CN104037277A - LED flip chip manufacturing method and LED flip chip - Google Patents

LED flip chip manufacturing method and LED flip chip Download PDF

Info

Publication number
CN104037277A
CN104037277A CN201410300102.5A CN201410300102A CN104037277A CN 104037277 A CN104037277 A CN 104037277A CN 201410300102 A CN201410300102 A CN 201410300102A CN 104037277 A CN104037277 A CN 104037277A
Authority
CN
China
Prior art keywords
layer
metal
dbr
metal reflective
reflective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410300102.5A
Other languages
Chinese (zh)
Inventor
姚禹
郑远志
陈向东
康建
梁旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EPITOP OPTOELECTRONIC Co Ltd
Original Assignee
EPITOP OPTOELECTRONIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EPITOP OPTOELECTRONIC Co Ltd filed Critical EPITOP OPTOELECTRONIC Co Ltd
Priority to CN201410300102.5A priority Critical patent/CN104037277A/en
Publication of CN104037277A publication Critical patent/CN104037277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0133Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/83Electrodes
    • H10H20/831Electrodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings
    • H10H20/841Reflective coatings, e.g. dielectric Bragg reflectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/032Manufacture or treatment of electrodes

Landscapes

  • Led Device Packages (AREA)

Abstract

本发明提供一种倒装LED芯片的制备方法及倒装LED芯片。本发明提供的方法,包括:在衬底上依次生长缓冲层、本征半导体层、N型半导体层、发光层和P型半导体层,以形成外延层;去除部分P型半导体层和部分发光层,露出部分N型半导体层;在P型半导体层的表面依次形成透明导电层和DBR层;在DBR层的表面形成金属反射层,并在DBR层和金属反射层的相同位置形成通孔,以露出部分N型半导体层和部分透明导电层;在DBR层和金属反射层的通孔上形成金属导电层。本发明提供的方法解决了现有技术制备的倒装LED芯片,由于金属材料的性能限制,在制备金属反射层时无法兼顾反射率和导电性的要求而导致反射效率降低的问题。

The invention provides a method for preparing a flip-chip LED chip and a flip-chip LED chip. The method provided by the present invention includes: sequentially growing a buffer layer, an intrinsic semiconductor layer, an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer on a substrate to form an epitaxial layer; removing part of the P-type semiconductor layer and part of the light-emitting layer , exposing part of the N-type semiconductor layer; on the surface of the P-type semiconductor layer, a transparent conductive layer and a DBR layer are sequentially formed; on the surface of the DBR layer, a metal reflection layer is formed, and a through hole is formed at the same position of the DBR layer and the metal reflection layer, so as to Part of the N-type semiconductor layer and part of the transparent conductive layer are exposed; and a metal conductive layer is formed on the through hole of the DBR layer and the metal reflective layer. The method provided by the present invention solves the problem that the flip-chip LED chips prepared in the prior art cannot meet the requirements of reflectivity and conductivity when preparing the metal reflective layer due to the performance limitation of the metal material, which leads to the problem of reduced reflection efficiency.

Description

倒装LED芯片的制备方法及倒装LED芯片Preparation method of flip-chip LED chip and flip-chip LED chip

技术领域technical field

本发明涉及芯片制造技术,尤其涉及一种倒装LED芯片的制备方法及倒装LED芯片。The invention relates to chip manufacturing technology, in particular to a method for preparing a flip-chip LED chip and the flip-chip LED chip.

背景技术Background technique

随着发光二极管(Light Emitting Diode,简称:LED)技术的发展,LED芯片已广泛应用于照明、指示、显示和背光源中,由于倒装形式的LED芯片可以避免金属电极对光的遮挡,通过衬底作为透光面提高了发光区面积,并且可以兼顾透光率和方阻的均衡等优势,已逐步替代传统的正装LED芯片。With the development of light-emitting diode (Light Emitting Diode, referred to as: LED) technology, LED chips have been widely used in lighting, indication, display and backlight, because the flip-chip LED chip can avoid the light shielding of metal electrodes, through As a light-transmitting surface, the substrate increases the area of the light-emitting area, and can take into account the advantages of the balance of light transmittance and square resistance, and has gradually replaced the traditional front-mounted LED chips.

