CN104039707A - Czts系化合物半导体和光电转换元件 - Google Patents

Czts系化合物半导体和光电转换元件 Download PDF

Info

Publication number
CN104039707A
CN104039707A CN201280063360.5A CN201280063360A CN104039707A CN 104039707 A CN104039707 A CN 104039707A CN 201280063360 A CN201280063360 A CN 201280063360A CN 104039707 A CN104039707 A CN 104039707A
Authority
CN
China
Prior art keywords
czts
mole number
based compound
compound semiconductor
band gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280063360.5A
Other languages
English (en)
Inventor
酒井武信
粟野宏基
前川谅介
上田太郎
高桥诚治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Fine Ceramics Center
Toyota Motor Corp
Original Assignee
Japan Fine Ceramics Center
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Fine Ceramics Center, Toyota Motor Corp filed Critical Japan Fine Ceramics Center
Publication of CN104039707A publication Critical patent/CN104039707A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明的主要目的在于提供带隙与现有的CZTS系化合物半导体不同的CZTS系化合物半导体和使用该半导体的光电转换元件。本发明涉及Cu的摩尔数的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的合计摩尔数中Cu的摩尔数所占的比例的CZTS系化合物半导体,还涉及使用该CZTS系化合物半导体的光电转换元件。

Description

CZTS系化合物半导体和光电转换元件
技术领域
本发明涉及CZTS系化合物半导体和使用该半导体得到的光电转换元件。
背景技术
太阳能电池具有每单位发电量的二氧化碳排放量少且不需要发电用的燃料的优点。因此,被期待作为抑制地球变暖的能源,在已实用化的太阳能电池中,使用单晶硅或多晶硅的、具有一组pn结的单结太阳能电池成为主流。另外,近年来,对不依赖于硅的薄膜太阳能电池等正在进行积极研究。
CZTS系薄膜太阳能电池是使用Cu、Zn、Sn和S(以下有时称为“CZTS系材料”。另外,以下,将使用CZTS系材料的化合物半导体称为“CZTS系化合物半导体”)代替硅来作为光吸收层的太阳能电池。这些材料易于得到且价格便宜,因此被认为有望作为薄膜太阳能电池的光吸收层的材料。
作为与CZTS系薄膜太阳能电池相关的技术,例如专利文献1中公开了包含Cu、Zn、Sn和S且不包含含有Na和O的物质的硫化物系化合物半导体和使用该硫化物系化合物半导体作为光吸收层的光电元件。
现有技术文献
专利文献
专利文献1:日本特开2009-26891号公报
发明内容
发明所要解决的问题
专利文献1中公开的现有的Cu2ZnSnS4(以下,有时称为“CZTS”)的带隙为约1.45eV。为了提高CZTS系薄膜太阳能电池的转换效率,期望吸收阳光的较宽的波长来进行发电,但对于仅仅迄今为止所发现的Cu2ZnSnS4的组成材料而言,由于仅具有单一的带隙,因此阳光的吸收范围受限。为了开发出能够吸收阳光的较宽的波长的CZTS系薄膜太阳能电池,认为构成将带隙不同的多个CZTS系材料层叠而得到的、所谓多结型太阳能电池单元是有效的。但是,迄今为止尚未找到CZTS系材料中的带隙的变更、调节方法,尚未建立CZTS系材料的带隙的变更、调节方法,因此,无法构成多结型CZTS系薄膜太阳能电池单元。
因此,本发明的课题在于提供带隙与现有的CZTS系化合物半导体不同的CZTS系化合物半导体和使用这样的CZTS系化合物半导体的光电转换元件。
用于解决问题的方法
本发明人进行了深入的研究,结果发现,通过使构成CZTS系化合物半导体的Cu、Zn和Sn的比率为与构成现有的Cu2ZnSnS4的Cu、Zn和Sn的比率不同的比率,可得到带隙与现有的CZTS不同的CZTS系化合物半导体。更具体而言,发现,与现有的CZTS相比,(1)使Cu的含有比率增大而使价电子带上端(VBM)上升、(2)使Sn的含有比率降低而使传导带下端(CBM)下降、(3)用具有比Zn的离子半径大的离子半径的2价离子(例如Ca、Sr、Ba等)置换Zn的一部分,由此能够得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。另外发现,与现有的CZTS相比,(4)使Cu的含有比率降低而使价电子带上端(VBM)下降、(5)使Sn的含有比率增大而使传导带下端(CBM)上升、(6)用具有比Zn的离子半径小的离子半径的2价离子(例如Mg、Be等)置换Zn的一部分,由此能够得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。本发明基于这些发现而完成。
为了解决上述问题,本发明采取以下的方法。即,
本发明的第一方式为一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例。通过使Cu的摩尔数的比例增大,能够使价电子带上端(VBM)上升,因此,能够得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。
