)、焦虑症(参见,例如,Holmes,(2001),“Targeted gene mutation approaches to the study ofanxiety-like behavior in mice,”Neurosci.Biobehav.Rev.25,261–273;Blanchardet al.(2001)“Animal models of social stress:effects on behavior and brainneurochemical systems,”Physiol Behav.73,:261–271;Olivier et al.,“New animalmodels of anxiety,”Eur Neuropsychopharmacol.1994,4(2):93-102)、心境障碍(mood disorders)(Cryan et al.,“Animal models of mood disorders:Recentdevelopments,”Curr Opin Psychiatry2007,20:1-7)、精神分裂症(schizophrenia)(参见,例如,Marcotte et al.,“Animal models of schizophrenia:a critical review,”J Psychiatry Neurosci.,2001,26(5):395–410)、孤独症(autism)(参见,例如,Moy,S.S.,and Nadler,J.J.,(2008),“Advances inbehavioral genetics:mouse models of autism,”Molecular psychiatry13:14-26)、脑卒中(stroke)(参见,例如,Beech et al.,(2001),"Further characterisation ofa thromboembolic model of stroke in the rat,"Brain Res895(1–2):18–24;Chen etal.,(1986)“A model of focal ischemic stroke in the rat:reproducible extensivecortical infarction,”Stroke17(4):738–43)、阿尔茨海默病和痴呆(Gotz et al.,“Transgenic animal models of Alzheimer's disease and related disorders:histopathology,behavior and therapy,”Mol Psychiatry.2004,9(7):664-83;Gotzet al.,(2008)“Animal models of Alzheimer's disease and frontotemporaldementia,”Nature Reviews Neuroscience9:532-544)和脑癌(参见,例如,WO2010/138659)的动物模型。
在另一个具体实施方案中,根据本文所述方法使用的转基因动物是人遗传疾病或症状的动物模型。已经描述了用于研究遗传疾病的动物模型(参见,例如,Hardouin和Nagy,“Mouse models for human disease,”Clinical Genetics57,237-244(2000);Yang et al.,“Towards a transgenic model of Huntington'sdisease in a non-human primate,”Nature453,921-924(2008);和Smithies,“Animal models of human genetic diseases,”Trends Genet.19939(4):112-6)。在一些实施方案中,根据本文所述方法使用的转基因动物被工程化,以携带与遗传的认知障碍(例如,孤独症、精神分裂症等)有联系的或相关联的基因突变。已经发现了与孤独症有联系的许多基因,并且发现大量的遗传小鼠模型在社交和其它复杂行为中受损害(Silverman et al.,2010,Nature Reviews11:490-502)。在一个实施方案中,本文所述的成像技术(例如,STP断层摄影术)可以用于表征动物模型中遗传性认知障碍的的潜在回路缺陷(circuitdeficits)。在一些实施方案中,本文所述方法可以用于鉴定可以治疗或逆转在遗传认知障碍动物模型中这样的回路缺陷或恢复正常脑功能的药物。
在另一个具体实施方案中,根据本文所述方法使用的转基因动物是癌症动物模型。癌症动物模型的例子通常包括但不限于伴侣动物的自发产生的肿瘤(参见,例如,Vail&MacEwen,2000,Cancer Invest18(8):781-92)。肺癌动物模型的例子包括但不限于Zhang和Roth所描述的肺癌动物模型(1994,In-vivo8(5):755-69)和带有被破坏的p53功能(disrupted p53function)的转基因小鼠模型(参见,例如,Morris et al.,1998,J La State Med Soc150(4):179-85)。乳腺癌动物模型的例子包括但不限于过量表达细胞周期蛋白D1的转基因小鼠(参见,例如,Hosokawa et al.,2001,Transgenic Res10(5):471-8)。结肠癌动物模型的例子包括但不限于TCR b和p53双敲除小鼠(参见,例如,Kado et al.,2001,Cancer Res.61(6):2395-8)。胰腺癌动物模型的例子包括但不限于PancO2鼠胰腺癌的转移瘤模型(参见,例如,Wang et al.,2001,Int.J.Pancreatol.29(1):37-46)和在皮下胰腺肿瘤中生成的nu-nu小鼠(参见,例如,Ghaneh et al.,2001,Gene Ther.8(3):199-208)。非霍奇金氏淋巴瘤动物模型的例子包括但不限于严重复合型免疫缺陷(severe combinedimmunodeficiency,“SCID”)小鼠(参见,例如,Bryant et al.,2000,Lab Invest80(4):553-73)和IgHmu-HOX11转基因小鼠(参见,例如,Hough et al.,1998,Proc.Natl.Acad.Sci.USA95(23):13853-8)。食道癌动物模型的例子包括但不限于人乳头瘤病毒型16E7癌基因转基因小鼠(参见,例如,Herber et al.,1996,J.Virol.70(3):1873-81)。结直肠癌动物模型的例子包括但不限于Apc小鼠模型(参见,例如,Fodde&Smits,2001,Trends Mol Med7(8):36973和Kuraguchiet al.,2000)。
在某些实施方案中,根据本文所述方法使用的转基因动物是心脏症状、糖尿病或脑卒中的动物模型。
5.2 化合物
本领域已知的或随后被发现的任何化合物都可以根据本文所述方法被利用(例如,作为测试化合物或者作为参考化合物),这些化合物包括但不限于小分子和诸如抗体、蛋白、多肽、反义DNA或RNA和RNAi的生物分子。
在一些实施方案中,化合物是参考化合物,该参考化合物在非人类动物或人类中的临床研究(优选,人临床研究)中已显示出产生治疗效果和/或已被表征毒性。在一些实施方案中,化合物是测试化合物,例如,其治疗效果或毒性特征未知的化合物。在具体实施方案中,化合物是其治疗效果和/或毒性特征需要去预测和/或测定的测试化合物。在某些实施方案中,测试化合物是具有已知治疗和/或毒性效果的一个或多个参考化合物(例如,2、3、4、5或者5个以上的化合物,或者化合物的混合物)的类似物或衍生物(例如,为了测试测试化合物是否具有与参考化合物相比的诸如改善的治疗或毒性特征的临床结果)。在一些实施方案中,1个以上的测试化合物(例如,2、3、4、5、6、7、8、9、10或10个以上的化合物)被用于本文所述的方法中。在某些实施方案中,测试化合物是2个、3个或更多化合物的混合物。在其它实施方案中,测试化合物是单一化合物而不是化合物的混合物。
根据本文所述方法使用的化合物可以通过任何本领域已知的或表明用于该特定化合物的方法来施与。当被施与转基因动物,化合物可以组合物的成分施与,该组合物可选地包含药学上可接受的载体、赋形剂或稀释剂。施与可以是全身的或局部的。多种递释系统是已知的(例如,在脂质体、微粒、微囊、胶囊中的包囊化)并且可以被用于施与该化合物。施与的范例形式包括但不限于肠胃外、皮内、肌内、腹膜内、静脉内、皮下、鼻内、硬膜外、经口、舌下、鼻内、颅内、阴道内、经皮、经直肠、通过吸入,或者局部的,特别是施与到耳、鼻、眼或皮肤。
根据本文所述方法使用的化合物可以可选地处于包含化合物和可选的载体、赋形剂或稀释剂的组合物的形式。术语“载体(carrier)”指稀释剂、佐剂(例如弗氏佐剂(Freund’s adjuvant)(完全或不完全))、赋形剂或者施与治疗剂的运输载体(vehicle)。这些载体可以是无菌液体,例如水和油类物质,包括石油、动物、植物或合成来源的油类物质,例如,花生油、豆油、矿物油、芝麻油等等。当组合物通过静脉注射来施与时,水是一种具体的载体。盐水溶液和含水葡萄糖(aqueous dextrose)和甘油溶液也可以用作液体载体,特别是可注射溶液。合适的赋形剂是药学领域技术人员所熟知的并且合适赋形剂的例子包括但不限于淀粉、葡萄糖、乳糖、蔗糖、明胶、麦芽、大米、面粉、白垩土(chalk)、硅胶、硬脂酸钠、单硬脂酸甘油酯、滑石、氯化钠、干燥的脱脂乳粉、甘油、丙烯、乙二醇、水、乙醇等等。一个特定赋形剂是否适合并入到组合物或剂型中取决于本领域熟知的各种因素,包括但不限于剂型施与受试者的方式和剂型中的具体活性成分。若需要,组合物或单剂量剂型也可以含有少量的润湿剂或乳化剂,或pH缓冲剂。组合物和单剂量剂型可以使用溶液、悬浮剂、乳剂、片剂(tablets)、丸剂(pills)、胶囊剂、粉末剂、缓释剂型(sustained-release formulations)等形式。
在本文所述方法的成功应用中有效的化合物的量(amount)/剂量(dose)可以通过标准临床技术来测定。可以选择性地利用体外或体内试验以帮助确定最佳剂量范围。要使用的精确剂量也取决于例如给药途径和该化合物所适合的疾病或失调的类型。
在一些实施方案中,在所述方法中使用的测试化合物的量/剂量与一个或多个参考化合物(例如,多数或所有的参考化合物)的量/剂量相同(或大约相同)。在具体实施方案中,所述方法中使用的测试化合物的量/剂量以少于参考化合物量/剂量的75%、50%、40%、30%、20%、10%或者5%而不同于一个或多个参考化合物(例如,多数或所有的参考化合物)的量/剂量。在其它实施方案中,所述方法中使用的测试化合物的量/剂量与一个或多个参考化合物的的量/剂量不同。
在某些实施方案中,使用所述的方法来分析两个或多个剂量(例如,2、3、4、5、6、7、8、9、10个或者2、3、4、5、6、7、8、9、10个以上的量/剂量)的化合物(例如,测试化合物或参考化合物)的效果。在具体实施方案中,两个或多个剂量的化合物的使用使得能够生成化合物的剂量曲线。在一些实施方案中,在每一个剂量生成化合物的药学图谱。在一些方面,两个或更多化合物的一个以上剂量的使用和每一个化合物的剂量曲线的生成(例如,在每一个测试剂量一个药学图谱读出)允许化合物的临床结果之间的差别。在一个实施方案中,基于其在一个更低的剂量获得其它化合物达到的治疗效果(相同的或改善的治疗效果)的能力来选择化合物。在另一个实施方案中,基于其在一个相同或更低的剂量获得其它化合物达到的改善的治疗效果的能力来选择化合物。在另一个实施方案中,基于其在一个相同或更高的剂量下没有获得比其它化合物达到的毒性或获得更低毒性来选择化合物。两个或更多化合物的剂量曲线的生成可以增加区分相关药物(例如,结构上相似的药物)的能力(例如,选择一个被预测具有最有益的临床结果的化合物)。在一些方面,测试化合物的两个或更多剂量可以根据所述的方法进行分析,从而生成测试化合物的剂量曲线(例如,在每一个测试剂量的药学图谱读出)。在一些方面,参考化合物的两个或更多剂量可以根据所述的方法进行分析,从而生成参考化合物的剂量曲线(例如,在每一个测试剂量的药学图谱读出)。在一些实施方案中,测试化合物或参考化合物在每一个测试剂量的药学图谱被存储在数据库中。在具体实施方案中,测试化合物临床益处(例如,治疗或毒性益处)的预测涉及确定测试化合物剂量曲线与一个或多个具有已知临床特征的参考化合物的剂量曲线之间的相似性或区别。
根据本文所述方法使用的化合物的示例性剂量包括每天每千克受试者或样本体重毫克(mg)或微克(μg)的量(例如,从每天每Kg约1μg到约每天每Kg约500mg、从每Kg约5μg到每天每Kg约100mg,或者从每Kg约10μg到每天每Kg约100mg)。在具体实施方案中,每天剂量为至少0.1mg、0.25mg、0.5mg、0.75mg、1.0mg、2.0mg、5.0mg、10mg、25mg、50mg、75mg、100mg、150mg、250mg、500mg、750mg或至少1g。在另一个实施方案中,剂量是约0.1mg、1mg、5mg、10mg、50mg、100mg、150mg、200mg、250mg、300mg、350mg、400mg、500mg、550mg、600mg、650mg、700mg、750mg、800mg或者更多的单位剂量。在另一个实施方案中,剂量是从约0.1mg到约1000mg、1mg到约1000mg、5mg到约1000mg、约10mg到约500mg、约150mg到约500mg、约150mg到约1000mg、250mg到约1000mg、约300mg到约1000mg或者约500mg到约1000mg的单位剂量。在另一个实施方案中,非人类动物(例如,转基因动物)被施与一个或多个剂量的有效量的化合物或组合物,其中,每一个剂量的有效量是不同的。
在某些实施方案中,根据本文所述方法使用的化合物被一次施与非人类动物(例如,转基因动物)。在某些实施方案中,根据本文所述方法使用的化合物被不止一次施与非人类动物(例如,转基因动物),例如,该化合物被施与2次、3次、4次、5次、6次、7次、8次、9次、10次或者10次以上。
在某些实施方案中,根据本文所述方法使用的化合物被连续地施与非人类动物(例如,转基因动物),即,该动物被装上了一个可以使得化合物连续灌注到该动物长达一段所期望的时间的机械装置(例如,泵、静脉注射器(i.v.)、导管(catheter)或者其它本领域技术人员已知的合适机械装置)。
在某些实施方案中,根据本文所述方法使用的化合物被不止一次施与非人类动物(例如,转基因动物),给药间隔之间有规定的时间段。例如,化合物可以每5分钟、每10分钟、每20分钟、每30分钟、每1小时、每2小时、每3小时、每4小时、每5小时、每6小时、每7小时、每8小时、每9小时、每10小时、每11小时、每12小时、每24小时(即,逐日地在每天同一时间)、每周或每月被施与非人类动物(例如,转基因动物)一段所期望的时间。在某些实施方案中,根据本文所述方法使用的化合物可以被不止一次施与非人类动物(例如,转基因动物),给药间隔之间有规定的时间段,其中,所述化合物每1-5分钟、每5-10分钟、每10-20分钟、每20-30分钟、每30-60分钟、每1-2小时、每2-4小时、每4-8小时、每8-12小时、每12-16小时、每16-20小时、每20-24小时、每1-2天、每1-3天、每2-4天、每5-7天、每7-14天、每14-21天或者每21-28天被给药。
在某些实施方案中,当根据本文所述方法使用的化合物被施与非人类动物(例如,转基因动物)以便分析动物对该化合物的急性反应时,该化合物可以单一剂量或多剂量来给药,之后紧接着(例如,几小时内)使用本文所述方法的分析。
在某些实施方案中,当根据本文中所述的方法使用的化合物被施与非人类动物(例如,转基因动物)以便分析动物对该化合物的长期反应时,该化合物可以单一剂量或多剂量来给药,之后在晚一点的时间段使用本文所述方法的分析,例如,可以在该化合物初始给药之后的几天、几周或几个月来实施分析。
在一些实施方案中,根据本文所述方法使用的化合物被反复地或长期地施与非人类动物(例如,转基因动物)达数天(例如,2天、3天、4天、5天、6天、7天、8天、9天、10天、11天、12天或者13天)、数周(例如,2周、3周、4周、5周、6周或7周)或者数月(例如,2月、3月、4月、5月、6月、7月、8月、9月、10月、11月、12月、18月、24月、30月或者36月),然后在该化合物的最后一次给药之后使用本文所述方法进行分析。在具体实施方案中,通过这样的方法生成的药学图谱将代表慢性效应的药学图谱。在具体实施方案中,当根据本文所述方法使用的化合物被反复地或长期地施与非人类动物(例如,转基因动物)长至少1周、至少2周、至少3周、至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月、至少8个月、至少10个月或者至少1年,然后在该化合物的最后一次给药之后使用本文中所述方法进行分析。
在一个具体实施方案中,根据本文所述方法使用的化合物是能够穿过血脑屏障的化合物。在另一个具体实施方案中,根据本文所述方法使用的化合物可以是其天然地不能穿过血脑屏障,但是可以使用本领域技术人员已知的方法使其穿过血脑屏障。
转运化合物穿过血脑屏障的物理方法包括但不限于完全地绕开血脑屏障或者通过在血脑屏障中制造开口。绕开的方法包括但不限于直接注入脑内(参见,例如,Papanastassiou et al.,Gene Therapy9:398-406(2002))和在脑内植入一个输送装置(参见,例如Gill et al.,Nature Med.9:589-595(2003);和Gliadel WafersTM,Guildford Pharmaceutical)。在血脑屏障中制造开口的方法包括但不限于超声(参见,例如,公开号为2002/0038086的美国专利)、渗透压(例如,通过高渗甘露醇的施与(Neuwelt,E.A.,Implication of theBlood-Brain Barrier and its Manipulation,Vols1&2,Plenum Press,N.Y.(1989)))、使用诸如缓激肽或透化剂A-7的透化作用(参见,例如专利号为5,112,596、5,268,164、5,506,206和5,686,416的美国专利)。
转运化合物穿过血脑屏障的基于脂质的方法包括但不限于将化合物埋封(encapsulating)到与结合到血脑屏障血管内皮上的受体的抗体结合片段偶联的脂质体中(参见,例如,公开号为20020025313的美国专利申请)和将化合物包被在低密度脂蛋白颗粒(参见,例如,公开号为20040204354的美国专利申请)或者载脂蛋白E(参见,例如,公开号为20040131692的美国专利申请)中。
转运化合物穿过血脑屏障的基于受体和通道的方法包括但不限于使用糖皮质激素阻断剂以增加血脑屏障的渗透性(参见,例如,公开号为2002/0065259、2003/0162695和2005/0124533的美国专利申请)、激活钾通道(参见,例如,公开号为2005/0089473的美国专利申请)、抑制ABC药物转运蛋白(参见,例如,公开号为2003/0073713的美国专利申请)、用转铁蛋白包被化合物和调节一个或多个转铁蛋白受体的活性(参见,例如,公开号为2003/0129186的美国专利申请)和使化合物阳离子化(cationizing)(参见,例如,专利号为5,004,697的美国专利)。
在另一个具体实施方案,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在脑疾病或失调的治疗中是有效的,所述脑疾病或失调包括但不限于精神疾病或失调、躁狂症、焦虑症、抑郁症、精神分裂症、双相情感障碍(bipolar disorder)、多重人格障碍(multiple personalitydisorder)、阿尔茨海默病、痴呆(dementia)、脑癌、脑卒中、创伤性脑损伤(traumatic brain injury,TBI)和偏头痛(migraines)。