目前的倒装LED芯片,通常在外延面形成反射层,可以将外延层的光反射到衬底并射出,反射层的材料可以是反射率较高的金属如银(Ag)、铝(Al)等,或者是由分布式布拉格反射镜(Distributed Bragg Reflection,简称为:DBR)形成的非金属反射层,或者是DBR和金属材料的组合;以DBR和金属材料的组合形式为例予以说明,可充分利用DBR的绝缘性能和金属的导电性能进行芯片设计;通常地,金属反射层可以分别与透明导电层、外延层形成欧姆接触,因此,在金属材料的选择上就受到了很大的局限性,具体地,金属反射层不但需要具备较高的反射率,还需要形成良好的欧姆接触,即需要较高的导电性,举例来说,通常利用铬(Cr)、钛(Ti)或镍(Ni),以及铝(Al)或银(Ag)等金属形成的反射层,其中Cr、Ti或Ni用于电学接触及黏附,Al或Ag用于反射光,但是Cr、Ti或Ni的加入大幅降低了金属反射层的反射效果。The current flip-chip LED chip usually forms a reflective layer on the epitaxial surface, which can reflect the light of the epitaxial layer to the substrate and emit it. The material of the reflective layer can be a metal with high reflectivity such as silver (Ag), aluminum (Al) etc., or a non-metallic reflective layer formed by a distributed Bragg reflector (Distributed Bragg Reflection, referred to as: DBR), or a combination of DBR and metal materials; Make full use of the insulating properties of DBR and the conductive properties of metals for chip design; usually, the metal reflective layer can form ohmic contacts with the transparent conductive layer and the epitaxial layer respectively, so the choice of metal materials is greatly limited , specifically, the metal reflective layer not only needs to have high reflectivity, but also needs to form a good ohmic contact, that is, needs high conductivity. For example, chromium (Cr), titanium (Ti) or nickel ( Ni), and reflective layers formed by metals such as aluminum (Al) or silver (Ag), in which Cr, Ti or Ni are used for electrical contact and adhesion, and Al or Ag is used for reflecting light, but the addition of Cr, Ti or Ni greatly The reflective effect of the metal reflective layer is reduced.

现有技术制备的倒装LED芯片,由于金属材料的性能限制,在制备金属反射层时无法兼顾反射率和导电性的要求,通常需要牺牲部分反射率而导致反射效率降低。Due to the performance limitations of metal materials, the flip-chip LED chips prepared in the prior art cannot meet the requirements of reflectivity and conductivity when preparing the metal reflective layer, and usually need to sacrifice part of the reflectivity to reduce the reflection efficiency.

发明内容Contents of the invention

本发明提供一种倒装LED芯片的制备方法及倒装LED芯片,以解决现有技术制备的倒装LED芯片,由于金属材料的性能限制,在制备金属反射层时无法兼顾反射率和导电性的要求而导致反射效率降低的问题。The invention provides a method for preparing a flip-chip LED chip and a flip-chip LED chip to solve the problem that the flip-chip LED chips prepared in the prior art cannot balance reflectivity and conductivity due to the performance limitation of metal materials when preparing a metal reflective layer. The requirements lead to the problem of reduced reflection efficiency.

本发明提供一种倒装LED芯片的制备方法,包括:The invention provides a method for preparing a flip-chip LED chip, comprising:

在衬底上依次生长缓冲层、本征半导体层、N型半导体层、发光层和P型半导体层,以形成外延层;growing a buffer layer, an intrinsic semiconductor layer, an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer sequentially on the substrate to form an epitaxial layer;

去除部分P型半导体层和部分发光层,露出部分N型半导体层;removing part of the P-type semiconductor layer and part of the light-emitting layer to expose part of the N-type semiconductor layer;

在所述P型半导体层的表面依次形成透明导电层和分布式布拉格反射镜DBR层,其中,所述透明导电层覆盖所述P型半导体层,所述DBR层覆盖所述透明导电层、所述N型半导体层、所述发光层和所述P型半导体层;A transparent conductive layer and a distributed Bragg reflector DBR layer are sequentially formed on the surface of the P-type semiconductor layer, wherein the transparent conductive layer covers the P-type semiconductor layer, and the DBR layer covers the transparent conductive layer and the DBR layer. The N-type semiconductor layer, the light-emitting layer and the P-type semiconductor layer;

在所述DBR层的表面形成金属反射层,并在所述DBR层和所述金属反射层的相同位置形成通孔,以露出部分N型半导体层和部分透明导电层;Forming a metal reflective layer on the surface of the DBR layer, and forming a through hole at the same position of the DBR layer and the metal reflective layer to expose part of the N-type semiconductor layer and part of the transparent conductive layer;

在所述DBR层和所述金属反射层的通孔上形成金属导电层。A metal conductive layer is formed on the through holes of the DBR layer and the metal reflective layer.