另外,上述本发明的第一方式中,可以进一步使在Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例。即使为该方式,也能够得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。
本发明的第二方式为一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例。通过使Zn的摩尔数的比例减小而使例如Cu和Sn的摩尔数的比例增大,能够得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。
本发明的第三方式为一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例。通过使Sn的摩尔数的比例减小,能够使传导带下端(CBM)下降,因此,能够得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。
本发明的第四方式为一种CZTS系化合物半导体,其中,构成Cu2ZnSnS4的Zn的一部分被形成具有比Zn的离子半径大的离子半径的2价离子的元素(例如Ca、Sr、Ba等)置换。通过将Zn的一部分用Ca、Sr、Ba等进行置换,能够得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。
本发明的第五方式为一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例。通过使Cu的摩尔数的比例减小,能够使价电子带上端(VBM)下降,因此,能够得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。
另外,上述本发明的第五方式中,优选进一步使在Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例。通过设定为该方式,能够容易地得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。
本发明的第六方式为一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例。通过使Sn的摩尔数的比例增大,能够使传导带下端(CBM)上升,因此,能够得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。
本发明的第七方式为一种CZTS系化合物半导体,其中,构成Cu2ZnSnS4的Zn的一部分被形成具有比Zn的离子半径小的离子半径的2价离子的元素(例如Mg、Be等)置换。通过将Zn的一部分用Mg、Be等进行置换,能够得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。
本发明的第八方式一种光电转换元件,其使用带隙不同的多个CZTS系化合物半导体,且该多个CZTS系化合物半导体包含上述本发明的第一方式至上述本发明的第七方式所述的CZTS系化合物半导体。通过设定为该方式,能够构成将带隙不同的多个CZTS系材料层叠而得到的多结型太阳能电池单元,因此,可以提供能够吸收阳光的较宽的波长的光电转换元件。
发明效果
根据本发明,能够提供带隙与现有的CZTS系化合物半导体不同的CZTS系化合物半导体及其制造方法、以及使用这样的CZTS系化合物半导体的光电转换元件及其制造方法。
附图说明
图1是说明本发明的概念的图。
图2是说明CZTS系化合物半导体的组成的图。
图3是示出合成粉末的X射线衍射结果的图。
图4是示出合成粉末的X射线衍射结果的图。
图5是示出光学特性测定结果的图。
图6是示出光学特性测定结果的图。
具体实施方式
以下参考附图对本发明进行说明。需要说明的是,以下示出的方式为本发明的示例,本发明并不限定于以下示出的方式。
图1是说明本发明的概念的图。如上所述,本发明中,例如通过使Cu的含有比率与现有的CZTS的Cu的含有比率相比增大而使价电子带上端(VBM)上升,可得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。这样的CZTS系化合物半导体例如可以通过设定为图1中α所示的区域来得到。
另外,本发明中,例如通过使Sn的含有比率与现有的CZTS的Sn的含有比率相比降低而使传导带下端(CBM)下降,可得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。这样的CZTS系化合物半导体例如可以通过设定为图1中β所示的区域来得到。
另外,本发明中,例如通过用具有比Zn的离子半径大的离子半径的2价离子(例如Ca、Sr、Ba等)将Zn的一部分置换,可得到使带隙与现有的CZTS的带隙相比减小的CZTS系化合物半导体。通过设定为这样的方式而能够使CZTS系化合物半导体的带隙降低是因为晶格常数增大的缘故。
另外,本发明中,例如使Cu的含有比率与现有的CZTS的Cu的含有比率相比降低而使价电子带上端(VBM)下降,由此得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。这样的CZTS系化合物半导体例如可以通过设定为图1中γ所示的区域来得到。
另外,本发明中,例如使Sn的含有比率与现有的CZTS的Sn的含有比率相比增大而使传导带下端(CBM)上升,由此得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。这样的CZTS系化合物半导体例如可以通过设定为图1中γ所示的区域来得到。
另外,本发明中,例如通过用具有比Zn的离子半径小的离子半径的2价离子(例如Mg、Be等)将Zn的一部分置换,可得到使带隙与现有的CZTS的带隙相比增大的CZTS系化合物半导体。通过设定为这样的方式而能够使CZTS系化合物半导体的带隙增大是由于晶格常数变小的缘故。