在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在精神疾病或失调的治疗中是有效的,例如,该化合物是抗精神病化合物。抗精神病化合物的非限制性清单包括氯丙嗪(托拉嗪(Thorazine))、氟哌啶醇(好度(Haldol))、羟哌氯丙嗪(奋乃静(Trilafon))、羟哌氟丙嗪(盐酸氟奋乃静(Permitil))、氯氮平(可致律(Clozaril))、利培酮(维思通(Risperdal))、奥氮平(再普乐(Zyprexa))、奎硫平(思瑞康(Seroquel))、齐拉西酮(卓乐定(Geodon))、阿立哌唑(安律凡(Abilify))、帕潘立酮(思维佳(Invega))、氯普噻吨(泰尔登(Taractan))、洛沙平(克塞平(Loxitane))、美索达嗪(mesoridazine,美索达嗪苯碘酸盐(Serentil))、吗啉吲酮(molindone,吗啉啶醇(Lidone)、盐酸吗茚酮(Moban))、奥氮平(再普乐(Zyprexa))、哌迷清(pimozide(Orap))、甲硫哒嗪(thioridazine(Mellaril))、甲哌硫丙硫蒽(thiothixene(Navane))、三氟吡啦嗪(trifluoperazine,三氟拉嗪(Stelazine))和三氟丙嗪(trifluopromazine,施必林(Vesprin))。
在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在抑郁症的治疗中是有效的,例如,该化合物是抗抑郁症化合物。抗抑郁症化合物的非限制性清单包括诸如氟西汀(Fluoxetine(百忧解Prozac))、西酞普兰(Citalopram(喜普妙Celexa))、舍曲林(Sertraline(左洛复Zoloft))、氟伏沙明(fluvoxamine(兰释Luvox))、帕罗西汀(Paroxetine(Paxil))和艾司西酞普兰(Escitalopram(来士普Lexapro))的血清素再摄取抑制剂(SSRI);诸如文拉法辛(venlafaxine(郁复伸Effexor))和度洛西汀(duloxetine(欣百达Cymbalta))的血清素和去甲肾上腺素再摄取抑制剂(SNRI);丁氨苯丙酮(bupropion(威博隽Wellbutrin));阿米替林(amitriptyline(Elavil));阿莫沙平(amoxapine(氯氧平Asendin));氯丙咪嗪(clomipramine(安那芬尼Anafranil));脱甲丙咪嗪(desipramine(地昔帕明(Norpramin)、Pertofrane));多虑平(doxepin(多塞平Adapin、Sinequan));丙咪嗪(imipramine(Tofranil));三环类化合物;四环类化合物;和诸如异噁唑酰肼(isocarboxazid(马普兰(Marplan))、苯乙肼(Nardil)和反苯环丙胺(tranylcypromine(Parnate))的单胺氧化酶抑制剂(MAOI)。
在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在焦虑症的治疗中是有效的,例如,该化合物是抗焦虑症化合物。抗焦虑症化合物的非限制性清单包括阿普唑仑(alprazolam(安宁神Xanax))、丁螺环酮(buspirone(布斯帕BuSpar))、利眠宁(chlordiazepoxide(Librax、Libritabs、Librium))、氯硝西泮(clonazepam(克诺平Klonopin))、氯氮(clorazepate(Azene、氯卓酸钾Tranxene))、地西泮(diazepam(待捷盼valium))、哈拉西泮(halazepam(Paxipam))、氯羟去甲安定(lorazepam(安定文Ativan))、去甲羟基安定(oxazepam(舒宁Serax))和普拉西泮(prazepam(Centrax))。
在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在躁狂症的治疗中是有效的,例如,该化合物是抗躁狂症化合物。抗躁狂症化合物的非限制性清单包括卡马西平(carbamazepine(得理多Tegretol))、双丙戊酸钠(divalproex sodium(Depakote))、加巴喷丁(gabapentin(诺立汀Neurontin)、拉莫三嗪(lamotrigine(利必通lamictal))、碳酸锂(lithium carbonate(Eskalith、Lithane、Lithobid))、柠檬酸锂(Cibalith-S)和托吡酯(topimarate(妥泰Topamax))。
在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在阿尔茨海默病的治疗中是有效的。用在阿尔茨海默病的治疗中的化合物的非限制性清单包括但不限于多奈哌齐(donepezil(安理申Aricept))、加兰他敏(galantamine(Razadyne))、美金刚(memantine(钠门达Namenda))、卡巴拉汀(rivastigmine(艾斯能Exelon)和他克林(tacrine(Cognex))。
在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在肝脏疾病或失调的治疗中是有效的。在另一个具体实施方案中,根据本文所述方法使用的化合物是参考化合物,已知该参考化合物在除了脑和/或肝脏以外的诸如胰腺、心脏、脾脏、胃、肺、小肠、大肠、肾脏、膀胱、卵巢、睾丸或前列腺的身体组织或器官的疾病或失调的治疗中是有效的。
根据本文所述方法可以被使用的其它化合物包括但不限于核苷类似物(例如,齐多夫定、阿昔洛韦、更昔洛韦、阿糖腺苷、碘苷、三氟尿苷和三唑核苷)、膦甲酸、金刚烷胺、帕拉米韦、金刚烷乙胺、沙奎那韦、茚地那韦、利托那韦、α-干扰素和其它干扰素、AZT,扎那米韦奥司他韦阿莫西林、两性霉素-B、氨苄西林、阿奇霉素、杆菌肽、头孢克洛、头孢氨苄、氯霉素、环丙沙星、粘菌素、达托霉素、强力霉素、红霉素、氟康唑、庆大霉素、伊曲康唑、卡那霉素、酮康唑、林可霉素、甲硝唑、米诺环素,莫西沙星、莫匹罗星、新霉素、氧氟沙星、苯唑西林、青霉素、哌拉西林、利福平,大观霉素、链霉素、舒巴坦、磺胺甲恶唑、泰利霉素、替莫西林、泰乐菌素、万古霉素和伏立康唑。
根据本文所述方法可以被使用的其它化合物包括但不限于阿西维辛、蒽环类药物、安曲霉素、阿扎胞苷(Vidaza)、二膦酸盐(例如,帕米膦酸二钠(Aredria)、氯膦酸钠(clondronate,骨膦(Bonefos))、唑来膦酸(择泰(Zometa))、阿仑膦酸钠(福善美(Fosamax))、依替膦酸盐、伊班膦磷酸盐(ibandornate)、西马膦酸盐(cimadronate)、利塞膦酸盐(risedromate)和替鲁膦酸盐(tiludromate))、卡铂、苯丁酸氮芥、顺铂、阿糖胞苷(Ara-C的)、盐酸柔红霉素、地西他滨(达克金(Dacogen))、去甲基化剂、多西他赛、阿霉素、EphA2抑制剂、依托泊苷、法扎拉滨、氟尿嘧啶、吉西他滨、组蛋白去乙酰化酶抑制剂化酶(HDACs)、白细胞介素II(包括重组白介素II或rIL2)、干扰素α、干扰素β、干扰素γ、来那度胺(Revlimid)、抗-CD2抗体(例如,西利珠单抗(siplizumab)(MedImmune公司,国际公开号为WO02/098370的专利,其以全文通过引用并入本文中))、美法仑、甲氨蝶呤、丝裂霉素、奥沙利铂、紫杉醇、嘌呤霉素、利波腺苷、螺铂、替加氟、替尼泊苷、硫酸长春碱、硫酸长春新碱、伏氯唑、折尼铂、净司他丁、盐酸佐柔比星、血管生成抑制剂、反义寡核苷酸、细胞凋亡基因调节剂、细胞凋亡调节剂、BCR/ABL拮抗剂、β-内酰胺衍生物、酪蛋白激酶抑制剂(ICOS)、雌激素激动剂、雌激素拮抗剂、谷胱甘肽抑制剂、HMG CoA还原酶抑制剂、免疫刺激肽、类胰岛素生长因子-1受体抑制剂、干扰素激动剂、干扰素、白细胞介素、亲脂性铂化合物、基质溶解酶抑制剂、基质金属蛋白酶抑制剂、不匹配的双链RNA、一氧化氮调节剂、寡核苷酸、铂化合物、蛋白激酶C抑制剂、蛋白酪氨酸磷酸酶抑制剂、嘌呤核苷磷酸化酶抑制剂、raf拮抗剂、信号转导抑制剂、信号转导调节剂、翻译抑制剂、酪氨酸激酶抑制剂和尿激酶受体拮抗剂。
根据本文所述方法可以被使用的其它化合物包括但不限于包括蛋白质、多肽、肽、偶联物、抗体的抗血管生成剂(例如,人的、人源化的、嵌合的、单克隆的、多克隆的、Fv、scFv、Fab片段、F(ab)2片段,及其抗原结合片段),例如特异性结合TNF-α的抗体、降低或抑制血管生成的核酸分子(例如,反义分子或三螺旋)、有机分子、无机分子和小分子;抗炎剂,其包括:非甾体抗炎药(NSAID)(例如,塞来昔布(CELEBREXTM)、双氯芬酸(扶他林TM)、依托度酸(LODINETM)、非诺洛芬(NALFONTM)、吲哚美辛(INDOCINTM)、酮咯酸(ketoralac)(TORADOLTM)、奥沙普秦(DAYPROTM)、萘丁美酮(nabumentone)(RELAFENTM)、舒林酸(CLINORILTM)、托美丁(TOLECTINTM)、罗非昔布(VIOXXTM)、萘普生(ALEVETM、NAPROSYNTM)、酮洛芬(ACTRONTM)和萘丁美酮(RELAFENTM))、甾体类抗炎药(例如,糖皮质激素,地塞米松(DECADRONTM)、皮质类固醇(例如,甲基强的松龙(MEDROLTM))、可的松、氢化可的松、强的松(PREDNISONETM和DELTASONETM)和泼尼松龙(PRELONETM和PEDIAPREDTM))、抗胆碱能药物(例如,硫酸阿托品、甲硝阿托品和异丙托溴铵(ATROVENTTM))、β2-激动剂(例如,沙丁胺醇(abuterol)(VENTOLINTM和PROVENTILTM)、比托特罗(TORNALATETM)、左旋沙丁胺醇(XOPONEXTM)、奥西那林(ALUPENTTM)、吡布特罗(MAXAIRTM)、特布他林(BRETHAIRETM和BRETHINETM)、沙丁胺醇(PROVENTILTM、REPETABSTM和VOLMAXTM)、福莫特罗(FORADIL AEROLIZERTM)和沙美特罗(SEREVENTTM和SEREVENTDISKUSTM)),和甲基黄嘌呤(例如,茶碱(UNIPHYLTM、THEO-DURTM、SLO-BIDTM和TEHO-42TM))的抗炎剂。
根据本文所述方法可以被使用的其它化合物包括但不限于烷化剂、亚硝基脲、抗代谢物、蒽环类药物、拓扑异构酶II抑制剂和有丝分裂抑制剂。烷化剂包括,但不限于,白消安、顺铂、卡铂、苯丁酸氮芥(cholormbucil)、环磷酰胺、异环磷酰胺、达卡巴嗪、氮芥、美法仑和替莫唑胺(themozolomide)。亚硝基脲包括,但不限于,卡莫司汀(BCNU)和洛莫司汀(CCNU)。抗代谢物包括,但不限于,5-氟尿嘧啶、卡培他滨、甲氨蝶呤、吉西他滨、阿糖胞苷和氟达拉滨。蒽环类药物包括但不限于柔红霉素、阿霉素、表阿霉素、伊达比星和米托蒽醌。拓扑异构酶II抑制剂包括,但不限于,拓扑替康、伊立替康、依托泊苷(VP-16)和替尼泊苷。有丝分裂抑制剂包括,但不限于,紫杉烷类(紫杉醇、多西紫杉醇)和长春花生物碱类(长春碱、长春新碱和长春瑞滨)。
在具体实施方案中,根据本文所述方法使用的化合物是实施例中所述的任意一个或多个化合物。在一些实施方案中,根据本文所述方法使用的化合物是实施例9、10、11和/或12中所述的任意一个或多个化合物。在一个具体实施方案中,根据本文所述方法使用的化合物是实施例11中所述的任意一个或多个化合物。
5.3 用于分析的动物的制备
在一些实施方案中,使用本领域技术人员已知的技术制备根据本文所述方法所使用的非人类动物,以用于在不处死该动物的情况下获取/移除组织的步骤。在其它实施方案中,使用本领域已知的任何方法处死根据本文所述方法所使用的非人类动物(例如转基因动物)。在某些实施方案中,根据本文所述方法所使用的非人类动物以确保了该动物的组织会适合于所期望的类型的分析的方式被处死。例如,如果被分析的非人类动物的组织是脑,那么该动物以不会干扰/破坏脑组织的方式被处死。在一个具体实施方案中,根据所述方法使用的被处死的非人类动物是具有一个或多个转基因的转基因动物。在另一具体实施方案中,根据所述方法使用的被处死的非人类动物不是转基因动物。
在某些实施方案中,根据本文所提供的方法使用的非人类动物使用心内灌注(intracardiac perfusion)来处死。简要地说,诸如小鼠的非人类动物可以通过如下述的心内灌注来处死:通过注射(例如,腹膜内注射)麻醉剂(例如,盐酸氯胺酮和甲苯噻嗪)来麻醉非人类动物;一旦达到深度麻醉,该动物以背卧的方式被钉住,胸腔被迅速打开并且右心房用剪刀剪开。将针放置在左心室中并且在右心室制造一个切口。然后,用针将盐水冲入心脏长达一段足以杀死非人类动物的时间(例如,约4分钟)。接着,多聚甲醛(如4%多聚甲醛)被冲入心脏直到身体变得僵硬。在一个具体实施方式中,当将要根据本文提供的方法分析的组织是脑组织时,该方法中所使用的动物使用心内灌注来处死。
处死非人类动物的其它方法包括但不限于使用巴比妥酸盐或其它合适的安乐死溶液的动物注射(例如,腹膜内注射)、将动物暴露于诸如二氧化碳、甲氧氟烷或氟烷的气体环境;和动物的颈脱位法。
一旦非人类动物被处死,可以获取该动物的所需要用于分析的组织(例如,脑组织),以用于-例如,如果所需要分析的组织是脑组织,可以随后将该动物断头并分离脑组织。所需要用于分析的任何组织均可以从被处死的非人类动物获取,其包括但不限于从脑、肝脏、胰腺、心脏、脾、胃、肺、小肠、大肠、肾脏、膀胱、卵巢、睾丸或前列腺得到的组织。在某些实施方案中,在非人类动物被处死后,可以从非人类动物获取多个组织,例如,脑、肝和/或其它组织从该动物分离。在一些实施方案中,获取整个器官,例如,全脑、全肝、整个心脏(或者非人类动物身体的任何其它器官)。在其它实施方案中,从非人类动物获取器官的一块、部分或节。
然后该组织可以在合适的固定剂(例如,4%多聚甲醛)中被后固定达数小时或更长时间(例如,过夜或达数天至数周)。在某些实施方案中,一旦被固定,该组织可以在合适的条件(例如,在4℃)下被存储(例如,达数小时、数天、数周、数月或更长时间),直到用于分析。
5.4 成像
从根据本文所述方法使用的非人类动物(例如转基因动物)获取的组织可以使用本领域技术人员已知的并且基于正在被检测的基因表达来说是合适的任何方法进行成像(例如,基于该转基因动物的转基因中所使用的报告基因来说合适的方法)。
在一些实施方案中,非人类动物的成像(例如,以检测荧光或酶报告基因的表达)可以通过光学显微镜术来完成。在其它实施例中,非人类动物的成像(例如,以检测天然基因的表达)可以在经免疫组织化学或原位杂交可视化天然基因的表达之后通过光学显微镜术来完成。
在某些实施方案中,在本文所述方法中使用的成像技术提供了组织中细胞的单细胞分辨率。在具体实施方案中,所使用的成像技术提供了表达转基因的细胞的单细胞分辨率。
在某些实施方案中,使用双光子细胞仪(two-photon cytometry)对非人类动物进行成像(参见,例如,Ragan et al.“High-resolution whole organimaging using two-photon tissue cytometry,”Journal of biomedical optics12,014015(2007))。
在一个具体实施方式中,如本文所述,通过连续的双光子(STP)断层摄影术对组织进行成像(参见,例如上述第5部分和下文的第6.1和6.8部分;Ragan et al.,Nature Methods9(3):255-258(2012))。简要地说,固定的琼脂包埋的非人类动物的组织(例如,小鼠脑)被放置在双光子显微镜的物镜下的XYZ载物台上的水浴中(参见,例如,Denk et al.,“Two-photon laserscanning fluorescence microscopy,”Science248,73-76(1990))并且成像参数被输入到显微镜的操作软件中。一旦参数被设定,该仪器全自动地工作:1)XYZ载物台移动物镜下的脑,从而使得光学切片(或光学Z-堆叠)以视场(FOV)的拼接图案来成像,2)一个内置振动刀片的薄片切片机(a built-invibrating blade microtome)从顶部机械性地切下组织切片,和3)重复重叠光学和机械切片的步骤直到收集到整个数据集。利用带振动刀片的薄片切片机来切片允许使用通过甲醛固定和琼脂包埋的简单步骤所制备的组织(如脑),这对于荧光和组织形态的不利影响最小。高速振镜扫描使得能够快速成像并且在不同实验的不同采样分辨率之间快速切换。因此,双光子显微镜的使用允许深部组织成像,这对于聚焦在表面之下以获得未被触及的光学切片并以在切片步骤之间收集高分辨率的Z-堆叠是有利的。在专利号为7,724,937的美国专利中一般性描述了STP显微镜术,该专利通过引用的方式以其全文并入本文中。
本文所述的能够用于成像非人类动物(例如,转基因动物)组织的其它成像技术包括全光组织学(参见,例如,Tsai,P.S.,et al.All-optical histologyusing ultrashort laser pulses.Neuron39,27-41(2003))、包埋的连续脑切片的自动化宽场荧光显微镜术(参见,例如,Lein,E.S.,et al.Genome-wide atlas ofgene expression in the adult mouse brain.Nature445,168-176(2007))、激光层照荧光显微镜术(light-sheet fluorescence microscopy,LSFM,又名选择性光片照明显微镜术(SPIM))(参见,例如,Huisken,J.,Swoger,J.,Del Bene,F.,Wittbrodt,J.&Stelzer,E.H.Optical sectioning deep inside live embryos byselective plane illumination microscopy.Science305,1007-1009(2004))、OCPI激光层照显微镜术、超显微术(参见,例如,Dodt,H.U.,et al.Ultramicroscopy:three-dimensional visualization of neuronal networks in the whole mouse brain.Nature methods4,331-336(2007))和显微光学切片断层摄影术(MOST)(参见,例如,Li,A.,et al.Micro-optical sectioning tomography to obtain ahigh-resolution atlas of the mouse brain.Science330,1404-1408(2011)),又名刀口扫描显微镜术(参见,例如,Mayerich,D.,Abbott,L.&McCormick,B.Knife-edge scanning microscopy for imaging and reconstruction ofthree-dimensional anatomical structures of the mouse brain.Journal ofmicroscopy231,134-143(2008))。
在另一个实施方案中,本文所述方法使用的成像技术是特定目的基因(例如,即早基因或报告基因)的原位杂交。这种技术可以被用于检测例如RNA的非编码区。
5.5 药学图谱;计算机处理和分析;药学图谱的数据集;
图1示出了用于药学图谱数据表示和分析处理的操作。在这个实施例中,对涉及应答测试化合物的非人类动物组织的化合物诱发的活化的数据进行收集和分析。计算识别的动物组织的活化可以在多维度表示中可视化。从这个多维度表示产生药学图谱。测试化合物或参考化合物的药学图谱分别代表应答测试化合物或参考化合物的非人类动物组织中的化合物诱发的活化的独特模式。不同化合物的药学图谱的比较和分析,例如,参考化合物的药学图谱与其它参考化合物的药学图谱的比较和分析,或者,参考化合物的药学图谱与测试化合物的药学图谱的比较和分析,可以基于被比较的参考药学图谱的已知效果提供对这些化合物的可能效果的洞察。例如,测试化合物的药学图谱的比较和分析可以基于被比较的参考药学图谱的已知效果提供对测试化合物的可能效果的洞察。
作为一个例证,测试化合物(例如,候选药物)被施与转基因动物(例如,小鼠)。获取转基因动物的组织(例如,脑组织)用于分析。对所获取的组织进行成像,并实施组织图像的计算分析以识别组织中活化的细胞。生成化合物诱发的活化的多维度,例如三维(3D)的数据表示。统计方法分析化合物诱发的活化的数据表示,以识别组织中的活化区域。生成了测试化合物的药学图谱数据表示。然后将所生成的药学图谱数据表示与具有用于预测测试化合物的可能效果的已知效果的参考化合物的药学图谱数据表示进行比较。