如上所示的方法,其中,所述在所述DBR层的表面形成金属反射层,并在所述DBR层和所述金属反射层的相同位置形成通孔,包括:The method as shown above, wherein, forming a metal reflective layer on the surface of the DBR layer, and forming a through hole at the same position of the DBR layer and the metal reflective layer includes:

在所述DBR层的表面直接形成所述金属反射层;directly forming the metal reflective layer on the surface of the DBR layer;

在所述DBR层和所述金属反射层上同时形成穿过所述金属反射层和穿过所述DBR层的通孔。Via holes passing through the metal reflective layer and through the DBR layer are simultaneously formed on the DBR layer and the metal reflective layer.

如上所示的方法,其中,所述在所述DBR层的表面形成金属反射层,并在所述DBR层和所述金属反射层的相同位置形成通孔,包括:The method as shown above, wherein, forming a metal reflective layer on the surface of the DBR layer, and forming a through hole at the same position of the DBR layer and the metal reflective layer includes:

在所述DBR层上形成通孔;forming vias on the DBR layer;

在所述DBR层的表面形成金属反射层,并在所述DBR层的通孔位置形成所述金属反射层上的通孔,其中,所述金属反射层的覆盖范围不超出所述DBR层的覆盖范围。Form a metal reflective layer on the surface of the DBR layer, and form a through hole on the metal reflective layer at the position of the through hole of the DBR layer, wherein the coverage of the metal reflective layer does not exceed the DBR layer coverage.

如上所示的方法,其中,所述在所述DBR层的通孔位置形成所述金属反射层上的通孔,包括:The method as shown above, wherein the forming the through hole on the metal reflective layer at the position of the through hole of the DBR layer includes:

在所述金属反射层上形成通孔,所述通孔包括与所述DBR层的通孔位置相同的用于形成所述金属导电层的通孔,以及用于将所述金属反射层隔离成相互独立的第一金属反射层和第二金属反射层的隔离孔;A through hole is formed on the metal reflective layer, the through hole includes a through hole for forming the metal conductive layer at the same position as the through hole of the DBR layer, and is used for isolating the metal reflective layer into isolation holes of the first metal reflective layer and the second metal reflective layer which are independent of each other;

其中,所述第一金属反射层上的通孔位于所述N型半导体层之上,并使得部分N型半导体层露出,所述第二金属反射层上的通孔位于所述透明导电层之上,并使得部分透明导电层露出。Wherein, the through hole on the first metal reflective layer is located on the N-type semiconductor layer and exposes part of the N-type semiconductor layer, and the through hole on the second metal reflective layer is located on the transparent conductive layer. and expose part of the transparent conductive layer.

如上所示的方法,其中,所述金属反射层由单一材料形成;或者,The method as above, wherein the metal reflective layer is formed of a single material; or,

所述金属反射层由多种材料依次形成的反射层、过渡层和屏障层叠加组成。The metal reflective layer is composed of a reflective layer, a transition layer and a barrier layer formed sequentially by multiple materials.

如上所示的方法,其中,所述在所述DBR层和所述金属反射层的通孔上形成金属导电层,包括:The method as shown above, wherein the forming a metal conductive layer on the through hole of the DBR layer and the metal reflective layer includes:

在所述DBR层和所述金属反射层的通孔上形成填充所述DBR层的通孔和填充所述金属反射层的通孔的金属导电层,所述金属导电层在所述通孔的位置形成相互独立的区域。A metal conductive layer filling the through holes of the DBR layer and the through holes of the metal reflective layer is formed on the through holes of the DBR layer and the metal reflective layer, and the metal conductive layer is formed on the through holes of the through holes. Locations form mutually independent regions.

如上所示的方法,其中,所述金属导电层包括第一金属导电层和第二金属导电层,所述第一金属导电层位于第一金属反射层上,所述第二金属导电层位于第二金属反射层上;则所述在所述DBR层和所述金属反射层的通孔上形成金属导电层,包括:The method as shown above, wherein, the metal conductive layer includes a first metal conductive layer and a second metal conductive layer, the first metal conductive layer is located on the first metal reflective layer, and the second metal conductive layer is located on the second metal conductive layer On the second metal reflective layer; then the metal conductive layer is formed on the through hole of the DBR layer and the metal reflective layer, including:

去除部分金属反射层,使得所述第一金属反射层上的通孔和所述第二金属反射层上的通孔分别连通;removing part of the metal reflective layer, so that the through holes on the first metal reflective layer and the through holes on the second metal reflective layer communicate with each other;

在所述DBR层和所述金属反射层的通孔上形成分别连接所述第一金属导电层和所述第二金属导电层,其中,所述第一金属导电层与所述第二金属导电层相互独立。On the through holes of the DBR layer and the metal reflective layer, respectively connect the first metal conductive layer and the second metal conductive layer, wherein the first metal conductive layer is electrically conductive with the second metal Layers are independent of each other.