通过分别对作为原料使用的Cu2S、ZnS和SnS2的混合比率进行适当调节,能够达到图1中α、β、γ所示的区域。带隙与现有的CZTS不同的本发明的CZTS系化合物半导体例如可以使用调节混合比率后的Cu2S、ZnS和SnS2来制造。使用这些原料来合成CZTS的方法没有特别限定,例如可举出:将金属前体溅射成膜后在H2S气体中进行硫化的方法、将硫化物粉末用溶剂溶解并印刷成膜后进行煅烧、并在H2S气体中进行硫化的方法、将硫化物粉末混合后通过热处理合成并印刷后进行煅烧、并在H2S气体中进行硫化的方法、利用化学液相合成法合成CZTS粒子后进行印刷并煅烧、并在H2S气体中进行硫化的方法等。
根据本发明,利用CZTS系的同种元素使带隙发生变化,因此,能够在制作工艺中使用同样的操作(温度、操作方法等)来制作带隙不同的多个CZTS系化合物半导体。因此,能够以低成本制造性能稳定的光电转换元件。
实施例
以下,示出实施例和比较例对本发明进一步进行具体说明。
1.CZTS系化合物半导体的制作
将Cu2S(高纯度化学公司制)、ZnS(高纯度化学公司制)和SnS2(高纯度化学公司制)的各粉末以预定量称量后投入到球磨机中。接着,投入50体积%的乙醇,混合24小时后,在120℃下干燥10小时,由此得到粉末。
将所得到的粉末投入到玻璃管中,抽真空后进行氮置换,将玻璃管加热后密封,由此制作玻璃小容器。
接着,将制作的玻璃小容器放入电炉(雅马拓公司制),在700℃下热处理5小时,由此制作合成粉末。
将Cu2S、ZnS和SnS2的合计量设为1时的、Cu2S、ZnS和SnS2的混合比率示于表1。表1中的Cu2S、ZnS和SnS2的混合比率以将小数点后第三位四舍五入的方式来表示,为便利起见,Cu比率(在Cu、Zn、Sn的合计中Cu所占的比例)、Zn比率(在Cu、Zn、Sn的合计中Zn所占的比例)和Sn比率(在Cu、Zn、Sn的合计中Sn所占的比例)以将小数点后第四位四舍五入的方式来表示。另外,将各合成粉末的原料的混合比率一并示于图2。
[表1]
样品No. Cu2S ZnS SnS2 Cu比率 Zn比率 Sn比率 Eg[eV]
标准样品 0.33 0.33 0.33 0.500 0.250 0.250 1.46
1-1 0.34 0.31 0.36 0.504 0.230 0.267 1.14
1-2 0.36 0.29 0.36 0.526 0.212 0.263 1.12
1-3 0.34 0.28 0.38 0.507 0.209 0.284 1.11
1-4 0.38 0.24 0.38 0.551 0.174 0.275 1.09
2-1(=1-1) 0.34 0.31 0.36 0.504 0.230 0.267 1.14
2-2 0.36 0.29 0.36 0.526 0.212 0.263 1.12
2-3 0.36 0.28 0.38 0.522 0.203 0.275 1.11
2-4 0.29 0.42 0.29 0.450 0.326 0.225 1.34
3-1 0.31 0.34 0.34 0.477 0.262 0.262 1.51
3-2 0.29 0.36 0.36 0.446 0.277 0.277 1.55
3-3 0.31 0.33 0.36 0.473 0.252 0.275 1.50
3-4 0.29 0.31 0.39 0.453 0.242 0.305 1.53
3-5 0.26 0.37 0.37 0.413 0.294 0.294 1.60
3-6 0.26 0.35 0.39 0.413 0.278 0.310 1.66
3-7 0.26 0.33 0.41 0.413 0.262 0.325 1.71
2.X射线衍射测定
使用粉末X射线衍射装置(RINT2000、理学电机公司制)进行X射线衍射测定,由此确认制作的各合成粉末为单一组成。标准样品、样品No.1-4和样品No.2-3的各合成粉末的X射线衍射结果示于图3。从图3的纸面上侧依次为标准样品的结果、样品No.1-4的结果和样品No.2-3的结果。另外,标准样品和样品No.3-3的各合成粉末的X射线衍射结果示于图4。从图4的纸面上侧依次为标准样品的结果和样品No.3-3的结果。图3和图4的纵轴为强度[arb.unit],横轴为2θ[deg]。
3.光学特性测定
使用紫外可见近红外分光光度计(LAMBDA950、珀金埃尔默公司制)进行光学特性测定,由此确定制作的各合成粉末的带隙。确定的带隙(Eg[eV])示于表1。表1中的带隙Eg[eV]以将小数点后第三位四舍五入的方式来表示。另外,标准样品、样品No.1-4和样品No.2-3的各合成粉末的光学特性测定结果示于图5,标准样品和样品No.3-3的各合成粉末的光学特性测定结果示于图6。图5和图6的纵轴为利用库尔贝卡-芒克(Kubelka-Munk)公式转换后的光的强度KM[a.u.],横轴为波长[nm]。
4.结果
如图3和图4所示,制作的全部合成粉末的峰位置一致,为CZTS单一组成。另外,如图5和图6所示,各合成粉末显示出不同的光学特性。这可以认为是由于如表1所示那样各合成粉末的带隙不同的缘故。
从表1和图2与图1的比较可知,通过设定为图1中α所示的区域,可得到使带隙大幅减小的CZTS系化合物半导体(带隙:1.09eV~1.14eV)。另外可知,通过设定为图1中β所示的区域,可得到使带隙减小的CZTS系化合物半导体(带隙:1.3eV~1.4eV)。另外可知,通过设定为图1中γ所示的区域,可得到使带隙增大的CZTS系化合物半导体(带隙:1.50eV~1.71eV)。
综上所述,根据本发明,能够提供带隙与现有的CZTS系化合物半导体不同的CZTS系化合物半导体。另外,通过使用这样的CZTS系化合物半导体,能够构成将带隙不同的多个CZTS系材料层叠而得到的多结型太阳能电池单元,因此,根据本发明,也能够提高使转换效率提高的光电转换元件。