在其它实施方案中,具有已知的临床效果的参考化合物被施与转基因动物(例如,小鼠)。获取转基因动物的组织(例如,脑组织)用于分析。对所获取的组织进行成像,并实施组织图像的计算分析以识别组织中活化的细胞。生成了化合物诱发的活化的多维度,例如三维(3D)的数据表示。统计方法分析化合物诱发的活化的数据表示,以识别组织中活化的区域。生成了参考化合物的药学图谱数据表示。然后将所生成的药学图谱数据表示存储在数据库中(例如,参考化合物药学图谱的数据库)
图2描述了计算机应用的环境,其中使用者可以与通过网络被托管在一个或多个服务器上的药学图谱数据表示和分析系统进行交互。药学图谱的数据表示和分析系统可以协助使用者生成测试化合物的药学图谱数据表示。可以确定参考化合物的药学图谱与参考化合物的已知治疗或毒性效果之间的相关性。然后,基于测试化合物与参考化合物的药学图谱的比较来预测测试化合物的可能效果。
如图2所示,使用者可以通过诸如一个或多个网络上的很多途径与药学图谱数据表示和分析系统进行交互。通过网络可以访问的一个或多个服务器托管药学图谱数据表示和分析系统。(多个)服务器也可以包含或者访问一个或多个数据存储,以存储待通过药学图谱数据表示和分析系统分析的数据以及通过药学图谱数据表示和分析系统生成的任何中间的或最终的数据。
药学图谱数据表示和分析系统可以是为使用者提供实施药学图谱数据表示和分析的灵活性和功能性的基于Web的分析工具。应当理解的是,该系统也可以被安装在独立计算机上供使用者访问。
图3描述了生成药学图谱数据表示的操作。在这个实施例中,测试化合物被施与转基因动物,并对从该转基因动物获取的组织进行成像来捕获应答测试化合物的细胞的活化。生成被识别的活化细胞的多个维度(如3D)的表示,并且实施统计分析以识别有显著差异的区域。生成药学图谱数据表示以识别经应答测试化合物而被激活的解剖学组织区域。
具体而言,测试化合物被施与包含控制诸如荧光的可检测报告基因序列的表达的基因调节区域的转基因动物。例如,从诸如c-fos和Arc启动子的特异性IgE启动子表达作为替代标记物的绿色荧光蛋白(GFP)的转基因动物可以用于施与测试化合物。使用诸如用于生成连续的二维切片成像数据集的连续双光子(STP)断层摄影术的成像技术对从转基因动物获取的组织(例如,脑组织)进行成像。例如,为了活化细胞的计算检测,该组织的图像可以被重建为一系列二维切片。对被成像组织的数据进行计算分析,并且使用机器学习算法可以识别通过应答测试化合物而被激活的细胞。活化细胞的数据被用于生成被识别细胞的多个维度(例如,3D)的表示。各种统计技术可以用于分析所生成的多个维度(例如,3D)的表示,以识别对照与化合物激活的组织之间具有显著差异的区域。为了诸如预测测试化合物的可能的治疗或毒性效果的多种目的,可以基于具有显著差异的被识别区域来生成药学图谱数据表示。
应当理解的是,与本文中所包含的其它流程图类似,图3中所提供的操作可被修改或扩充以实现全部的目标。作为一个例证,图4显示了可以被用来生成药学图谱数据表示的其它技术。例如,从转基因动物所获取的组织(例如,脑组织)可以使用不同的成像技术来进行成像。更具体地,可以使用STP断层摄影术、艾伦研究所连续显微镜术、全光学组织学、自动化宽视场荧光显微镜术、激光层照荧光显微镜术、OCPI激光层照、显微光学切片断层摄影术等对所获取的组织进行成像。例如,STP断层摄影术可以被用于整合快速双光子成像技术和固定的、琼脂包埋的动物组织的基于振动切片机的切片技术。
此外,诸如卷积神经网络算法的支持向量机、随机森林分类器和增压分类器(boosting classifiers)的不同机器学习算法可以被用于自动化检测活化的细胞。例如,每一个所获取组织的二个维度(例如,二维)切片图像可以包括单独视野的拼接图案,例如图像拼块。机器如卷积神经网络算法的学习算法可以被训练以检测活化细胞和在被训练后自动化地检测活化细胞。例如,基于许多被人类观察者标记的随机选择的图像拼块,可以用实况数据来训练机器学习算法。可以实施训练的人为证实或活化细胞的自动化检测。对于卷积神经网络算法的进一步技术细节,可参考专利公开号为2010/0183217、名称为“Method And Apparatus For Image Processing”、2008年4月24日递交的美国专利,其以全文通过引用的方式并入本文。
一旦活化的细胞通过机器学习算法被计算识别,生成识别细胞的多维度(例如,3D)表示(例如,强度形心(intensity centroids)的)。组织图像被扭曲到连续组织空间的标准体积以配准与组织空间中被识别细胞相关的信息。例如,组织的二维切片图像可以以3D形式重建并且使用交换信息作为约束在自动荧光通道上扭曲到3D参考脑体积,且在被重新取样到原始x,y,z分辨率以实施区域计数之前,组织区域标记也使用同样的扭曲参数被扭曲。与活化的细胞相关联的信息(例如,c-fos-GFP数据)被配准到参考脑体积来创建活化细胞分布的多个维度(例如,3D)的表示。活化细胞分布的3D表示可以被体素化,以生成组织空间的离散的数字化,其中,可以使用不同的体素尺寸(例如,50μm3)。例如,组织空间可以450x650x300体素的均匀分布的栅格被体素化,每个体素的尺寸为20x20x50μm3
各种统计技术,包括负二项回归分析、t-检验和随机域理论(RFT)分析,可被用于识别对照与化合物激活的组织之间有显著差异的区域。例如,不同组织之间的初始比较可以使用作为反应变量的活化细胞的计数数据与作为解释变量的N因子群状态的负二项式回归在体素水平进行实施。在假设体素相互之间具有一定水平的正相关的情况下,一个适当的错误发现率(例如,0.01)可以被设定为正确的I型误差。作为另一个实例,通过应用于每一个体素的一组t-检验来实现对照与化合物激活的组织的比较,该比较识别出有差异的“热点”。热点区域可以通过被用于功能组织成像的统计分析来进行评价,例如利用相邻体素之间的固有相关性结构以降低为确定组间的测试中的显著性所需要的阈值的基于RFT分析的次序统计。例如,可以使用磁共振成像(MRI)图谱的分割(例如,62个区域分割)和相应的原始图像数据的可视化分析,对具有统计上显著差异的被识别区域进行解剖学上地注释(anatomically annotated)。可以实施在解剖学上被分割的区域中的活化细胞的统计比较。生成药学图谱数据表示的更详细实施例在图46中示出并且在6.8节、实施例8中得到描述。
图5阐明了可以包含药学图谱数据的数据。药学图谱代表了通过应答测试化合物而被激活的组织中的细胞的多个维度(例如,3D)的分布,如通过报告基因产物(reporter product)的细胞检测所揭示的。药学图谱数据表示可以包括多维度(例如,3D)数据集。例如,药学图谱数据表示包括多维度(例如,3D)图像和药学图谱信息。多维度图像包括一个或多个每一个都包含诸如X,Y,Z坐标数据等的坐标数据的体素。药学图谱信息包括与区域相关联的信息,例如解剖学上的分割数据等。一个区域包括一个或多个体素。此外,药学图谱信息包括活化细胞数据,例如,每个区域的活化细胞的数量等。细胞与体素相关联。例如,一个体素包含一个或多个细胞。关于3D数据集的进一步的技术细节,可参考专利号为7,724,937、名称为“Systems andmethods for volumetric tissue scanning microscopy”、2008年5月12日递交的美国专利,其全文通过引用的方式并入本文。关于体素的进一步的技术细节,可参考专利公开号2010/0183217、名称为“Method And Apparatus For ImageProcessing”、2008年4月24日递交的美国专利,其全文通过引用的方式并入本文。不同药物的药学图谱的详细实施例在图47中示出并在6.9节与实施例9得到描述。另外,不同剂量的同一药物的药学图谱的详细实施例在图48中示出并在6.10节与实施例10得到描述。
图6阐明了用于多种目的用参考药学图谱分析测试药学图谱的操作,例如识别测试化合物的可能效果。一个或多个参考药学图谱可以从具有已知效果的参考化合物的参考药学图谱的数据库检索到。可以生成关联一个或多个参考药学图谱和参考化合物的已知效果的相关性矩阵。例如,如果五种不同的药物在非人类动物组织区域X和Y显示出重叠的活化并且已知导致相同的治疗效果,那么可以预测组织中同时的X和Y活化代表这五种药物的共同治疗效果。同样地,如果五种药物中的两个有一个共同的治疗效果,而该治疗效果没有在其它三种药物中观察到,并且在另外的组织区域Z显示出活化,那么可以预测组织区域Z代表这两种药物的选择性效果。
测试化合物的测试药学图谱可以从测试药学图谱的数据库检索到。测试药学图谱可以与一个或多个参考药学图谱进行比较。基于该比较,可以预测测试化合物的治疗和/或毒性效果。例如,一个或多个参考药学图谱和测试药学图谱之间活化模式的重叠可被用于预测测试化合物的可能治疗效果。
在一些实施方案中,药学图谱可以被用于区分不同的药物,如图47中所示和在6.9节、实施例9中所述。在其它实施方案中,药学图谱可以被用于区分同一药物的不同剂量,如图48中所示和第6.10节、实施例10中所述。在具体实施方案中,为预测测试化合物的治疗效果或对人类的副作用,可以将从非人类动物组织生成的药学图谱与人临床结果相关联,如图50-52所示和第6.12节、实施例12所述。例如,一种新药物的药学图谱可以与已知药物的药学图谱进行比较来预测新药物的副作用和/或适应症,如图52所示。
在一些实施方案中,本文所述的药学图谱可以与测试化合物的结构、物理和化学性质(SPCP)相关信息结合。在其它具体实施方案中,本文所述的药学图谱可以与测试化合物的性质(如,副作用)相关的任何可得到的信息结合。例如,本文所述的药学图谱可以与通过诸如PubChem、BioAssays或ChemBank的数据库(其,例如可以包含关于药物-目标相互作用和/或药物诱发的细胞表型的信息)可以得到的关于测试的化合物的性质的信息结合。在一个实施方案中,本文所述的药学图谱可以与测试的化合物的副作用相关的信息结合,例如通过诸如SIDER的数据库可得到的信息。在一个具体实施方案中,本文所述的药学图谱可以与来自SIDER数据库的数据结合。
图7阐明了其中测试药学图谱信息和参考药学图谱被存储在单独的数据库中的实施过程。可以生成测试化合物的测试药学图谱数据表示并存储在测试药学图谱数据库。具有已知效果的参考化合物的参考药学图谱数据表示可以被存储在参考药学图谱数据库。例如,测试药学图谱数据库可以包括测试药学图谱数据等。参考药学图谱数据库可以包括参考药学图谱数据、药物效果数据、毒性数据等。为了多种目的(例如预测测试化合物的可能效果),测试药学图谱数据表示可以从测试药学图谱数据库检索得到,以将其与从参考药学图谱数据库获得的参考药学图谱数据表示进行比较。
图8阐明了其中测试药学图谱信息和参考药学图谱被存储在同一数据库中的实施过程。可以生成测试化合物的测试药学图谱数据和参考化合物的参考药学图谱数据并存储在同一药学图谱数据库。例如,药学图谱数据库可以包括测试药学图谱数据、参考药学图谱数据、药物效果数据等。为了多种目的(例如预测测试化合物的可能效果),测试药学图谱数据表示和参考药学图谱数据表示可以从待比较的药学图谱数据库检索得到。
图9阐明了其中测试药学图谱信息已经由一个与实施测试-参考药学图谱分析的公司不同的公司生成并存储。测试化合物的测试药学图谱数据表示可以在第一公司的服务器生成并存储在测试药学图谱数据库。例如,测试药学图谱数据库可以包括测试药学图谱数据等。参考化合物的参考药学图谱数据表示可以在第二公司的服务器生成并存储在参考药学图谱数据库。例如,参考药学图谱数据库可以包括参考药学图谱数据、药物效果数据等。
为了多种目的(例如识别测试化合物的可能效果),与测试药学图谱数据表示相关的信息可以例如通过网络、CD-ROM等提供给参考药学图谱数据库,以与参考药学图谱数据表示比较。相似地,与参考药学图谱数据表示有关的信息可以例如通过网络、CD-ROM等提供给参考药学图谱数据库,以与测试药学图谱数据表示比较。
图10阐明了其中测试药学图谱信息已经由一个与实施测试-参考药学图谱分析的公司相同的公司生成并存储。测试化合物的测试药学图谱数据表示和参考化合物的参考药学图谱数据表示可以在同一公司的服务器生成并存储在同一数据库中。例如,数据库可以包括测试药学图谱数据、参考药学图谱数据、药物效果数据等。为了多种目的(例如为了识别测试化合物的可能效果),可以将测试药学图谱数据表示与参考药学图谱数据库进行比较。生成用于预测新药物的治疗和副作用的综合性药学图谱数据库的更详细的实施例在图49中示出并且在第6.11节、实施例11中进行描述。
还应当注意,该系统和方法可以在多种类型的执行指令(例如软件指令)以实施本文所述操作的数据处理器环境(例如一个或多个数据处理器)上进行实施。非限制性的实例包括在单个通用目的计算机或工作站上,或者在联网系统上,或者在客户端-服务器配置中,或者在应用服务提供者配置中的实施(implementations)。例如,本文所述方法和系统可以在许多不同类型的处理装置(processing devices)上利用程序代码实施,该程序代码包含了可由装置处理子系统(device processing subsystem)执行的程序指令。该软件程序指令可以包括源代码、目标代码、机器码或任何其它的可操作的以使得处理系统实施本文所述方法和操作的已存储数据。然而,也可以使用其它实施方法,例如被配置以执行本文所述方法和系统的固件(firmware)或者甚至是被适当设计的硬件。
还应当注意,为了与一个或多个数据处理装置通信,该系统和方法可以包括经由网络(例如,局域网,广域网,因特网,其组合等)、光纤介质、载波、无线网络等传送的数据信号。该数据信号可以携带任何或者全部的本文所开的、被提供给装置或来自装置的数据。
系统的和方法的数据(例如,关联、映射、数据输入、数据输出、中间数据结果、最终数据结果等)可以在一种或多种不同类型的计算机实施的数据存储区(例如不同类型的存储装置和编程结构(例如,RAM、ROM、闪存、平面文件、数据库、编程数据结构、编程变量、IF-THEN(或类似类型)语句结构等)中存储和实施。值得注意的是,数据结构描述了用于在计算机程序使用的数据库、程序、存储器或其它计算机可读介质中的格式中组织和储存数据的格式。
系统和方法可以在许多不同类型的包括含有指令(例如,软件)的计算机存储机制的计算机可读存储介质(例如,诸如CD-ROM、磁盘、RAM、闪存、计算机硬盘驱动器等的非瞬时介质)上提供,所述指令用于通过处理器执行以实施该方法的操作以及实施本文所述的该系统。
本文所述的计算机部件、软件模块、函数、数据存储和数据结构可以直接或间接地相互连接,以允许它们的操作所需的数据的流动。还应当指出,模块或处理器包括但不限于执行软件操作的代码单元,并且可以例如作为代码的子例程单元,或者作为代码的软件功能单元,或者作为对象(如在面向对象的范例),或者作为小应用程序,或者在计算机脚本语言,或者作为另一种类型的计算机代码而实施。取决于当时的情况,软件组件和/或功能性可以位于一台计算机上或者分布在多个计算机上。
5.6 其它类型的分析
在某些实施方案中,使用允许测定基因表达(例如,天然基因的表达或转基因的表达)或者以任何其它方式(例如,形态上地)表征组织的细胞的任何方法来检测根据本文所述方法使用的非人类动物的组织。这样的方法包括但不限于免疫组织化学(IHC)、生物化学分析和原位杂交,其每一个都是本领域熟知的。在这些实施方案的一些中,所使用的非人类动物是转基因动物。在其它实施方案中,所使用的非人类动物不是转基因动物。
6. 实施例
6.1 实施例1:连续双光子断层摄影术:离体小鼠脑成像的自动化方法
在最近几年,对完整的全脑数据集的系统性生成的日渐重视,例如关于基因表达的艾伦鼠脑图谱(Allen Mouse Brain Atlas)(Lein et al.,Nature445,168-176(2007))以及正在进行的关于介观连通性的小鼠脑体系结构项目(Mouse Brain Architecture Project)(Bohland et al.,PLoS ComputationalBiology5,e1000334(2009)),已经引起了开发用于高通量全脑成像的新仪器的迫切需要。
本实施例描述了使用整合了双光子显微镜术和组织切片法的连续双光子(STP)断层摄影术的荧光标记的小鼠全脑的自动化高通量成像。STP断层摄影术使用全标本包埋(whole-mount)双光子显微镜(Tsai et al.,Neuron39,27-41(2003);Ragan et al.,Journal of Biomed.Optics12,014015(2007)),并且允许生成精确对齐的、高分辨率的连续光学切片的数据集。这个实施例表明,STP断层摄影术生成了没有失真并且可以容易地扭曲在3D中的全脑成像的高分辨率数据集,例如,用于不同的全脑解剖学追踪(anatomical tracings)的直接比较。
材料和方法
组织制备。使用了下述的小鼠种系:ChAT-GFP Tg(Chat-EGFP)和Mobp-GFP Tg(Gong et al.,Nature425,917-925(2003);GFPM(Feng et al.,Neuron28,41-51(2000));SST-ires-Cre::Ai9(Taniguchi et al.,Neuron71,995–1013(2011));和野生型小鼠。使用霍乱毒素B亚单位(CTB)AlexaFluor-488(在磷酸盐缓冲液中,浓度为0.5%wt/vol)和带有突触蛋白启动子的AAV-GFP(Kugler et al.,Virology311,89-95(2003);Dittgen et al.,PNAS101,18206-18211(2004))作为解剖学示踪物。以嵌合的1/2血清型来制备AAV(Hauck et al.,Mol Ther7,419-425(2003)),通过碘克沙醇(iodoxinal)梯度法来纯化并且浓缩至5.3x1011基因组拷贝/ml。按所述方法完成示踪物的立体定向注射(Cetin et al.,Nat.Protocols1,3166-3173(2007))。简单地说,使用1%异氟烷吸入对小鼠进行麻醉。在左侧初级躯体感觉皮质上实施一个小的开颅手术(约300×300Mμ),并且将~50nl病毒或50nl的0.05%CTB Alexa488在相对于前囟点的立体定位坐标:尾侧1.6、横侧3.2、腹侧0.3毫米的位置注射入层2/3桶状皮质。然后用丝线缝合皮肤切口,并使小鼠自由获得食物和水以得以恢复(为了止痛,以1mg/kg皮下注射美洛昔康)。10-14天后制备用于成像的脑(见下文)。
按如下所述制备用于STP断层摄影术的小鼠脑。通过腹膜内(i.p.)注射氯胺酮(60mg/kg)和美托咪定(0.5mg/kg)的混合物来深度麻醉小鼠,并且用~15ml冷生理盐水(0.9%氯化钠)及随后的~30ml冷中性缓冲甲醛(NBF,4%w/v,在磷酸盐缓冲液中,pH7.4)进行心脏灌流(transcardiallyperfused)。解剖开脑并且在4%NBF中4℃下过夜后固定。为了降低甲醛诱导的自体荧光,将脑在0.1M甘氨酸(用1M Tris碱将pH调至7.4)中4℃下孵育2-5天。然后,脑用磷酸盐缓冲液(PB)洗涤并且按所述方法(Shainoffet al.,The Clevelend Clinic Foundation,US,1982;Sallee&Russell,BiotechHistochem68,360-368(1993))包埋在3-5%的氧化琼脂糖中。简单地说,通过在10mM高碘酸钠(NaIO4)溶液中室温下搅拌2小时对琼脂糖进行氧化,洗涤3遍并在PB中重悬浮,以使终浓度为3-5%。将小鼠脑轻拍干燥(pat-dried)并且使用立方体形状的模具将其包埋在融化的氧化琼脂糖中。脑表面和琼脂糖之间的共价交联通过在过量的0.05M硼酸钠缓冲液(pH=9.0-9.5)中0.5-1%硼氢化钠(NaBH4)中平衡,在室温下轻轻摇晃2-4小时(或在4℃下过夜)来激活(漂洗后,活化的琼脂糖可以在4℃存储在PB中长达一个星期;硼氢化钠缓冲液应新鲜配制)。琼脂-脑界面的共价交联有利于在切片的过程中保持脑稳固地包埋并且从而通过不充分地切割脑膜限制遮蔽伪影(shadowing artifact)。