如上所示的方法,其中,还包括:在所述金属反射层和所述金属导电层上形成绝缘层,在所述绝缘层上形成露出部分金属导电层的通孔;The above method, further comprising: forming an insulating layer on the metal reflective layer and the metal conductive layer, and forming a through hole exposing part of the metal conductive layer on the insulating layer;

在所述绝缘层的通孔上形成金属电极层。A metal electrode layer is formed on the through hole of the insulating layer.

如上所示的方法,其中,所述绝缘层上的通孔至少包括两个,其中,一个通孔位于所述第一金属导电层上,另一个通孔位于所述第二金属导电层上,分别设置在所述倒装LED芯片的两端;The above method, wherein the insulating layer includes at least two through holes, wherein one through hole is located on the first conductive metal layer, and the other through hole is located on the second conductive metal layer, respectively arranged at both ends of the flip-chip LED chip;

所述金属电极层包括覆盖于所述第一金属导电层上的第一金属电极层和覆盖于所述第二金属导电层上的第二金属电极层。The metal electrode layer includes a first metal electrode layer covering the first metal conducting layer and a second metal electrode layer covering the second metal conducting layer.

本发明提供还一种倒装LED芯片,所述倒装LED芯片采用本发明提供的倒装LED芯片的制备方法制得。The present invention provides another flip-chip LED chip, which is prepared by using the preparation method of the flip-chip LED chip provided by the present invention.

本实施例所提供的倒装LED芯片的制备方法及倒装LED芯片,通过在衬底上形成由缓冲层、本征半导体层、N型半导体层、发光层和P型半导体层所构成的外延层,在去除部分P型半导体层和部分发光层,并露出部分N型半导体层后,在P型半导体层的表面依次形成透明导电层、DBR层和金属反射层,并在DBR层和金属反射层的相同位置形成通孔,以露出部分N型半导体层和部分透明导电层,进而在该通孔的上形成金属导电层,本实施例通过分别形成用于反射光的金属反射层和用于欧姆接触的金属导电层所制备的倒装LED芯片,解决了现有技术制备的倒装LED芯片,由于金属材料的性能限制,在制备金属反射层时无法兼顾反射率和导电性的要求而导致反射效率降低的问题,提高了倒装LED芯片的发光效率。The method for preparing a flip-chip LED chip provided in this embodiment and the flip-chip LED chip are formed by forming an epitaxial layer consisting of a buffer layer, an intrinsic semiconductor layer, an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer on a substrate. After removing part of the P-type semiconductor layer and part of the light-emitting layer and exposing part of the N-type semiconductor layer, a transparent conductive layer, a DBR layer, and a metal reflective layer are sequentially formed on the surface of the P-type semiconductor layer, and the DBR layer and the metal reflective layer A through hole is formed at the same position of the layer to expose part of the N-type semiconductor layer and part of the transparent conductive layer, and then a metal conductive layer is formed on the through hole. In this embodiment, a metal reflective layer for reflecting light and a metal reflective layer for The flip-chip LED chip prepared by the metal conductive layer in ohmic contact solves the problem of the flip-chip LED chip prepared by the prior art. Due to the performance limitation of the metal material, the requirements of reflectivity and conductivity cannot be taken into account when preparing the metal reflective layer. The problem of reduced reflection efficiency improves the luminous efficiency of flip-chip LED chips.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.