Claims (10)

1.一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例。
2.如权利要求1所述的CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例。
3.一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Zn的摩尔数所占的比例。
4.一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例。
5.一种CZTS系化合物半导体,其中,构成Cu2ZnSnS4的Zn的一部分被形成具有比Zn的离子半径大的离子半径的2价离子的元素置换。
6.一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例小于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Cu的摩尔数所占的比例。
7.如权利要求6所述的CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例。
8.一种CZTS系化合物半导体,其中,在Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例大于在构成Cu2ZnSnS4的Cu、Zn和Sn的摩尔数的合计中Sn的摩尔数所占的比例。
9.一种CZTS系化合物半导体,其中,构成Cu2ZnSnS4的Zn的一部分被形成具有比Zn的离子半径小的离子半径的2价离子的元素置换。
10.一种光电转换元件,其使用带隙不同的多个CZTS系化合物半导体,且该多个CZTS系化合物半导体包含权利要求1~9中任一项所述的CZTS系化合物半导体。
CN201280063360.5A 2011-12-28 2012-11-30 Czts系化合物半导体和光电转换元件 Pending CN104039707A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011288625A JP2013136481A (ja) 2011-12-28 2011-12-28 Czts系化合物半導体及び光電変換素子
JP2011-288625 2011-12-28
PCT/JP2012/081060 WO2013099517A1 (ja) 2011-12-28 2012-11-30 Czts系化合物半導体及び光電変換素子

Publications (1)

Publication Number Publication Date
CN104039707A true CN104039707A (zh) 2014-09-10

Family

ID=48697015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280063360.5A Pending CN104039707A (zh) 2011-12-28 2012-11-30 Czts系化合物半导体和光电转换元件

Country Status (5)