仪器和软件。在具有集成的振动切片机切片的高速多光子显微镜上实施实验。来自钛蓝宝石激光器的激光穿过朝向一对振镜反射镜的激光管(tube)和扫描透镜组件并且被朝向显微镜物镜(要么20倍的透镜,NA1.0,要么10倍的透镜,NA0.6)的短通分色镜(short pass dichroic)反射。来自样品的荧光信号被同一物镜收集,通过分色镜并且被一系列反射镜和透镜引导到一个光电倍增管检测系统(photomultiplier tube detection system)。在双通道和三通道多色配置(two-and three-channel multicolor configuration)中,发射光被分色镜分别地拆分到两个和三个PMT以允许同时多通道数据采集。Z-体积堆栈的3D扫描通过显微镜物镜压电(microscope objective piezo)来实现,其根据样品来转换显微镜的物镜。激光强度可以通过用于快门用途的液晶控制器并且作为样品中成像深度的函数来改变。
结实的机械切片(Robust mechanical sectioning)通过被集成到成像系统的振动刀片薄片切片机来完成。它基于一种新型的双弯曲设计(dual flexuredesign)。弯曲(Flexures)是由一系列通过柔性件(compliant elements)连接的刚性体(rigid bodes)组成的柔性机构(compliant mechanisms),柔性件被设计成当施力时产生几何上良好定义的运动。弯曲可以实现光滑的移位直到亚微米水平,而几乎没有连带运动(parasitic motion)。薄片切片机包含刀片安装其上的主弯曲(primary flexure)和连接主弯曲至驱动器(actuator)的二级弯曲(secondary flexure)。驱动器包括具有连接于轴的偏心凸轮的直流电机。二级弯曲被设计成在切割方向上是刚性的并且在所有其它方向上是柔性的。以这种方式,只有沿切割方向的力被传递到支撑薄片切片机刀片并且减少在不需要的运动轴线上任何可能的连带运动的主弯曲。对于这个设计,已经实验证实了,通过用电容式传感器直接测量运动,连带的Z-垂直偏转小于2μm RMS。振动频率可以被设定在0-60赫兹之间并且刀片角度被设定在5-30度之间。通过使用不同的凸轮,振幅(amplitude)可以在0.8mm至2mm之间进行调整。脑组织的切片参数被确定为在60赫兹下和在11度的刀片角度下0.8mm振幅。通过在获得全脑数据集(图18)期间,切片之前和之后的脑表面和重叠的Z-平面的测量验证切片的可靠性。为了实现可靠的切片,使用氧化琼脂糖中共价交联的脑是重要的。
仪器由用C++和C#编写的定制软件控制。它处理扫描、载物台的运动、切片机控制和数据采集。软件由几个分离的服务组成,其每一个均控制一个仪器的特定硬件组件或功能。事件序列由一个主协调器服务(masterorchestrator service)进行协调。例如,为了扫描一个切片,一个命令从协调器服务发送到振镜扫描器服务(galvanometer scanner service),命令它打开激光器快门并且扫描图像。协调器服务等待,直到扫描器服务报告图像采集已经完成,然后发送一个命令到XY载物台以移动样品到下一个位置。一旦XY载物台完成所请求的动作,一个命令被发送回协调器服务,协调器服务依次分发命令到扫描器服务以获取第二个图像。在成像过程中,后台服务处理数据采集以及保存16位TIFF图像到本地或网络附加的存储设备。这个过程一直持续直到整个切片已被获取。同样地,为了获得一个全脑数据集,在每一个拼接切片采集的最后,协调器服务命令Z-载物台服务移动样品获得所需的切片厚度。同时,通过XY载物台服务将样品引向薄片切片机。一旦就位,薄片切片机被打开,并且样品被平移通过薄片切片机并且切出组织切片。样品然后被平移回物镜下方,然后下一个切片被成像。重复这个过程,直到所有切片被成像。软件高度模块化并且导入的附加的服务,或者特定硬件可以用最低的改动交换以达到更高水平的程序。例如,未来可以添加诸如切片之后捕获切片的自动执行附加特性的服务。
相较于早前的原型(Ragan et al.,Journal of Biomed.Optics12,014015(2007)),用于本实施例的仪器的设计中可以有相当多的改进。以前的版本使用铣床来加工石蜡包埋的组织的表面。由于石蜡淬灭荧光,集成的振动切片薄片切片机被用在本实施例中。这允许进行包埋在琼脂中的甲醛固定的脑的成像,其是具有低淬灭效果的组织学程序。作为一个额外的优点,该切片可以用于进一步的组织化学分析,因为它们不再被铣削加工(milling process)破坏(该切片沉到水浴的底部并且在实验结束时被收集和分类)。与标准的60×物镜相比,低放大率(10-20X)高数值光圈(NA0.6-1.0)透镜的并入增加了荧光采集,而不影响在大成像深度下的分辨率(Oheim et al.,Journal ofNeuroscience Methods111,29-37(2001))。带有巨大光圈光学的低放大率透镜的组合增加了可以用均匀的照明进行扫描的图像视场,从~200到1400μm。高速振镜扫描已经取代多边形扫描方法。振镜扫描器远比多边形扫描仪灵活并且允许根据样品的要求设定的宽范围的体素大小和停留时间。最后,高速的定制XYZ载物台被构建以使得样品的定位可以行程数厘米同时具有亚微米的精度。定制的Z-载物台被设计成支持两个商用的X和Y载物台,并且旋转刚性(rotationally rigid),在X和Y载物台组件的整个行程范围内具有小于1微米的俯仰角和偏摆角(pitch and yaw)。X和Y轴有0.1μm的位置精度,0.1毫秒的校正时间和达到50mm/s的速度。高速度和小校正时间使得样品快速定位并且最小化切片的采集时间,同时定位精度减少后处理的配准(registration)时间。Z-轴具有0.15μm的精度和1mm/s的最大速度。由于该载物台仅被用于升高样品至薄片切片机的刀片和物镜,其速度对成像时间的影响可忽略不计。
仪器操作。一旦脑被定位在物镜下方并且选择了成像和切片参数(见下文),该仪器以完全自动化的方式操作。脑被封固在定位于计算机控制的XYZ载物台上的水浴中的盐水(50mM PB,pH7.4)中。在物镜下识别脑表面的Z-位置之后,在软件中设置下述参数:FOV尺寸、FOV拼接图案尺寸、像素尺寸、像素停留时间、激光功率、切片速度、切片频率、每一个切片循环的Z-步骤以及Z切片的数目。成像平面被设置在脑表面之下以确保自始至终的无扰动光学切片。通常,使用表面之下50μm,但是,随着激光功率的小调整,下至表面之下约100μm可以获得可比较的图像分辨率。为了在每个切片步骤之间单一的光学切片的成像,激光功率被设定为恒定的。为了采集切片步骤之间的Z-体积,例如在Z-分辨率2.5μm被成像的SST-IRES-Cre::Ai9嗅球的数据集,基于Z深度调节激光功率以补偿随着深度增加而增强的光散射。
设定每个拼接图案的FOV拼块的数量以覆盖样品的范围,并且为了后处理拼合(post-processing stitching)允许FOV拼块之间的小重叠(见下文)。使用10X物镜的实验使用1.66×1.66mm FOV的6×8重叠拼接图案,XY载物台的移动量为1.5mm,像素尺寸为1或2μm并且像素停留时间为0.4到1.0μs之间。使用20X物镜的实验使用0.83x0.83mm FOV的11x17拼接图案,XY载物台的移动量为0.7mm,像素尺寸为0.5或1μm并且像素停留时间为0.4到1.0μs之间。一旦拼接图案完成,用于拼接图案成像的相同XYZ载物台将样品从显微镜物镜向振动刀片薄片切片机移动以切片组织的最上部分。260个切片的小鼠脑数据集的成像时间列于表1中。
表1:STP断层摄影的成像条件
每一个切片的时间和每260个切片的时间对应于成像条件:使用10倍和20倍物镜、FOV的数目、XY采样率和像素停留时间,如所述的。每一个切片的时间包括:1)成像时间,2)XY载物台的拼接移动量,和3)切片时间。成像时间包括大部分的总时间并且基于采样分辨率和像素停留时间而变化。XY载物台移动量为每次移动大约~0.3秒(6x8的拼接图案为~15秒,11x17的拼接图案为~1分钟)。以每秒1mm载物台的移动量,切片时间为每循环~35秒。
图像处理。图像根据PMT信号构建,具有由扫描角度和像素采样率的组合来设定的拼块和像素尺寸。拼块被保存为tif文件(命名为Tile_Z{ZZZ}_Y{YYY}_X{XXX}.GIF)并且以下面的方式被处理。首先,每个拼块被裁切以除去靠近边缘的照明伪影(illumination artifacts)(被裁切的像素数目基于所使用的物镜和FOV来经验性地确定;例如,对于832x832像素的FOV,在X和Y方向的各侧分别裁切15和10的像素)。第二,来自一个脑数据集的所有拼块(例如,对于280个切片的11x17拼接图案来说,有52,360个拼块)被加载到基于Fiji ImageJ的图像处理软件,并且为了通过Z-投影函数进行照明修正,其被用于生成平均-灰度图像。第三,所有拼块根据平均-灰度图像进行划分以修正照度不均(uneven illumination)(插入(Plugins)>组织视图(TissueVision)>通过图像划分顺序(Divide sequence by image))。第四,经照明修正的拼块被用于拼合(stitch)拼接图案图像的顺序(插入(Plugins)>拼合(Stitching)>图像栅格的拼合顺序;融合方法=线性混合(linear blending),融合α=1.5,回归阈值(regression threshold)=0.3,最大位移值/平均位移值(max/avg displacement)=2.5,绝对位移值=3.5;选择“计算重叠”(compute overlap))。拼块之间的转换被建模(modeled)为平移变换。对于每一个切片,X和Y的平移量通过拼块之间的互相关(Kuo et al,Proceedings of the Optical Society of America Meeting on Understanding andMachine Vision7376(1989))来测定。在重叠区域,像素被线性地混合(Preibisch et al.,Bioinformatics25,1463-1465(2009);Cardona et al.,TheJournal of Neuroscience30,7538-7553(2010))。当对具有低荧光的样品使用大功率(>150mW)时,重叠区域可能显示出光致漂白(photobleaching)。在这样的情况下,由于漂白主要发生在第二重叠拼块,最好是从第一拼块显示图像,并将第二拼块仅用于XY配准。这可以通过将拼块以它们被显微镜扫描的倒序插入拼接图案而实现:第一扫描的拼块的像素盖写(overwrite)之后在第二拼块中被扫描的相同像素。原始拼块的280个切片的11x17拼接图案的全脑数据集在16位深度被扫描,占据~40GB空间。用LZW压缩最终的拼合TIFF图片(final stitched TIFF slices),最终的拼合图片(stitched slices)占据~25GB空间。所有的图像处理在具有至少8GB RAM的Mac/Linux的桌面式计算机(desktop machines)上运行。
图像扭曲。扭曲通过仿射变换配准,随后的基于弹性B-样条的转换来完成(Klein et al.,IEEE Transactions on Medical Imaging29,196-205(2010)),使用来自以20的因子(分辨率为20×20×50μm)降采样(downsampled)的STP断层摄影数据集的自体荧光信号。为了更有效率和稳健的对齐,配准按照多分辨率的方法来完成(Lester et al.,Pattern Recognition32,129-149(1999))。当弹性步骤使用6分辨率步骤时,使用4分辨率水平来计算仿射变换。高级的Mattes交互信息(Mattes et al.,IEEE Transactions in MedicalImaging22,120–128(2003))被用作测量配准相似性的度量标准。在这个参数配准方法中,Mattes交互信息被用作移动中的和已固定的图像之间的相似性度量。配准的问题被认为是优化问题,其中一组转换参数的图像差异(image discrepancy)/相似性函数被最小化。然后以多分辨率的方法估计转换参数,其确保了与单一分辨率方法相比更稳健的方法。用每一个分辨率的图像,以迭代方式,对一组被随机选择的样品的图像相似性函数进行估计并且最小化。使用具有16GB RAM的8核CPU,对于带有20x20x50微米像素间距的650x450x300尺寸的图像,配准要花12小时。使用elastix(Klein et al.,IEEE Transactions on Medical Imaging29,196-205(2010))来设置整个图像扭曲实验,其是基于带有根据所使用的数据集设置的参数的Kitware’s ITK的图像配准工具。为了确定扭曲过程的效果,在将一个数据集扭曲到另一个之上的之前和之后,将42个解剖学上的人工识别的目标标志点(landmark points)的位移在两个小鼠脑的扫描结果中进行比较。扭曲之前和之后,在两个脑中相应点之间的平均(±SEM)距离分别为749.5±52.1和102.5±45μm(在图19中,线上是扭曲之前;线下是扭曲之后)。
实验设计和结果
通过对具有细胞型特异性荧光蛋白表达的四个小鼠脑进行成像和系统性映射小鼠躯体感觉皮质的输入和输出连接来检测STP断层摄影术的通用性(versatility)。这些实验表明STP断层摄影术是一种可以将系统的全脑解剖的新兴领域(其直到现在仍局限于专用的作图发端(dedicated atlasinginitiatives)(Lein et al.,Nature445,168-176(2007);Bohland et al.,PLoSComputational Biology5,e1000334(2009))改变成可应用于研究例如标准实验室设置的人脑失调的小鼠模型的常规方法的稳健成像方法。
STP断层摄影术按照下述内容和图11中所描述的方式工作。首先,已固定的琼脂包埋的小鼠脑被置于双光子显微镜的物镜之下的XYZ载物台上的水浴中(Denk et al.,Science248,73-76(1990)),并且将成像参数输入到操作软件中(参见材料和方法,同上)。一旦参数被设定,该仪器全自动地工作:1)XYZ载物台移动物镜下的脑,使得光学切片(或光学Z-堆叠)以视场(FOV)的拼接图案来成像,2)一个内置振动刀片的薄片切片机机械性地从顶部切下组织切片,和3)重复重叠光学和机械切片的步骤直到收集到整个数据集。该仪器是早前的原型(Ragan et al.,Journal of BiomedicalOptics12,014015(2007))的改型,其被重新设计以用于荧光标记的小鼠脑的成像,其包括定制的振动刀片的薄片切片机而不是铣床的集成,并且使用高速振镜扫描器而不是旋转的多边形扫描器(rotating polygonal scanner)(见材料和方法,同上)。通过带振动刀片的薄片切片机来切片允许使用通过甲醛固定和琼脂包埋的简单步骤所制备的脑,这对于荧光和脑形态的不利影响最小。高速振镜扫描使得能够在不同实验的不同采样分辨率之间快速成像和快速切换(见下文)。
在第一组实验中,Thy1-GFPM小鼠(Feng et al.,Neuron28,41-51(2000))(其主要在海马和皮质的锥体神经元中表达绿色荧光蛋白(GFP))被用于测定在不同的采样分辨率下成像小鼠脑的最佳条件。在XY成像分辨率2.0、1.0和0.5μm下,使用10倍和20倍物镜,该GFPM脑被成像为一个有260个均匀间隔50μm的冠状切片的数据集(图11和12)。10倍物镜(0.6NA)允许在足以可视化GFP标记的神经元(包括它们的树突和轴突)的分布和形态的分辨率下快速成像(图12)。在2和1μm的x-y取样条件下,一个有260个冠状切片的10倍物镜的数据集的数据采集时间分别为~6.5和8.5小时(表1)。20倍物镜(1.0NA)使得树突棘和细小的轴突分枝(fine axonalarborizations)能够可视化(图11和12);注意,在本应用中,轴突在单个XY光学切片中被检测到,但在Z方向没有追踪到,这是由于每个切片之间的50μm的间距)。在1和0.5μm的x-y取样条件下,一个有260个切片的使用20倍物镜的数据集的数据采集时间分别为~15.5和24小时(表1)。总之,这些实验表明,STP断层摄影术可以用作为采集已固定的、荧光标记的小鼠脑的高分辨率数据集的自动化高通量方法。
带有细胞类型特异性荧光蛋白的表达的转基因小鼠使得能够容易地识别不同类型的神经元和神经胶质细胞。在第二组实验中,在两个BAC转基因小鼠和一个基因靶向的(敲入)小鼠中实施不同类型细胞的全脑映射。作为在少突胶质细胞中由于髓鞘相关的少突胶质细胞碱性蛋白(MOBP)的启动子的GFP表达的结果,Mobp-GFP(Gong et al.,Nature425,917-925(2003))小鼠揭示了全脑髓鞘形成的模式。ChAT-GFP小鼠使得全脑胆碱能的神经支配能够可视化,这是在胆碱能神经元中由于胆碱乙酰转移酶(ChAT)启动子的GFP表达的结果。SST-ires-Cre::Ai9(Taniguchi et al.,Neuron71,995–1013(2011))小鼠揭示了表达生长抑素的中间神经元的全脑分布(brain-widedistribution),这是从生长抑素(SST)基因表达Cre重组酶的结果,生长抑素基因激活基于Ai9tdTomato的报告基因(Madisen,L.,et al.,Natureneuroscience13,133-140(2010))。这些实验表明,可以容易地通过对表达GFP的转基因小鼠进行STP断层摄影来生成细胞类型分布和神经支配的脑图谱样数据集。另外,特异性细胞类型分布的更完整的可视化可以通过在机械组织切片的步骤之间成像Z-堆叠体积而不是单一光学切片而实现。作为本应用的一个实例,描述了一个有800个光学切片(2.5μm的Z-间隔)的数据集,其揭示了SST-ires-Cre::Ai9小鼠的嗅球中所有表达生长抑素的中间神经元的分布。当然,用高Z分辨率成像会增加采集时间,并且目前需要花大约7天的时间来在同一分辨率下成像小鼠全脑。然而,通过例如集成共振扫描器(Wilt et al.,Annual review of neuroscience32,435-506(2009))来提高成像速度(目前是0.4s的像素停留时间),应该会使通过STP断层摄影术对小鼠全脑进行高Z-分辨率成像在未来能够更实用。
在最后一组实验中,通过对在躯体感觉桶状皮质(一个带有被逆行和顺行示踪物都良好标记的投影的脑区域)(Aronoff et al.,The European journal ofneuroscience31,2221-2233(2010);Welker et al.,Experimental brain research.Experimentelle Hirnforschung73,411-435(1988);Hoffer et al.,The Journal ofcomparative neurology488,82-100(2005))注射解剖学示踪物的小鼠脑进行成像证明了可以使用STP断层摄影术来映射脑连通性。为了在1μm XY分辨率下(20倍物镜)逆行追踪,对注射了CTB-Alexa-488的脑进行成像,并且为了在1μm XY分辨率下(20倍物镜)顺行追踪,对注射了表达GFP的腺相关病毒的脑进行成像。正如预期的,在已知的投影到小鼠桶状皮质的脑区域(Aronoff et al.2010;Welker et al.1988;Hoffer et al.2005)中发现了Alexa-488-标签的神经元,并且在已知的接受桶状皮质投影的脑区域(Aronoffet al.2010;Welker et al.1988)中检测到了GFP标记的轴突(图14-17)。实验还揭示了文献中之前没有报道的带有稀疏连通性的两个脑区域:逆行标记的对侧的额眶部皮质(图15b,面板2)和顺行标记的对侧的运动皮质(图17b,面板2)。总之,在对侧皮质区中之前描述过的连通性模式的复制和假定的新连接的探测证明了STP断层摄影术对于小鼠全脑的解剖学追踪来说是高通量和高敏感的成像方法。另外,数据集的3D对齐有助于不同样品之间的直接比较。这一点通过将AAV-GFP脑扭曲到CTB Alexa-488脑以用于直接比较顺行和逆行追踪得到了证明(图16,参见材料与方法,同上)。估计两个脑之间的解剖标志的共配准(co-registration)精度约为100μm(图18)。因此,将多个脑扭曲到一个空间对于多示踪物注射提供了一个简单替代方法并且在一个虚拟的脑彩虹样追踪(virtual brainbow-like tracing)中可以被扩展以包括许多脑(Livet et al.,Nature450,56-62(2007))。
总之,本实施例表明STP断层摄影术可用于生成可以容易地被扭曲以用于多个脑的比较的高分辨率解剖学数据集。STP断层摄影术可以用于在诸如孤独症和精神分裂症的认知障碍的遗传小鼠模型中的系统研究。为了提供这样的研究的定量测量,重点放在解剖学上的配准(Hawrylycz et al.,PLoScomputational biology7,e1001065(2011))和开发在由STP断层摄影术生成的全脑数据集中荧光信号检测的计算方法。
6.2 实施例2:使用连续双光子断层摄影术对小鼠脑中的神经回路进行定量映射(Quantitative mapping)
本实施例阐述了结合了双光子成像与内置振动切片机的连续双光子(STP)断层摄影术用于对小鼠全脑中神经回路进行定量的、快速的离体3D映射的用途。
在本实施例中,顺行(AAV)或逆行(CTB-AF和乳胶微球)荧光神经元示踪物的脑功能区定位递送(stereotaxic delivery)(Cetin et al.,2007)被用于输出和输入投影标记。3D图像重建后,标准脑图谱被扭曲到样品脑体积以勾画出目标脑区域并且对每个面积的细胞数进行计数。生成了小鼠全脑中逆行和顺行标记的神经元的定量映射,并且比较了不同示踪物类型的荧光神经元的分布。
如实施例1所述和图11-17和表1所示,实施STP断层摄影成像和逆行/顺行追踪。图20显示了通过将AAV-GFP脑扭曲至CTB-Alexa-488脑而生成的组合的“虚拟”双示踪物数据集。
接下来,实施CTB-Alexa的计算检测。机器学习算法被训练以基于初始人类标记来探测CTB-Alexa-488标签和自动探测CTB-阳性细胞。图21显示了预测之前(左面板)和之后(右面板)的示例性图像以及这些图像的叠加图(下面板)。
本实施例证明了STP断层摄影术是一种可以用于荧光标记小鼠脑的完全自动化的高分辨率成像的方法。逆行和顺行追踪的试验脑揭示了之前描述过的区域以及之前没有报道过的稀疏标记的区域,即,逆行对侧VLO与顺行对侧M1。本实施例还表明多个脑样品相互之间的扭曲可以用于创建虚拟的“脑彩虹样”数据集。第四,这个实施例表明使用机器学习算法的计算探测可以用于全脑中顺行和/或逆行追踪的自动分析。
6.3 实施例3:使用自动化成像和数据分析管道对转基因c-fos-GFP小鼠脑中的c-fos-GFP的表达进行映射
本实施例证明了全标本包埋显微镜术和数据分析管道可以应用于映射转基因c-fos-GFP小鼠脑中c-fos-GFP的表达。
制作转基因c-fos指示基因的小鼠。即早基因(IEG)诱导的高通量全脑成像被用于从诸如c-fos-GFP和Arc-GFP转基因小鼠中的c-fos和Arc启动子的特异性IEG启动子来表达GFP的转基因“指示基因”小鼠中(((Barth etal.,J Neurosci24,6466-6475(2004);Grinevich et al.,Journal of NeuroscienceMethods184,25-36(2009))。在这些小鼠中,GFP代表一个易检测的天然基因表达的替代物。
显微镜术。全标本包埋双光子显微镜术被用于自动化小鼠脑成像。该仪器按如下方式工作:首先,被包埋在琼脂块中的已固定小鼠脑被置于由计算机控制的x-y-z载物台顶部的水浴中。载物台将脑移动到物镜下方,以使得顶部以各个视野(拼块)的拼接图像进行成像。接着,内置的振动切片机切下已成像的顶部区域,并且重复成像和切片的循环直到采集到整个数据集(图22和23)。
脑变形(Brain morphing)。然后,已成像的脑切片被变形至由高分辨率磁共振成像(MRI)生成的小鼠脑图谱(Dorr et al.,NeuroImage42,60-69(2008))(图24)。如下所述,这提供了在模板X-Y-Z体积(template X-Y-Zvolume)中的总解剖学配准(gross anatomical registration),该模板X-Y-Z体积被用于样品之间的基于体素化的统计比较。
c-FOS-GFP的计算探测。使用抗精神病药物氟哌啶醇的全身给药方法对转基因c-fos-GFP脑的成像条件预先进行优化(Dragunow et al.,Neuroscience37,287-294(1990))。如图25所示,氟哌啶醇的注射(腹膜内注射,1mg/kg)引起纹状体和侧间隔中c-fos-GFP的预期诱导,而注射生理盐水的对照动物在这些区域中表现出最小的c-fos-GFP标签(Barth et al.,2004;Wan et al.,Brain research688,95-104(1995))。
接着,将实验数据集用于训练通过被监管的机器学习方法(即卷积神经网络)进行的计算探测(Jain et al.,In CVPR(2010);Turaga et al.,Neuralcomputation22,511-538(2010))。两位人类观察者手动标记随机选择的拼块以生成c-fos-GFP信号的实况数据,然后其被用于训练卷积神经网络(图26)。完成该训练的五重验证。该网络具有人为表现的~86%的准确性。
为了验证数据处理的整个管道,训练好的神经网络被应用于抽取两只小鼠的脑中的c-FOS-GFP信号,其中一只被注射了生理盐水且另一只被注射了1mg/kg的氟哌啶醇(图27)。三小时后,小鼠被安乐死,通过全标本包埋双光子显微镜术对它们的脑进行成像,并且c-fos-GFP阳性细胞被计算探测并且以灰度距(intensity centroids)的三维表示进行可视化(图17)。这个实验揭示了在尾壳核(纹状体;在图27B和C中用星号标记)中c-FOS-GFP的预期的强诱导(Dragunow et al.,1990),以及在许多尾部冠状切片(caudalcoronal sections)中C-FOS-GFP阳性细胞的数量增加(图27C)。
这些实验以每个处理一个动物的方式来实施,并且它们证实了所抽取的数据的3D表示。
统计:小鼠脑数据集中C-FOS-GFP的比较。建立了下面的方法用于样品之间的统计比较。为了在标准化的脑体积内配准c-fos-GFP信号的分布,将计算抽取的数据集(图27)变形到高分辨率MRI图谱(图24)。第二,将脑体积体素化以生成连续脑空间的离散数字化。接着,为了识别单独处理组之间可能具有差异的“热点”,用一组应用于每一个体素的t-检验实现初始比较(请注意,任意选择体素尺寸,并且以50、100和200立方微米分割的数据集将要被比较)。然而,因大量的多重比较,以这种方式获得显著p-值是不是可能的。相反地,使用被开发用于功能性脑成像数据集的统计分析,例如基于随机域理论(RFT)的顺序统计量(order statistics)。RFT方法利用临近体素之间的固有相互性结构以减少为测定各组之间的检验中的显著性所需要的阈值((Nichols&Hayasaka,Statistical methods in medical research12,419-446(2003))。最后,使用MRI图谱的分割和相应的原始图像数据的可视化分析两者对具有统计学差异的已识别区域进行解剖学上的注释。
该数据证明了小鼠脑中IEG诱导的高通量分析的方法管道的有效性。已经以每天两个小鼠脑的通量对该管道进行了测试。
6.4 实施例4:野生型小鼠中抗精神病药物所诱发的神经活化的基于c-fos的全脑表示的生成
本实施例将映射小鼠脑中c-fos表达的传统方法转换成无偏的、高通量和高分辨率的药物筛选实验。
实验设计
在这个实施例中,已经选择了先前在啮齿类动物脑中通过c-fos诱导检测过的6种抗精神药物(表2),以用于:
1)识别各个药物在先前鉴定的脑区域中的趋异的效力(效力是指每药物剂量每脑面积的GFP-阳性神经元的数目);并且
2)发现那些过去未被检测到的脑活化新区域。
使用下列的实验步骤;
1)雄性小鼠(8周龄)单独饲养一个星期,在此期间,该小鼠被简单地处理(约束于手中,然后被送回笼子),每天一次。设计这种处理方法是为了通过处理(handling)来限制c-fos-GFP诱导的基线表达和变异性。所使用的动物的数量和在这些实验中所使用的转基因动物的类型可以有所不同。
2)所有药物都使用腹膜内注射(i.p);对照小鼠腹膜内注射生理盐水;
3)注射之后,小鼠被送回它们的笼子并且在3小时后被安乐死(这个时间间隔被确定为对于在先导试验中应答氟哌啶醇的c-fos-GFP荧光来说是最佳的)。
4)通过4%甲醛穿心灌注来固定脑,提取并将其准备好用于实施例3中所述的全标本包埋显微镜术。
按如下内容来测试药物:
1)以四个剂量来测试每种药物(见表2),并将其与生理盐水对照进行比较;
表2:
剂量(mg/kg) H F C R O Q
生理盐水 0 0 0 0 0 0
低浓度 0.1 0.1 1 0.1 0.1 1
中等浓度1 0.4 0.2 2 0.4 0.4 2
中等浓度1 1 0.5 5 1 1 5
高浓度 5 2 20 5 15 10
氟哌啶醇(H)、氟奋乃静(F)、氯氮平(C)、利培酮(R)、奥氮平(O)和奎硫平(Q)的剂量曲线。Bradford et al.,Psychopharmacology212:155-170(2010),Dawe et al.,Neuroscience171:161-172(2010),Moore etal.,The Journal of Pharmacology and Experimental Therapeutics262:545-551(1992);Ozaki et al.,Eur.Neuropsychopharmacol.7:181-187(1997);Philibinet al.,Psychopharmacology203:303-315(2009)。
2)每个剂量给药至6只小鼠,结果是:每种药物5×6=30脑。所有六种抗精神病药物的脑总数为6×30=180。每一个使用的仪器都具有以280个冠状切片的采样率每天一个脑的通量(如图27所示)。可以增加每个剂量的测试动物的数目以达到对于一些药物的统计显著性或者根据结果来增加更多的剂量反映曲线数据点。
如实施例3中所述,对脑进行成像和计算处理。首先,将被变形到MRI图集的脑((Dorr et al.,NeuroImage42,60-69(2008))在体素化的脑体积水平进行比较(参见图28),以识别药物比对照样品中的具有显著的c-fos-GFP诱导的区域。一旦这些区域被确定,则标记出包含带有活化细胞的体素的解剖学区域。在一些情况下,可能直接从MRI图集推断解剖学区域,该MRI图集包含62个脑区域的分割(segmentation)(Dorr et al.,2008)。然而,小的脑结构需要基于用MRI图集和艾伦小鼠脑参考图集获得的扫描的变形在在MRI模板内人工地勾画出来(Lein et al.,Nature445,168-176.(2007))。
从这些实验获得的数据被组织为包含了在解剖学脑区域中药物反应曲线形式的每种药物的活化的GFP-阳性神经元的数量的电子数据表(减去对照脑的GFP计数计数之后)。
6.5 实施例5.通过c-fos表达的高通量显微镜术在小鼠脑中分析抗精神病药物
在这个实施例中,在定量的、高分辨率的自动化方法中使用c-fos映射来筛选药物。
这个实施例分析了在小鼠全脑中抗精神病药物对神经回路活性的影响。该方法包含以下步骤:(1)自动化的全脑显微镜术-STP断层摄影术被用于成像c-fos-GFP小鼠的脑,c-fos-GFP小鼠表达GFP作为天然c-fos的标记物;(2)活化的c-fos-GFP-阳性神经元的分布通过卷积神经网络进行计算探测;(3)经处理的数据集被扭曲并且被配准到3D参考脑中,并且被体素化以用于统计比较。特别是,该实施例证明了所述方法可应用于筛选氟哌啶醇,氟哌啶醇是典型的抗精神病药物。
图29显示了实验设计的原理流程图。实验如下方法实施:
动物工作和组织制备。表达作为天然c-fos的替代标记物的GFP的转基因c-fos-GFP小鼠(Reijmers et al.,Science317:1230-1233(2007))被腹膜内注射氟哌啶醇(1mg/kg)或生理盐水(对照)。这些小鼠被送回它们的笼子并不受打扰3小时,该时间是c-fos-GFP的诱导和荧光团成熟所需要的时间段。接下来,小鼠被深度麻醉并用盐水和固定脑的多聚甲醛进行心脏内灌流(intra-cardiac perfusion)来使其安乐死。小鼠被斩首并且脑被提取、后固定并且包埋在琼脂中,以用于STP断层摄影术。STP断层摄影术所使用的仪器与图22中所示的基本相同。三个PMT(C1-C3)可以用于多色成像(multi-colorimaging)。
系列2D切片的重建。已成像的脑重建为一系列的2D切片,通常是如图30所示的每一个小鼠脑280-300个2D切片。
c-fos-GFP的计算探测。卷积神经网络(Turaga et al.,Neural computation22:511-538(2010))基于人类标记学习了c-fos-GFP标签的包含标准和排除标准,如图31A中所示。然后,探测c-fos-GFP(图31B中显示了c-fos-GFP探测的实例)。
将原始数据扭曲到一个参考脑图集。连续的2D-切片数据集重建为3D,并且被扭曲到一个3D参考脑体积上,该3D参考脑体积是以通过STP断层摄影扫描的20个野生型脑的平均值而生成的,如图32所示。使用elastix软件,基于组织自体荧光来完成扭曲。
将c-fos-GFP数据配准到3D参考脑。将c-fos-GFP数据配准到参考脑上建立了c-fos-GFP分布的3D表示,这就是一种c-fos-GFP药学图谱。图33显示了分别带有176,771和545,838个c-fos-GFP细胞的盐水与氟哌啶醇(1mg/kg)处理的脑的c-fos-GFP药学图谱。
3D的c-fos-GFP数据的体素化。3D脑体积以X-Y-Z=450x650x300体素的均匀间隔的栅格、每一个体素的尺寸为20x20x50微米被体素化,以生成连续脑空间的离散数字化。在图34中,最上方两行显示了3D的体素化的盐水和氟哌啶醇处理的脑中c-fos-GFP的热图分布(图24A),并且下方面板显示了同样的脑的2D拼集(2D montage)(图34B)。
统计比较。图35显示了注射了氟哌啶醇(n=7)与盐水(n=7)的小鼠之间的统计差异的热图。通过一系列负二项回归完成两个组之间的统计比较。基于体素相互之间具有一定水平的正相关的假设,通过设置一个0.01的错误发现率(FDR)来修正I型错误。
结果。本实施例证实了使用所述的方法探测到了所有先前已识别的脑区域:内侧前额叶皮质(Medial prefrontal Cx)、扣带回皮质(Cingulate Cx)、梨状皮质(Piriform Cx)、主要的海马回嗅觉小岛(Major Islands of Calleja)、伏核(Nc Accumbens)(整体、外壳、核心)、侧间隔(Lateral septum)、纹状体(Striatum)(整体)、视前内侧区(Medial preoptic area)、室旁核(Paraventricular nucleus)、终纹床核(Bed nucleus of stria terminalis)、丘脑内侧(Medial thalamus)(Sumner et al.,Psychopharmacology171,306-321(2004))。此外,使用所述的方法还探测到先前还没有被识别的其它区域。具有统计差异的其它区域包括:背侧盖带(Dorsal tenia tecta)、背侧梗节皮质(Dorsal peduncular Cx)、腹侧苍白球(Ventral pallidum)、嗅结节(Olftactorytubercle)、灰被(Indusium griseum)、运动皮质、愈合丘脑核(Reunions thalamicnc)、中外侧丘脑核(Centrolateral thalamic nc)、向背中线的下丘脑核(Dorsomedial hypothalamic nc)、内侧顶叶联合皮质(Medial parietalassociation Cx)、顶叶皮层(Parietal Cx)、初级和次级听觉皮质(Primary andSecondary auditory Cx)、下丘脑弓状核(Arcuate hypothalamic nc)、鼻外皮质(Ectorhinal Cx)、下丘脑后核(Posterior hypothalamic nc)、黑质致密部(Substantia nigra compacta)、下托(Subiculum)、杏仁核-梨状皮质过渡区(Amygdalopiriform transition)、乳头体内侧核(Med mammillary nc)和后扣带回皮质(Retrospenial granular Cx)。
这个实施例表明所述的方法首次提供了以细胞分辨率在小鼠全脑中映射药物诱发的活化的自动化且无偏的方法。具体来说,目前的实验证实了氟哌啶醇诱导的脑活化的定量和标准化分析,再现了先前的结果并且识别了许多新活动区域。因此,使用所述方法筛选用于临床中(具有已知的人类效果)的药物将允许生成c-fos-GFP药学图谱的“模板”或参考数据库,该“模板”或参考数据库可以用于在临床前研发中的新药物的定量比较。
6.6 实施例6.孤独症小鼠模型中社会行为诱发的神经活化的基于c-fos的全脑分析
社会交往障碍(Impaired social interaction)是孤独症系障碍(autismspectrum disorders)的标志性特征。在这个实施例中,孤独症遗传小鼠模型被用于识别在社会行为中涉及的脑回路(brain circuitry)并用于检查这些回路是如何被孤独症候选基因突变所影响。c-fos是一种通过应答多种形式外界刺激而被诱导的即早基因,被用作社会交往过程中脑活化的报告基因。使用c-fos-GFP小鼠,利用连续双光子(STP)断层摄影术在全脑中完成c-fos诱导的分析。STP断层摄影术通过组合双光子拼接图案成像和内置振动切片机的机械切片,将小鼠脑成像为一系列冠状切片。因此,该方法允许检查遍及整个小鼠脑的c-fos-GFP变化,这有助于系统性地研究在社会行为刺激之后带有增加的c-fos-GFP标签的脑区域。分析孤独症小鼠模型中的脑回路。结果显示,与相应的野生型的同窝仔进行比较,神经连接蛋白3R451C突变小鼠和神经连接蛋白4基因敲除小鼠在社会曝光之后在一些脑区域中没有显示出增加的c-fos。
为了研究社会性脑回路,保持社会隔离7天的小鼠经受90秒的社会刺激。使用了三个不同组的小鼠:处理对照(模拟处理)、物体对照(无生命的新物体)和社会刺激(不熟悉的被切除了卵巢的母鼠);每组使用7只小鼠。刺激后3小时,小鼠被处死并灌注。图36显示了实验设计。接着,连续双光子断层摄影术被用于以细胞水平分辨率检查整个脑(参见图37,其显示了使用STP断层摄影术的整个脑的3D重建)。然后,机器学习算法用于自动检测c-fos-GFP细胞(参见图38,其显示了首台计算机基于初始人类标记学习了c-fos-GFP细胞的包含标准和排除标准,然后为获得新的数据集(预测)自动化地检测阳性细胞。)
随后,实施图像配准到参考脑(参见图39,其显示了将19个不同的脑(A1和A2)配准到一个脑(A),以生成一个参考脑(B)(20个脑的平均);以及预测结果(E,c-fos-GFP细胞的质心)基于从样品(C)到参考脑(D)的配准参数被配准到参考脑(D))。然后,如图40所示,实施体素化以测量c-fos-GFP细胞的增加,并且体素化的脑图像(B)被配准在参考脑(C)的同一空间中。接着,实施体素取向的统计分析(voxel-wise statistical analysis)以识别应答社会曝光的脑区域。图41证实了从处理对照(A)、物体对照(B)和社会刺激(C)组配准到参考脑(D)的平均体素化结果,以及活化的脑区域与参考脑(F)的3D叠加图。
下述的脑区域被社会曝光激活:
(i)mPFC区域:内侧额眶部皮质(medial orbital cortex)、前边缘皮质(prelimbic cortx)、下边缘皮质(prelimbic cortx)、扣带回皮质(Cingulatecortex);
(ii)无颗粒岛叶皮质(Agranular insular cortex);
(iii)屏状核(clastrum);
(iv)梨状皮质;
(v)嗅结节;
(vi)侧间隔;
(vii)伏核;
(viii)视前内侧区;