Country Link
US (1) US20140332080A1 (zh)
EP (1) EP2799399A4 (zh)
JP (1) JP2013136481A (zh)
CN (1) CN104039707A (zh)
WO (1) WO2013099517A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098369A1 (ja) * 2009-02-27 2010-09-02 国立大学法人名古屋大学 半導体ナノ粒子及びその製法
JP2010215497A (ja) * 2009-02-20 2010-09-30 Toyota Central R&D Labs Inc 硫化物及び光電素子
WO2010135667A1 (en) * 2009-05-21 2010-11-25 E. I. Du Pont De Nemours And Company Processes for preparing copper tin sulfide and copper zinc tin sulfide films
WO2011016283A1 (ja) * 2009-08-06 2011-02-10 三井金属鉱業株式会社 半導体粉末およびその製造方法
WO2011066204A1 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company Syntheses of quaternary chalcogenides in cesium, rubidium, barium and lanthanum containing fluxes
JP2011159920A (ja) * 2010-02-03 2011-08-18 Institute Of National Colleges Of Technology Japan 化合物半導体、光電素子及びその製造方法
JP2011171652A (ja) * 2010-02-22 2011-09-01 Tdk Corp 化合物半導体光吸収層の製造方法及び化合物半導体薄膜太陽電池の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783908B2 (ja) 2007-07-18 2011-09-28 株式会社豊田中央研究所 光電素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215497A (ja) * 2009-02-20 2010-09-30 Toyota Central R&D Labs Inc 硫化物及び光電素子
US20110303879A1 (en) * 2009-02-20 2011-12-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Sulfide and photoelectric element
WO2010098369A1 (ja) * 2009-02-27 2010-09-02 国立大学法人名古屋大学 半導体ナノ粒子及びその製法
WO2010135667A1 (en) * 2009-05-21 2010-11-25 E. I. Du Pont De Nemours And Company Processes for preparing copper tin sulfide and copper zinc tin sulfide films
WO2010135622A1 (en) * 2009-05-21 2010-11-25 E. I. Du Pont De Nemours And Company Copper zinc tin chalcogenide nanoparticles
WO2011016283A1 (ja) * 2009-08-06 2011-02-10 三井金属鉱業株式会社 半導体粉末およびその製造方法
WO2011066204A1 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company Syntheses of quaternary chalcogenides in cesium, rubidium, barium and lanthanum containing fluxes
JP2011159920A (ja) * 2010-02-03 2011-08-18 Institute Of National Colleges Of Technology Japan 化合物半導体、光電素子及びその製造方法
JP2011171652A (ja) * 2010-02-22 2011-09-01 Tdk Corp 化合物半導体光吸収層の製造方法及び化合物半導体薄膜太陽電池の製造方法

Also Published As

Publication number Publication date
EP2799399A1 (en) 2014-11-05
EP2799399A4 (en) 2015-07-08
WO2013099517A1 (ja) 2013-07-04
JP2013136481A (ja) 2013-07-11
US20140332080A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
Maeda et al. Crystallographic and optical properties and band structures of CuInSe2, CuIn3Se5, and CuIn5Se8 phases in Cu-poor Cu2Se–In2Se3 pseudo-binary system
He et al. Composition dependence of structure and optical properties of Cu2ZnSn (S, Se) 4 solid solutions: an experimental study
CN105820055B (zh) 一种甲基氨基碘化铅铋钙钛矿晶体光吸收层材料及其制备方法
US8747704B2 (en) Compound semiconductors and their application
Ueda et al. Crystallographic and optical properties of CuGa3S5, CuGa3Se5 and CuIn3 (S, Se) 5 and CuGa3 (S, Se) 5 systems
Sadhu et al. Recent advances in colloidal quantum dots or perovskite quantum dots as a luminescent downshifting layer embedded on solar cells
CN109037373A (zh) 一种MgIn2S4基中间带太阳能吸收材料及其制备方法
Wang et al. 97.3% Pb-Reduced CsPb1–x Ge x Br3 Perovskite with Enhanced Phase Stability and Photovoltaic Performance through Surface Cu Doping
EP2869335A1 (en) Semiconductor film manufacturing method
Nhalil et al. Optoelectronic properties of candidate photovoltaic Cu2PbSiS4, Ag2PbGeS4 and KAg2SbS4 semiconductors
CN103633165B (zh) 黄铜矿结构中间带太阳能电池吸收层材料及其制备方法
CN101974328B (zh) 一种钼钨酸盐稀土光转换材料及其制备方法
US20130009112A1 (en) Compound semiconductors and their application
CN103606573B (zh) 一种黄铜矿结构的中间带吸收材料及其制备方法
Chen et al. The synthesis of Cu 2 ZnSnS 4 nanoparticles via an open-air solution route: influences of Zn precursor content
CN104039707A (zh) Czts系化合物半导体和光电转换元件
EP2708500B1 (en) Novel compound semiconductor and usage for same
US8636925B2 (en) Compound semiconductors and their application
JP5767395B2 (ja) 新規な化合物半導体及びその活用
Fu et al. Synthesis, crystal structure and optical properties of Ce doped CuInSe2 powders prepared by mechanically alloying
CN101864303A (zh) 一种碱金属碱土金属磷酸盐荧光粉及其制备方法
CN105742385B (zh) 一种铜铁锌锡硫微米单晶颗粒及其制备方法和在制备太阳能电池方面的应用
CN104151931A (zh) 溶胶凝胶型喷墨打印机用纳米铝粉墨水的加工方法
CN110422873A (zh) 一种AgGaS2基中间带半导体材料及其制备方法
Schorr et al. Energy band gap variations in chalcogenide compound semiconductors: influence of crystal structure, structural disorder, and compositional variations

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160831

C20 Patent right or utility model deemed to be abandoned or is abandoned