(ix)躯体感觉皮质;
(x)杏仁核:基底外侧杏仁核(Basal lateral amygdala)、基底内侧杏仁核(Basalmedial amygdala)、内侧杏仁核(Medial amygdala)、后内侧皮质杏仁孔(posterior medial cortical amygdale);
(xi)下丘脑:室旁下丘脑(Paraventricular hypothalamus)、腹内侧下丘脑核(Ventral medial hypothalamic nucleus)、背内侧下丘脑核(Dorsal medialhypothalamic nucleus);
(xii)背侧内梨状核(Dorsal endopiriform nucleus);
(xiii)乳头体前核(Premamillary nucleus);
(xiv)杏仁海马区域(Amygdalohippocampal area);
(xv)视觉皮质(Visual cortex);
(xvi)下托(Subiculum)。
图42展示了在野生型小鼠和携带神经连接蛋白4KO(A)和神经连接蛋白3R451C的孤独症小鼠模型中的c-fos密度的总结。它指示了在野生型同窝仔中具有显著的c-fos增加但在Ngn4KO和Ngn3R451C中没有显著的c-fos增加的脑区域。具体而言,野生型同窝仔在中央杏仁核和下边缘皮质中显示出显著的增加,然而,神经连接蛋白4KO在社会曝光后没有显示出类似的增加。图42证明了在孤独症小鼠模型中共享的脑区域(shared brainareas)在社会刺激后没有显示出显著的c-fos增加。
这个实施例表明,创建一个系统以无偏方式检测遍及整个脑的对外界刺激应答的c-fos-GFP变化。具体而言,STP断层摄影使得能够观察到遍及整个脑的c-fos-GFP的变化,并且机器学习算法可以稳健地自动化探测c-fos-GFP阳性细胞。此外,图像配准过程使得能够比较不同脑的相同脑区域,并且体素-取向的统计分析揭示了被社会曝光激活的脑区域。另外,初步的c-fos免疫组织化学研究表明,特定的脑区域不能被社会曝光所激活,这暗示了受到孤独症候选基因突变共同影响的潜在的聚敛脑回路(potentialconverging brain circuits)。
6.7 实施例7.使用连续双光子断层摄影术在小鼠脑中进行基于机器学习的细胞计数
到目前为止,仅测定了简单生物的整个神经系统中神经元的确切数目,例如线虫(C.elegans)的神经系统。在诸如啮齿类动物脑的更复杂的神经系统中的神经元的数目仅基于来自被人工计数地小的脑区域的细胞密度的解释进行了大致的估计。
在这个实施例中,提出了一种生成小鼠脑中不同种类的中间神经元的完整数目的新方法。使用了具有特定中间神经元细胞类型的荧光标记核的双转基因小鼠:携带Cre重组酶的细胞类型特异性表达的小鼠与基于Cre的重组和lox-stop-lox盒缺失之后表达核靶向的EGFP的荧光报告基因小鼠杂交。利用连续双光子(STP)断层摄影对这些小鼠的脑进行成像,其以诸如1微米x1微米x2微米的高分辨率生成了全脑扫描。一旦整个3D体积被重建,经训练的卷积神经网络被用于预测该核标签。然后,为了解剖学分割,将标准的MRI小鼠脑连同其标签一起扭曲到STP断层摄影数据集上。使用GAD-Cre转基因小鼠来实施完整中间神经元计数的分析。
图43显示了3D图像重建。整个脑以8个区块(block)进行成像。每个区块被扫描,以正好包围脑区域而不包括固定介质。不同切片的区块使用基于尺度不变特征变换(SIFT)的方法对齐到参考区块且整个脑被重建为3D形式。
图44显示了GAD-Cre的探测和定量。通过人类观察者标记从脑的不同区域随机选取的具有GAD-Cre信号的3D拼块。这些实况数据被用于训练卷积神经网络来探测GAD-Cre信号。使用图像子集来完成该训练,然后将其用于剩下的脑图像。
图45显示了解剖学分割。使用交互信息作为约束条件且因此使用同样的扭曲参数在自发荧光通道(在X&Y方向以20微米、在Z方向以50微米重新采样)中将MRI图集扭曲到脑图像上;脑区域标签也被扭曲。然后,产生的标签于原始x、y、z分辨率被重新取样,并且完成了区域取向的计数。
然后,实施脑表面的重建和所探测到的GAD-Cre-GFP信号的质心(centroids)绘图(plotting)。以1微米横向分辨率,间隔50微米,按300切片,对脑进行成像。
所述方法使得能够使用结合了GAD-Cre敲入小鼠的荧光标记核的计算探测的STP断层摄影成像来研究复杂的脑。
6.8 实施例8.药学图谱的生成
图46阐明了生成药物的药学图谱的示例性过程。在这个典型实施例中,映射了c-fos表达。该示例性过程包括生成药学图谱的步骤A-H。在步骤A,给c-fos-GFP转基因小鼠(Yassin et al.,Neuron68:1043-1050(2010))注射(例如,腹膜内)药物。给对照小鼠注射(例如,腹膜内)盐水。例如,在注射之前,雄性小鼠(8周龄)被单独饲养5天以限制基线c-fos-GFP表达的变异性(variability)。在步骤B,在一段预先设定的使得最高的c-fos驱动的GFP表达的时间段(例如3小时)之后,小鼠被安乐死。在步骤C,小鼠脑被固定(例如,通过用4%甲醛穿心灌注),提取并制备以用于STP断层摄影,并且以细胞水平分辨率对小鼠脑中药物诱发的活化进行成像(Ragan et al.,Nature Methods9:255-258(2012))。然后,在步骤D,从小鼠脑的图像生成全脑数据集。例如,利用集成了双光子显微镜术和组织切片方法的STP断层摄影术将c-fos-GFP脑成像为有280个冠状切片的数据集。
在步骤E,为了生成在c-fos-GFP细胞计数上具有统计学显著差异的全脑“热图”,利用机器学习算法(例如,利用基于神经网络的算法)来探测c-Fos-GFP阳性神经元。例如,利用经训练以基于初始人类标记来识别核c-fos-GFP标签的包含标准和排除标准的卷积神经网络来分析c-fos-GFP信号(Turaga et al.,Neural computation22:511-538(2010))。该训练的5重验证(5-fold validation)之后,基于计算机的预测达到了可与人类观察者之间可变性(variability)相比的表现水平,带有~10%的II型错误(没有探测到带有低信噪比的弱标记细胞)和非常低的I型错误(伪阳性细胞的探测)。因此,卷积神经网络提供了在STP断层摄影数据集中对c-Fos-GFP阳性细胞的自动化和高精确度检测。
在步骤F,重建全脑的c-fos-GFP的3维(3D)分布。在步骤G,数据集被扭曲(例如,共配准)到标准的“参考”脑体积并且被体素化,以用于统计比较。例如,利用ITK elastix软件对20个野生型脑的组织自体荧光信号进行平均来生成“参考”鼠脑(Klein et al.,IEEE Transactions on MedicalImaging29:196-205(2010))。然后,每个未来数据集的相同组织自体荧光信号被用于将数据集扭曲到参考脑并且用于配准到c-Fos-GFP分布的计算机所生成的预测。一旦所有的数据都被扭曲到参考脑,3D脑体积被体素化,以生成连续空间的离散数字化。例如,将数据集表示为位于每个尺寸为20x20x50微米的450x650x300元素(体素)的均等间隔的栅格内的质心(c-fos-GFP细胞)数目。
此外,在步骤H,为了生成药学图谱,将体素化的对照脑和实验脑中的c-fos–GFP分布进行比较,以测定在c-Fos-GFP表达上具有显著差异的解剖学脑区域。例如,可以实施一系列的负二项回归以探测不同药物组之间的差异。因为该测试被应用于每一个体素位置(voxel location),甚至带有低的I型错误率,将会有大量的其中测试结果是显著的位置,但是不同的实验组之间没有真正的生理差异。在假设体素彼此之间具有一定水平的正相关的情况下,错误发现率(FDR)被设定为0.01。负二项回归分析揭示了各组之间具有统计差异的“热点”。然后,使用被共配准到参考脑的参考图集(例如,艾伦参考图集(Hawrylycz et al.,PLoS computational biology7,e1001065(2011))))来解剖识别这些区域。
一些被测试的药物在小鼠中对脑活化可能具有比其它药物更多变的效果。另外,腹膜内给药途径本身能够导致一些可变性,甚至在有经验的实验者操作时也是这样。然而,药学图谱的解剖学分割允许测定不同脑区域间药物诱导的c-Fos活化的标准偏差(SD)。可以监测药物诱发的反应的可变性,并且例如在高于通常的SD的情况下,可以在药物组增加额外的动物,以取得平均值的更一致的估计值。此外,给药前和给药后(在动物被安乐死以用于STP断层摄影之前)的整个过程(例如,3小时),小鼠可以被视频监控30分钟,并且可以自动化分析一组标准笼中行为的记录。因此,高度非典型的行为反应(例如归因于注射的靶向错误)可以被探测,并且在分析数据之前可以对特例进行分拣(triage)。
此外,作为一个实例,药学图谱模式可以与关于药物化合物的结构、物理和化学性质(SPCP)的信息结合。关于分子的3D构象(conformation)的信息可以从PubChem以SDF文件的形式获得,并且可以上传到EDRAGON在线计算化学工具(EDRAGON online computational chemistry tool)(Tetkoand Tachuk,Virtual Computational Chemistry Laboratory(2005))以评价SPCP。对于每一个化学物质,均可以将一组SPCP添加到定义药学图谱的神经应答的集合。除了药学图谱,也可以包含SPCP以改善预测的质量,并且也可以揭示药物-结构相关的合理药物设计原则。
6.9 实施例9.氟哌啶醇、利培酮和阿立哌唑的药学图谱的生成
本实施例证明了在小鼠脑中以细胞水平分辨率产生三种不同的药物的药学图谱并比较药学图谱以获得关于药物诱发的活化的信息的能力。
典型的和非典型的(第二代)抗精神病药物代表了同一治疗家族的药物所共有的临床效果和副作用的复杂性的良好范例。典型的抗精神病药物氟哌啶醇(主要是D2拮抗剂)通常被单独地保存用于治疗急性的、重度的精神病,主要归因于其强烈的锥体束外副作用(EPSE)(Irving et al.,CochraneDatabase of Systematic Reviews4(2006))。与此相反,非典型的(第二代)抗精神病药物不太经常引起EPSE并且通常作为更广泛的适应症的处方。例如,利培酮(主要是D2/5HT2A拮抗剂)被用于治疗双相情感障碍中的狂躁状态和孤独症中的易激惹(Scott et al.,Pediatric Drugs9,343-354(2007)),但是会导致体重增加、困倦和高催乳素血症等(Komossa et al.,Cochrane database ofsystematic reviews(online),CD006626(2011);Kuhn et al.,Molecular systemsbiology6,343(2010))。阿立哌唑(主要是D2/5HT2A拮抗剂和5HT2A部分激动剂)被用于治疗双相情感障碍、重度抑郁障碍(major depressive disorder)和孤独症中的易激惹(Farmer et al.,Expert opinion on pharmacotherapy12,635-640(2011)),但是可能导致头痛、失眠症、恶心和疲劳等(Kuhn et al.,Molecular systems biology6,343(2010))。
如图47所示,在这个实施例中,氟哌啶醇、利培酮和阿立哌唑的药学图谱(例如,A、B和C)分别被生成,以分析被适度剂量的这三种抗精神病药物所诱发的小鼠脑活化:氟哌啶醇0.25mg/kg、利培酮1.0mg/kg和阿立哌唑1.0mg/kg。每一种药物使用5个小鼠脑。如表3和图47所示,这三种药物的药学图谱和对照(注射盐水)小鼠的药学图谱之间的统计比较鉴别了尾状核(caudate)、核壳(putamen)和伏核的共同的活化,该活化之前已经在小鼠和人类中得到了良好的描述(Natesan et al.,Neuropsychopharmacology31:1854-1863(2006),and Mawlawi et al.,J.Cerebr Blood Flow Metab21:1034-1057(2001))。另外,这三个药学图谱揭示了对每一种药物均独特的显著水平的差异的皮质和皮质下活化模式。
如氟哌啶醇的药学图谱A所示,氟哌啶醇激活了尾壳核(CP)和伏核(ACB)以及嗅结节(OT)、前边缘皮质(PL)、侧间隔(LS)和向背中线的下丘脑(HYP)的主要部分。如利培酮的药学图谱B所示,利培酮激活了前边缘皮质(PL)、额眶部皮质(ORB)、梨形皮质(PIR)和味觉(GU)皮质、背侧和腹侧CP、ACB、屏状核(CLA)和上丘(SC)。指明了皮质和上丘之间的交互连接(reciprocal connections)、从皮质到CP和ACB的单向连接(unidirectional connections)以及SC和CP之间的多突触途径。用虚线的椭圆圈对皮质区(左)和脑干区(右)进行归组。如阿立哌唑的药学图谱C所示,阿立哌唑激活了具有更多皮质区的部分重叠的模式,包括听觉联合区和内嗅区的显著活化。杏仁核(AMG)、海马结构(HF)和中线丘脑(PVT和RE)也显示了活化。在左下方重复了与海马结构联合的皮质区的亚组。值得注意的是,SC(一个对于纹状体来说的重要的经由间接途径的输入结构)被利培酮和阿立哌唑二者激活。以灰色高亮显示的CP和ACB是被这三种药物都激活的共同结构。
表3
因此,本实施例证明可以生成和比较细胞水平分辨率的药学图谱以获得关于脑的不同区域的活化的信息。此外,本实施例证明了药学图谱可以用于区分这三个不同的药物。
特别地,在本实施例中呈现的药物诱发的c-Fos活化的数据证明,本文所述方法可以区分三种不同抗精神病药物(一个典型的和两个非典型的)。活化的脑区域的数目和这些区域内活化的强度均反映了药物诱发的模式。使用本实施例中所述方法映射全脑的c-Fos诱导揭示了独特的脑活性模式,对于所使用的三种药物的每一个来说,其显示了不同的和丰富的脑活化模式。
这些数据表明,药物诱导的神经活性的指纹样标记(fingerprint-likesignatures)反映了药物对脑和行为的影响,并且因此,这样的标记可能与临床效果相关。
6.10 实施例10 氟哌啶醇的剂量反应药学图谱的生成
本实施例证明了可以生成同一药物不同剂量的药学图谱,并且可以比较这些药学图谱从而区分不同剂量的脑活化。
药物在不同的剂量有不同的效果和副作用。为了测试药学图谱是否能够揭示脑中的剂量依赖的药物效果,比较了三个剂量的典型抗精神病药氟哌啶醇诱发的脑活化模式:0.05(低)、0.25(中)和1.0(高)mg/kg。图48显示了氟哌啶醇不同剂量的药学图谱。药学图谱(例如,分别对应于三个剂量的A,B,C)的比较揭示了明显的差别,随着剂量的增加所观察到的活化区域的数目也在增加。如药学图谱A所示,0.05mg/kg的氟哌啶醇激活了向背中线的下丘脑(HYP)、ACB和CP。对于CP来说,活化被限制在背侧的和腹侧的细分区域。如药学图谱B所示,0.25mg/kg的氟哌啶醇激活了如药学图谱A中所述的相同结构,外加OT、LS和PL。涉及到了ACB和CP的更大部分。如药学图谱C所示,1.0mg/kg的氟哌啶醇显示出更广的活化,另外还包括,前边缘区(PL)、下边缘区(IL)和侧面内嗅(ENT)区域、BST、中央杏仁核(CEA)和PVT。与两个较低剂量相比,ACB和CP的更大部分被激活。另外,在被共同激活的区域内(尾壳核和伏核),随着剂量的增加,c-Fos诱导的强度显著增加(数据未示出)。
因此,在这个实施例中呈现的药物诱发的c-Fos活化的数据证明,本文所述的方法可以区分单一典型抗精神病药物的三个剂量。活化的脑区域的数目和这些区域内活化的强度都反映了药物诱发的模式。特别是,随着所使用的氟哌啶醇的剂量的增加,c-Fos诱导的强度和活化区域的数目都增加。因此,这些数据表明,药学图谱能够揭示脑中的剂量依赖的药物效果。
6.11 实施例11.药学图谱的综合数据库的生成
图49显示了生成药学图谱的综合数据库来预测诸如新药物的药物的治疗效果和副作用的实例。可以生成多个药物(如精神病药物)的药学图谱并且存储在综合性数据库(例如,动物到人的数据库)中。编辑与多个药物的治疗效果或副作用相关的信息并存储在数据库中。生成新药物的药学图谱并存储在数据库中。然后,将新药物的药学图谱与多个药物的药学图谱进行比较。基于该比较,可以预测新药物的治疗效果或副作用。例如,数据库是包括从小鼠脑的神经活化数据生成的大量广泛使用的精神病药物(例如,61种最有代表性的神经精神病药物)药学图谱的动物到人类(A2H)数据库。A2H数据库将精神病药物的药学图谱联系到人类临床适应症和副作用,因此其可以用于预测新药物的人类临床结果。
作为一个实例,如从公开文件(例如,副作用资源(SIDER)数据库(Kuhnet al.,Molecular systems biology6:343(2010)))所确定的,生成20种具明显临床效果和副作用特征的精神病药物的A2H数据库。20种精神病药物可以被分成10组,1)典型抗精神病药物:氟哌啶醇和匹莫齐特(pimozide);2)非典型的抗精神病药物:帕潘立酮和奥氮平;3)SSRI抗抑郁药:舍曲林和帕罗西汀;4)三环抗抑郁药:多虑平和氯丙咪嗪;5)MAOI抗抑郁药:异卡波肼(isocarboxazid)和苯乙肼(phenelzine);6)四环抗抑郁药:米氮平(mirtazapine)和马普替林(maprotiline);7)SNRI抗抑郁药:文拉法辛(venlafaxine)和去甲文拉法辛(desvenlafaxine);8)抗焦虑药:氯硝西泮(clonazepam)和利眠宁(chlordiazepoxide);9)ADHD药物:哌醋甲酯(methylphenidate)和甲基苯丙胺(methamphetamine);和10)情绪稳定剂和抗痉挛药:加巴喷丁(gabapentin)和卡马西平(carbamazepine)。基于已有的文献,选择与临床上相关的剂量对应的药物剂量。如上述实施例8中所述的,生成这些药物的药学图谱。20种药物中的每一个都在五只小鼠中进行筛选,并且将每个药物组与盐水对照组和其它药物进行比较。
例如,在列出的十组药物之外(across)和之内的成对药物进行比较。对于每一对药物,生成一个列表的脑区域以显示统计上显著的反应,被错误发现率(FDR)、任何一个药物(并集(union))和两个药物(重叠交集(overlap))所控制的。通过评价等于重叠交集/并集x100%的重叠分数(Jaccard相似性系数)来测定药学图谱之间的相似性。对于两种药物的不重叠的/相同的反应,这个测定值分别等于0/100%。自助法(Bootstrap method)被用于检验所观察到的重叠交集的值是否是统计学上显著的。
将已知药物的药学图谱、临床效果和副作用添加到数据库将不断地提高A2H数据库用于临床前药物筛选的价值。例如,可以从NIMH数据库筛选61种药物的综合集(comprehensive set),其包括以下药物:
(1)典型抗精神病药物:氯丙嗪、氟奋乃静、氟哌啶醇、洛沙平(ioxapine)、吗茚酮(molindone)、奋乃静、匹莫齐特、甲硫哒嗪(thioridazine)、氨砜噻吨(thiothixene)、三氟拉嗪(trifluoperazine);
(2)非典型抗精神病药物:阿立哌唑、氯氮平、奥氮平、帕潘立酮、喹硫平、利培酮、齐拉西酮;
(3)SSRI抗抑郁药:西酞普兰、氟西汀、氟伏沙明、帕罗西汀、舍曲林;
(4)三环抗抑郁药:阿米替林、阿莫沙平、氯丙咪嗪、去甲丙咪嗪、多虑平、丙咪嗪、去甲替林、普罗替林、曲米帕明(trimipramine);
(5MAOI抗抑郁药:反苯环丙胺(tranylcypromine)、苯乙肼、异卡波肼;
(6)SNRI抗抑郁药:去甲文拉法辛、度洛西汀(duloxetine)、文拉法辛;
(7)四环抗抑郁药:马普替林、米氮平;
(8)其它抗抑郁药:安非他酮(bupropion)、曲唑酮(trazodone)、司来吉兰(selegiline);
(9)苯二氮卓类抗焦虑药(benzodiazepine anxiolytics):阿普唑仑(alprazolam)、氯氮卓(chlordiazepoxide)、氯硝西泮、劳拉西泮(iorazepam)、奥沙西泮(oxazepam)、地西泮(diazepam);
(10)其它抗焦虑药:丁螺环酮(buspirone);
(11)情绪稳定剂和抗痉挛药:卡马西平、加巴喷丁(gabapentin)、拉莫三嗪(lamotrigine)、碳酸锂、奥卡西平(oxcarbazepine)、托吡酯(topiramate)、丙戊酸;
(12)ADHD药物:苯丙胺、托莫西汀(atomoxetine)、胍法辛(guanfacine)、盐酸甲基苯丙胺(methamphetamine HCl)、哌醋甲酯(methylphenidate)。
61种药物的每一个都以两个剂量来筛选,一个对应于用于人体的临床上相关的剂量和一个已知会导致人类副作用的高剂量(超过治疗范围)。选择超过治疗的剂量的目的是为了生成代表不能被接受的副作用的药学图谱。使用没能通过临床测试的药物的药学图谱来补充这些图谱,从而使A2H数据库包括平行增加的可接受的和不可接受的药学图谱。为了创建A2H数据库,将药学图谱数据联系到从公开出版物可获得的这些药物的临床效果和副作用的数据,例如提供了超过800种副作用的发病率数据的SIDER数据库(Kuhn et al.,Molecular systems biology6:343(2010))。在为作出关于临床试验的“通过/不通过”的决定奠定基础之外,这些数据以史无前例的分辨率为将临床效果和副作用与神经元活化进行联系奠定了基础。
作为一个实例,在这61种药物之中,20种具有明显临床效果和副作用特征的精神病药物以高剂量(超出治疗范围)来进行筛选,且剩下的41种药物以用于人类的临床相关的剂量和高剂量(超出治疗范围)来进行筛选。每一个药物的两个剂量可以组织自(curated from)关于在啮齿类动物模型中的行为药物测试的已有的大量文献(例如,参见一些抗精神病药物的剂量研究(Kelly et al.,J Neurosci18,3470-3479,(1998);Natesan et al.,Neuropsychopharmacology31,1854-1863(2006);Oka et al.,Life sciences76,225-237(2004);Robertson and Fibiger,Neuroscience46,315-328(1992);Simonet al.,Eur Neuropsychopharmacol10,159-164(2000);Wan et al.,(Brain research688,95-104)1995))。通过每组使用5个脑,经筛选的药物处理的脑的总数为:(1x20+2x41)x5=510。另外,包括了4个盐水组(每6个月一个脑(oneeach6months);总共20个脑),以控制任何情况的变化。因此,被筛选的脑总数可以为530。
为了选择合适的药物剂量的目的,在药物应用之前和之后可以对小鼠进行视频监控,并且可以利用自动化行为分析软件对它们的行为以诸如休息、行走、理毛、悬吊、直立、饮水、进食的类别进行评分。关于预期的临床相关副作用,特别是超出治疗剂量范围的副作用,小鼠行为上的变化可以用于评价所使用的药物剂量。可以建立药物诱导的行为变化的小模块并且用于比较被预期会导致临床上相似副作用的药物。
6.12 实施例12.关联小鼠脑药学图谱与人类临床结果
日益增加的关于化合物性质的公开可获得的数据数量创造了将这些数据整合到药物效果预测模型中的机会。NIH分子库路线图倡议(NIHMolecular Libraries Roadmap Initiative)引导创建了化合物的PubChem库(repository)(Sayers et al.,Nucleic acids research40,D13-25(2012))。诸如Pubchem、BioAssays和ChemBank的数据库含有关于药物-靶标相互作用(Seiler et al.,Nucleic acids research36,D351-359(2008))以及因暴露于小分子而诱导的细胞表型的信息。SIDER数据库包括关于对药物-靶标相互作用有预测性的药物副作用(Kuhn et al.,Molecular systems biology6,343(2010))的详细信息(Campillos et al.,Science321,263-266(2008))。
对从SIDER数据库获得的其中包含超过800个药物的副作用(AE)数据的结构(Kuhn et al.,Molecular systems biology6:343(2010))进行分析以用于将药学图谱关联到临床数据。对于如实施例11中所述的61种精神病药物,该SIDER数据库包括了834个AE和56种适应症,平均每一种化合物与大约130个AE和大约3种适应症相关联。当表示成61-对-834二元表格(61-by-834binary table)时,AE可以在成对的化合物之间进行比较,以获得距离矩阵,表明成对的这两个药物之间AE特征(AE profiles)有多近似。
如图52所示,可以将新药的药学图谱与已知药物的药学图谱进行比较来预测新药的AE和/或适应症。为了确定药学图谱的预测性如何,首先实施药物的副作用和适应症的主成分分析(PCA)。图50举例说明了药物的副作用和适应症的示例性主成分分析(PCA),并且图51举例说明了药物的副作用的示例性表示。
如图50所示,通过PCA来分析配对距离(Pairwise distances),并且如图51中所示,使用聚合式层次树(agglomerative hierarchical trees)来进行聚类分析。明显地,具有相似适应症的化合物在PCA空间和层次树上都聚类在一起。在图50中举例说明了4大组药物。典型抗精神病药物(+)和三环抗抑郁药根据它们的AE聚类成各自分开的组。抗焦虑药(*)与ADHD药物(o)和其它类型的抗抑郁药(其它三角形)形成一个聚类。大多数非典型抗精神病药物(x)与情绪稳定和抗惊厥药(anticonvulsant)(点)和SSRI抗抑郁药(正方形)聚类。图51中也显示了化合物的聚类。然而,甚至在诊断类别中,每一个分子也均表现出明显的AE特征,提供了依据其来关联药学图谱的预期多样性的丰富可变性。
图52举例说明了测定氟哌啶醇、利培酮和阿立哌唑的药学图谱中相似性的数据的一个实例。HAL、RISP和ARIP分别代表氟哌啶醇、利培酮和阿立哌唑。如图52所示,ARIP和RISP的药学图谱比ARIP-HAL和RISP-HAL配对的更相似。因此,药学图谱的相似性反映了在AE/适应症方面的相似性,如这些类别的化合物所表明的。例如,为了测定活性之间的相似性,对受到两个药物共同影响的脑区域的分数(交集/并集X100%)进行比较。测定成对药物之间的共同效果的分数以定义在AE/适应症方面的相似性。因此,新药物的药学图谱可以与已知药物的药学图谱进行比较以预测新药物的AE/适应症。
为了扩展对61种药物数据集的预测分析,以药物的药学图谱和AE相似性的形式比较了药物之间的配对距离(pairwise distances)相似性。如果药学图谱对于AE和适应症是预测性的或因果关系的,则相似的活性模式将会提供相似的AE。对于上述的61种药物,在药学图谱空间和AE空间中都测定了1830个配对相似性。计算配对相似性之间的皮尔逊相关系数(Pearsoncorrelation coefficient)以描述这些两个空间之间的关系程度。高相关系数意味着药学图谱对于AE是有预测性的。临床适应症被纳入配对距离的分析,以更全面地探索药物的效果。在药学图谱空间和AE+适应症空间中配对距离之间的相关性比在单独的AE空间中的更好,因为适应症可以与对相关性产生额外贡献的药学图谱的一些特征有关。神经反应和AE的空间之间的配对距离的比较的优点是,这样的分析不涉及建立在这两个空间之间的映射的模型。可以建立在药学图谱空间和AE空间之间的映射的预测性模型。每个AE都被视为一个独立的变量。其频率信息无法在SIDER数据库中获得的AE被视为等于1/0的二元变量,如果AE存在/不存在。
例如,这61种药物可以被归类成具有或没有给定AE的药物。因为对于61种药物的每一个,通过在>80个脑区域中的细胞计数来表示药学图谱,在为每一个AE建立预测指标(predictor)时,参数的数目(>80)比数据点(61)的数目更大。贪婪稀疏化算法(greedy sparsification algorithm)(Koulakov etal.,Frontiers in systems neuroscience5,65(2011);Haddad et al.,Nature methods5:425-429(2008);Saito et al.,Science signaling2,ra9(2009))可以用于通过不考虑对于每一个AE来说都不是强预测指标的脑区域来减少参数的数目,并且避免过度拟合(overfitting)。通过依次穿过所有的脑区域并在单个脑区域的基础上建立预测指标而启动贪婪稀疏化算法。在找到特定AE的最佳脑区域之后,选择最大化预测精确度的第二脑区域。当基本实现了预测和数据之间的低错误率或高相关性时,贪婪募集(greedy recruitment)被停止。这个分析使得能够极大地减少精确预测所需的参数数目(Koulakov et al,Frontiersin systems neuroscience5:65(2011))。
可以使用刀切法(jackknife method)(Koulakov et al.,Frontiers in systemsneuroscience5:65(2011);Saito et al.,Science signaling2,ra9(2009))来验证这些情况下的预测指标的质量。例如,将一种药物从数据集中完全地除去。基于对其它药物的应答来建立预测指标,并且为已被除去的药物生成预测。然后,为数据集中的每个化合物重复该步骤。然后,将所有化合物的预测与AE的实际值进行比较。预测的质量将在错误率和皮尔逊相关系数的基础上进行判断。
为了实现它本身的分类,可以使用一些方法,例如线性判别分析(lineardiscriminate analysis)或费雪线性判别(Fisher’s linear discriminant)(Raudys,Statistical and neural classifiers:an integrated approach to design,SpringerVerlag(2001))、二次判别分析之内的贝叶斯最佳预测指标(Bayes optimalpredictor)(Raudys,Statistical and neural classifiers:an integrated approach todesign,Springer Verlag(2001))和支持向量机(Cristianini et al.,An introductionto support Vector Machines:and other kernel-based-learning methods,CambridgeUniv Pr(2000))。在错误率的基础上通过使用上述的刀切法,可以对不同类型的预测指标进行比较。
除了预测AE,药学图谱还可以用于建立药物适应症的预测模型。可以从SIDER数据库获得每个药物的适应症组。通过使用刀切法进行验证,可以通过计算预测错误来测定预测的质量。因为在刀切法分析中每个药物均被视为从头预测(de novo prediction),可以比较在被纳入的类别之内或之外的药物的预测错误。该测试可以测定小鼠脑活性模式是否可以普及到不同类别药物的适应症。这样的预测算法可以用于临床前药物开发,因为往往为特定适应症开发的药物被证明具有该适应症以外的用途。该预测算法为预测这些额外的适应症提供了一种途径。
通过引用的方式并入
本文引用了诸如专利、专利申请和出版物的各种参考文献,其公开内容在此通过引用的方式将其全文并入本文中。

Claims (52)

1.一种预测测试化合物的治疗效果或毒性效果的方法,其包括:
(a)将测试化合物施与转基因动物,其中转基因动物包含控制荧光报告基因序列表达的基因调节区域;
(b)获取转基因动物的组织;
(c)使用提供组织中表达荧光报告基因序列的细胞的单细胞分辨率的成像技术对获取的组织进行成像,由此生成测试化合物的药学图谱;和
(d)将(c)中的药学图谱与参考化合物的药学图谱进行比较,其中,参考化合物具有已知的治疗效果或毒性效果,由此基于药学图谱的相似性来预测测试化合物的治疗效果或毒性效果。
2.如权利要求1所述的方法,其中,转基因动物是小鼠。
3.如权利要求1或2所述的方法,其中,组织是脑、肾脏、肝脏、胰腺、胃或心脏组织。
4.如权利要求3所述的方法,其中,组织是脑组织。
5.如权利要求4所述的方法,其中,脑组织是整个脑。
6.如权利要求3所述的方法,其中,组织是肝脏组织。
7.如权利要求6所述的方法,其中,肝脏组织是整个肝脏。
8.如权利要求1或2所述的方法,其中,步骤(b)包括获取两个组织。
9.如权利要求8所述的方法,其中,组织选自脑、肾脏、肝脏、胰腺、胃和心脏组织。
10.如权利要求9所述的方法,其中,两个组织是脑组织和肝脏组织。
11.如权利要求1-10任一项所述的方法,其中,成像技术是连续双光子断层摄影术。
12.如权利要求1-11任一项所述的方法,其中,基因调节区域是即早基因的基因调节区域。
13.如权利要求12所述的方法,其中,基因调节区域是刺激后30分钟内激活的即早基因的基因调节区域。
14.如权利要求12或13所述的方法,其中,即早基因是c-fos、FosB、delta FosB、c-jun、CREB、CREM、zif/268、tPA、Rheb、RGS2、CPG16、COX-2、Narp、BDNF、CPG15、Arcadlin,Homer-1a、CPG2或Arc。
15.如权利要求14所述的方法,其中,即早基因是c-fos。
16.如权利要求14所述的方法,其中,即早基因是Arc。
17.如权利要求1-11任一项所述的方法,其中,基因调节区域是在即早基因的下游被激活的基因的基因调节区域。
18.如权利要求1-11任一项所述的方法,其中,基因调节区域是刺激后超过30分钟被激活的基因的基因调节区域。
19.如权利要求1-11任一项所述的方法,其中,基因调节区域是刺激后超过1小时被激活的基因的基因调节区域。
20.如权利要求1-19任一项所述的方法,其中,报告基因序列编码绿色荧光蛋白(GFP)。
21.如权利要求1-20任一项所述的方法,其中,比较步骤包括统计学显著性分析。
22.如权利要求1-21任一项所述的方法,其用于预测测试化合物的治疗效果,且其中参考化合物具有已知的治疗效果。
23.如权利要求22所述的方法,其中,参考化合物在人类中具有已知的治疗效果。
24.如权利要求1-23任一项所述的方法,其用于预测测试化合物的毒性效果,且其中参考化合物具有已知的毒性效果。
25.如权利要求24所述的方法,其中,参考化合物在人类中具有已知的毒性效果。
26.如权利要求1-25任一项所述的方法,其中,参考化合物是用于治疗脑失调的药物。
27.如权利要求1-26任一项所述的方法,其中,(d)中的药学图谱存在于包含多个参考化合物药学图谱的数据库中。
28.如权利要求1-27任一项所述的方法,其中,该方法用多个测试化合物重复进行。
29.如权利要求28所述的方法,其中,将获得的每一个测试化合物的药学图谱编辑成单个数据库。
30.如权利要求28或29所述的方法,其中,将比较步骤中获得的每一个测试化合物的数据编辑成单个数据库。
31.如权利要求1所述的方法,其进一步包含:使用机器学习算法来检测与成像组织有关的激活的细胞。
32.如权利要求31所述的方法,其中,机器学习算法包括卷积神经网络算法。
33.如权利要求1所述的方法,其中,药学图谱是转基因动物的整个脑的药学图谱。
34.如权利要求1所述的方法,其进一步包括:
将已成像的获取的组织扭曲成连续组织空间的体积;
实施连续组织空间的体素化,以生成连续组织空间的离散的数字化;
对离散的数字化使用统计学技术,以识别对照与药物激活的组织区域之间有显著差异的区域;
使用解剖学分割以将显著差异分配到组织区域并测定一个或多个组织区域的激活的细胞数量;
其中,测定的激活的细胞数量用于(c)的药学图谱与参考化合物的药学图谱的比较。
35.一种预测测试化合物的治疗效果或毒性效果的方法,其包括:
(a)将测试化合物施与转基因动物,其中,转基因动物包含控制荧光报告基因序列表达的基因调节区域;
(b)获取转基因动物的组织;
(c)使用提供组织中表达荧光报告基因序列的细胞的单细胞分辨率的成像技术对获取的组织进行成像,由此生成测试化合物的药学图谱;和
(d)将(c)的药学图谱与参考化合物的药学图谱数据库中的药学图谱进行比较,其中,参考化合物具有已知的治疗效果或毒性效果,由此基于药学图谱的相似性来预测测试化合物的治疗效果或毒性效果。
36.一种生成药学图谱的方法,其包括:
(a)将化合物施与包含控制荧光报告基因序列表达的基因调节区域的转基因动物;
(b)获取转基因动物的组织;和
(c)使用提供组织中表达荧光报告基因序列的细胞的单细胞分辨率的成像技术对获取的组织进行成像,由此生成化合物的药学图谱。
37.如权利要求36所述的方法,其中,化合物是具有已知的治疗效果或毒性效果的参考化合物。
38.一种生成测试化合物的药学图谱以预测测试化合物的治疗效果或毒性效果的方法,其中,将测试化合物施与包含控制荧光报告基因序列表达的基因调节区域的转基因动物,其中,获取转基因动物的组织,该方法包括:
使用提供组织中表达荧光报告基因序列的细胞的单细胞分辨率的成像技术对获取的组织进行成像;
通过使用一个或多个数据处理器并使用机器学习算法识别通过应答测试化合物而被激活的细胞;
通过使用一个或多个数据处理器,生成被识别细胞在连续组织空间的体积中的表示;
通过使用一个或多个数据处理器,实施统计学技术以基于获取的组织的被识别的细胞所生成的表示与对照组织的细胞的表示的比较识别有显著差异的区域;和
为预测测试化合物的治疗效果或毒性效果,通过使用一个或多个数据处理器,基于有显著差异的被识别区域生成测试化合物的药学图谱,以识别通过应答测试化合物而被激活的解剖学组织区域。
39.如权利要求38所述的方法,其中,生成被识别细胞在连续组织空间的体积中的表示的步骤包括:
将组织图像扭曲成连续组织空间的标准体积,以配准与连续组织空间内的被识别细胞相关的信息;和
实施连续组织空间的体素化,以生成连续组织空间的离散的数字化。
40.如权利要求39所述的方法,其中,药学图谱被存储在计算机可读的存储介质中;
其中,计算机可读的存储介质包括存储代表连续组织空间的体素数据的存储区;
其中,计算机可读的存储介质包括存储识别通过体素数据表示的组织空间中的激活的解剖学组织区域的药学图谱数据的数据区;
其中,激活的解剖学组织区域包括一个或多个体素,并且体素代表拥有一个或多个通过应答测试化合物而被激活的细胞的组织区域。
41.如权利要求40所述的方法,其中,计算机可读的存储介质是存储在非瞬时存储介质中的数据库或存储装置。
42.如权利要求40所述的方法,其中,计算机可读的存储介质包含一个或多个参考化合物的药学图谱数据,该药学图谱数据与参考化合物在组织的特定区域的治疗效果或毒性效果有关;其中,为了预测测试化合物的治疗效果或毒性效果,将测试化合物的药学图谱数据与一个或多个参考化合物的药学图谱数据进行比较。
43.如权利要求38所述的方法,其中,生成测试化合物的药学图谱的步骤包括实施具有显著差异的被识别区域的解剖学分割。
44.如权利要求38所述的方法,其中,机器学习算法包括以下之一:卷积神经网络算法、支持向量机、随机森林分类器和增压分类器。
45.如权利要求38所述的方法,其中,统计学技术包括负二项式回归技术。
46.如权利要求38所述的方法,其中,统计学技术包括一个或多个t-检验。
47.如权利要求38所述的方法,其中,统计学技术包括随机域理论技术。
48.如权利要求38所述的方法,其中,成像技术包括以下之一:连续双光子断层摄影术、艾伦研究所连续显微镜术、全光组织学、自动化的宽场荧光显微镜术、激光层照荧光显微镜术、OCPI激光层照和微光学切片断层摄影术。
49.一种预测测试化合物的治疗效果或毒性效果的方法,其中,测试化合物被施与包含控制荧光报告基因序列表达的基因调节区域的转基因动物,其中转基因动物的组织被获取,该方法包括:
通过使用一个或多个数据处理器,通过识别所获取的组织中通过应答测试化合物而被激活的解剖学组织区域生成测试化合物的药学图谱,其中药学图谱包括所获取的组织的组织空间的表示,并且包括识别组织空间中激活的解剖学组织区域的药学图谱信息;
通过使用一个或多个数据处理器,比较测试化合物的药学图谱与参考化合物的预先确定的药学图谱,其中参考化合物具有已知的与参考化合物的药学图谱相关的治疗效果或毒性效果;和
基于测试化合物和参考化合物的药学图谱的比较预测测试化合物的治疗效果或毒性效果。
50.如权利要求49所述的方法,其中,预测测试化合物的治疗效果或毒性效果的步骤包括:
生成参考化合物的已知治疗效果或毒性效果与参考化合物的药学图谱之间的相互关系矩阵。
51.如权利要求49所述的方法,其中,所获取的组织的组织空间的表示包括生成所获取的组织的三维图像,将三维图像扭曲成组织空间的标准体积,并体素化组织空间以生成组织空间的离散数字化。
52.如权利要求51所述的方法,其中激活的解剖学组织区域包括一个或多个体素;且
其中体素包括一个或多个通过应答测试化合物而被激活的细胞。
CN201280066634.6A 2011-11-11 2012-11-09 一种药物筛选方法及其用途 Pending CN104040719A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161558877P 2011-11-11 2011-11-11
US61/558,877 2011-11-11
PCT/US2012/064440 WO2013071099A1 (en) 2011-11-11 2012-11-09 A drug screening method and uses thereof

Publications (1)

Publication Number Publication Date
CN104040719A true CN104040719A (zh) 2014-09-10

Family

ID=48290605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280066634.6A Pending CN104040719A (zh) 2011-11-11 2012-11-09 一种药物筛选方法及其用途

Country Status (8)

Country Link
US (1) US20140297199A1 (zh)
EP (1) EP2777074A4 (zh)
JP (1) JP2015507470A (zh)
CN (1) CN104040719A (zh)
CA (1) CA2854469A1 (zh)
IN (1) IN2014MN01101A (zh)
MX (1) MX2014005710A (zh)
WO (1) WO2013071099A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990077A (zh) * 2017-06-15 2017-07-28 福建师范大学 一种基于多光子显微与微流控芯片技术的高通量筛选系统
CN108766587A (zh) * 2018-05-11 2018-11-06 北京诺道认知医学科技有限公司 一种基于指定药物构建给药数据库的方法及装置
CN110797112A (zh) * 2018-08-01 2020-02-14 通用电气公司 利用深度神经网络的自动图形处方的系统和方法
CN110850070A (zh) * 2019-11-22 2020-02-28 北京大学 一种基于荧光标记转基因动物模型评价化学物质生殖发育毒性的方法
CN111062346A (zh) * 2019-12-21 2020-04-24 电子科技大学 一种白细胞自动定位检测及分类识别系统及方法
CN116369275A (zh) * 2023-03-01 2023-07-04 山东师范大学 一种特异性操作生长抑素神经元动物模型的构建方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1751696A4 (en) * 2004-05-06 2010-05-05 Univ California METHOD AND SYSTEM FOR ALIGNING AND CLASSIFYING IMAGES
US10603390B2 (en) 2013-07-29 2020-03-31 The Regents Of The University Of California Real-time feedback system control technology platform with dynamically changing stimulations
EP3268715B1 (en) 2015-03-11 2024-09-25 TissueVision, Inc. System and methods for serial staining and imaging
CN104850864A (zh) * 2015-06-01 2015-08-19 深圳英智源智能系统有限公司 一种基于卷积神经网络的非监督图像识别方法
EP3510500A4 (en) * 2016-09-12 2020-05-20 Cornell University COMPUTING SYSTEMS AND METHODS FOR IMPROVING THE ACCURACY OF MEDICINAL TOXICITY PREDICTIONS
EP3542142A1 (en) * 2016-11-18 2019-09-25 Tissuevision, Inc. Automated tissue section capture, indexing and storage system and methods
US10303961B1 (en) * 2017-04-13 2019-05-28 Zoox, Inc. Object detection and passenger notification
EP3451190B1 (en) 2017-09-04 2020-02-26 Sap Se Model-based analysis in a relational database
JP6559850B1 (ja) * 2018-07-27 2019-08-14 Karydo TherapeutiX株式会社 ヒトにおける被験物質の作用を予測するための人工知能モデル
JP6558786B1 (ja) * 2018-09-28 2019-08-14 学校法人東北工業大学 標的の特性の予測を行うための方法、コンピュータシステム、プログラム
EP3644228B1 (en) * 2018-10-23 2024-08-14 The Chinese University Of Hong Kong Method and apparatus for segmenting cellular image
WO2020166979A2 (ko) * 2019-02-12 2020-08-20 주식회사 뉴로비스 신경전달물질 기반의 뇌 지도 작성 방법 및 뇌 지도를 이용하는 용도
KR102307479B1 (ko) * 2019-02-12 2021-09-30 단국대학교 천안캠퍼스 산학협력단 신경전달물질 기반의 뇌 지도 작성 방법 및 뇌 지도를 이용하는 용도
CN109709129A (zh) * 2019-02-13 2019-05-03 李秀利 一种高通量筛选药物的磁共振成像方法
US11808760B1 (en) * 2019-02-14 2023-11-07 Curi Bio, Inc. System and methods for in vitro structural toxicity testing
CA3130616A1 (en) * 2019-02-20 2020-08-27 Bluerock Therapeutics Lp Detecting cells of interest in large image datasets using artificial intelligence
CN110178757B (zh) * 2019-04-19 2021-08-27 广东医科大学附属医院 一种斑马鱼脑创伤模型及其制备方法和应用
EP4014156A1 (en) 2019-08-13 2022-06-22 Sanofi Predicting patient responses to a chemical substance
EP4047607A4 (en) * 2019-10-17 2022-12-07 Karydo Therapeutix, Inc. ARTIFICIAL INTELLIGENCE MODEL FOR PREDICTING INDICATIONS FOR TEST SUBSTANCES IN HUMANS
CN111061729B (zh) * 2019-11-29 2021-04-16 武汉大学 顾及粒度的矢量瓦片组织方法
US12241830B2 (en) * 2019-12-06 2025-03-04 Broad Institute, Inc. Living biosensors
US11461216B1 (en) 2020-05-18 2022-10-04 Vignet Incorporated Monitoring and improving data collection using digital health technology
US11605038B1 (en) 2020-05-18 2023-03-14 Vignet Incorporated Selecting digital health technology to achieve data collection compliance in clinical trials
CN111657861B (zh) * 2020-06-04 2022-02-25 浙江大学 基于双光子显微镜技术的溶栓药效评价方法
US20230374590A1 (en) * 2021-09-14 2023-11-23 Massachusetts Institute Of Technology Methods and reagent for diagnosing bipolar disorder
WO2024168475A1 (zh) * 2023-02-13 2024-08-22 深圳先进技术研究院 一种有效率比较不同药物对抗焦虑效果的评价方法和装置
US12349940B2 (en) 2023-06-26 2025-07-08 Conceivable Life Sciences Inc. Autonomous denudation in an intelligent automated in vitro fertilization and intracytoplasmic sperm injection platform

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998704B2 (en) * 2002-03-07 2011-08-16 Carnegie Mellon University Methods for magnetic resonance imaging
US8952213B2 (en) * 2002-04-26 2015-02-10 The Board Of Trustees Of The Leland Stanford Junior University Neuronal activation in a transgenic model
US7372985B2 (en) * 2003-08-15 2008-05-13 Massachusetts Institute Of Technology Systems and methods for volumetric tissue scanning microscopy
CN101484806A (zh) * 2006-05-17 2009-07-15 协乐民公司 一种对组织进行自动分析的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106990077A (zh) * 2017-06-15 2017-07-28 福建师范大学 一种基于多光子显微与微流控芯片技术的高通量筛选系统
CN108766587A (zh) * 2018-05-11 2018-11-06 北京诺道认知医学科技有限公司 一种基于指定药物构建给药数据库的方法及装置
CN110797112A (zh) * 2018-08-01 2020-02-14 通用电气公司 利用深度神经网络的自动图形处方的系统和方法
CN110797112B (zh) * 2018-08-01 2024-01-05 通用电气公司 利用深度神经网络的自动图形处方的系统和方法
CN110850070A (zh) * 2019-11-22 2020-02-28 北京大学 一种基于荧光标记转基因动物模型评价化学物质生殖发育毒性的方法
CN111062346A (zh) * 2019-12-21 2020-04-24 电子科技大学 一种白细胞自动定位检测及分类识别系统及方法
CN116369275A (zh) * 2023-03-01 2023-07-04 山东师范大学 一种特异性操作生长抑素神经元动物模型的构建方法

Also Published As

Publication number Publication date
US20140297199A1 (en) 2014-10-02
EP2777074A1 (en) 2014-09-17
MX2014005710A (es) 2015-03-09
EP2777074A4 (en) 2015-08-19
CA2854469A1 (en) 2013-05-16
WO2013071099A1 (en) 2013-05-16
IN2014MN01101A (zh) 2015-07-03
JP2015507470A (ja) 2015-03-12

Similar Documents

Publication Publication Date Title
CN104040719A (zh) 一种药物筛选方法及其用途
Ährlund-Richter et al. A whole-brain atlas of monosynaptic input targeting four different cell types in the medial prefrontal cortex of the mouse
Yun et al. Ultrafast immunostaining of organ-scale tissues for scalable proteomic phenotyping
Zhang et al. Reconstruction of the hypothalamo-neurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain
Wang et al. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling
Cutrona et al. A high‐throughput automated confocal microscopy platform for quantitative phenotyping of nanoparticle uptake and transport in spheroids
Fischer et al. Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography
Antoniades et al. Making the connection: ciliary adhesion complexes anchor basal bodies to the actin cytoskeleton
Ueda et al. Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma
McCullumsmith et al. Postmortem brain: an underutilized substrate for studying severe mental illness
Desalvo et al. Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila
Hinton Jr et al. A comprehensive approach to sample preparation for electron microscopy and the assessment of mitochondrial morphology in tissue and cultured cells
Nikalayevich et al. Aberrant cortex contractions impact mammalian oocyte quality
Matho et al. Genetic dissection of glutamatergic neuron subpopulations and developmental trajectories in the cerebral cortex
Parry et al. Impact of capillary and sarcolemmal proximity on mitochondrial structure and energetic function in skeletal muscle
Tan et al. Biocytin-labeling in whole-cell recording: electrophysiological and morphological properties of pyramidal neurons in CYLD-deficient mice
Lyu et al. Deficiency of FRMD5 results in neurodevelopmental dysfunction and autistic-like behavior in mice
Pokhrel et al. HREM, RNAseq and cell cycle analyses reveal the role of the G2/M-regulatory protein, WEE1, on the survivability of chicken embryos during diapause
Lin et al. Automated in situ brain imaging for mapping the Drosophila connectome
Rohrer et al. Conditional loss of the exocyst component Exoc5 in retinal pigment epithelium (RPE) results in RPE dysfunction, photoreceptor cell degeneration, and decreased visual function
Wu et al. Trigeminal ganglion morphology in human fetus
Spurgin et al. Dynamics of primary cilia in endothelial and mesenchymal cells throughout mouse lung development
Senol et al. Brain-wide input-output analysis of tuberal nucleus somatostatin neurons reveals hierarchical circuits for orchestrating feeding behavior
Westerich et al. Patterning of phase-separated condensates by Dnd1 controls cell fate
Hainsworth et al. The promise of molecular science in brain health. What breakthroughs are anticipated in the next 20 years?

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140910