图1为本发明提供的一种倒装LED芯片的制备方法的一个实施例的流程图;Fig. 1 is a flowchart of an embodiment of a method for preparing a flip-chip LED chip provided by the present invention;

图2为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图;FIG. 2 is a schematic diagram of the chip structure of the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in FIG. 1;

图3为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图;Fig. 3 is a chip structure schematic diagram of the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in Fig. 1;

图4为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图;FIG. 4 is a schematic diagram of the chip structure of the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in FIG. 1;

图5为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图;FIG. 5 is a schematic diagram of the chip structure of the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in FIG. 1;

图6为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图;FIG. 6 is a schematic diagram of the chip structure of the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in FIG. 1;

图7为图1所示实施例提供的一种倒装LED芯片的金属导电层的俯视图;Fig. 7 is a top view of a metal conductive layer of a flip-chip LED chip provided by the embodiment shown in Fig. 1;

图8为本发明提供的一种倒装LED芯片的制备方法的另一个实施例的流程图;Fig. 8 is a flowchart of another embodiment of a method for preparing a flip-chip LED chip provided by the present invention;

图9为图8所示实施例提供的一种倒装LED芯片的金属导电层的俯视图;Fig. 9 is a top view of a metal conductive layer of a flip-chip LED chip provided by the embodiment shown in Fig. 8;

图10为图8所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图。FIG. 10 is a schematic diagram of the chip structure in the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in FIG. 8 .

具体实施方式Detailed ways

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

图1为本发明提供的一种倒装LED芯片的制备方法的一个实施例的流程图。如图1所示,本实施例的方法可以包括:FIG. 1 is a flowchart of an embodiment of a method for manufacturing a flip-chip LED chip provided by the present invention. As shown in Figure 1, the method of this embodiment may include:

S110,在衬底上依次生长缓冲层、本征半导体层、N型半导体层、发光层和P型半导体层,以形成外延层。S110, sequentially growing a buffer layer, an intrinsic semiconductor layer, an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer on the substrate to form an epitaxial layer.

在芯片制备的过程中,通常使用半导体晶片作为衬底材料,本实施例在制备倒装LED芯片时,以目前通常采用的蓝宝石为衬底材料为例予以说明,如图2所示,为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图,在该衬底100上依次生长缓冲层110、本征半导体层(图中未示出)、N型半导体层120、发光层(图中未示出)和P型半导体层130;本实施例提供所制备的倒装LED芯片中,N型半导体层120例如可以是N型氮化镓层,P型半导体层130例如可以是P型氮化镓层。In the process of chip preparation, semiconductor wafers are usually used as the substrate material. When preparing flip-chip LED chips in this embodiment, the sapphire commonly used as the substrate material is used as an example to illustrate, as shown in Figure 2. 1 is a schematic diagram of the chip structure of the manufacturing process of a flip-chip LED chip provided by the embodiment. On the substrate 100, a buffer layer 110, an intrinsic semiconductor layer (not shown in the figure), and an N-type semiconductor layer are sequentially grown on the substrate 100. Semiconductor layer 120, light-emitting layer (not shown) and P-type semiconductor layer 130; present embodiment provides in the prepared flip-chip LED chip, N-type semiconductor layer 120 can be N-type gallium nitride layer for example, P-type The semiconductor layer 130 may be, for example, a P-type gallium nitride layer.

需要说明的是,本发明实施例中本征半导体层和发光层均为倒装LED芯片制备过程中的常规工艺层,因此,在本发明以下各实施例所提供的工艺过程的芯片结构示意图中均未示出。It should be noted that both the intrinsic semiconductor layer and the light-emitting layer in the embodiments of the present invention are conventional process layers in the fabrication process of flip-chip LED chips. Therefore, in the chip structure schematic diagrams of the process provided in the following embodiments of the present invention Neither is shown.

S120,去除部分P型半导体层和部分发光层,露出部分N型半导体层。S120, removing part of the P-type semiconductor layer and part of the light emitting layer to expose part of the N-type semiconductor layer.

倒装LED芯片的制备即是要形成PN结,并且在P型区和N型区,即本实施例中的N型半导体层120和P型半导体层130上分别作金属电极层,因此,在本实施例中,通过光刻工艺制作光刻胶掩膜图形,进而使用电感耦合等离子体(Inductively Couple Plasma,简称为:ICP)刻蚀设备对该掩膜图形上预置的工艺窗口图形中的P型半导体层130和发光层进行选择性刻蚀,以露出部分N型半导体层120,即掩膜图形上预置的工艺窗口图形位置的N型半导体层120,如图3所示,为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图。The preparation of the flip-chip LED chip is to form a PN junction, and a metal electrode layer is respectively made on the P-type region and the N-type region, that is, the N-type semiconductor layer 120 and the P-type semiconductor layer 130 in this embodiment. Therefore, in In this embodiment, a photoresist mask pattern is made by a photolithography process, and then an Inductively Coupled Plasma (Inductively Coupled Plasma, referred to as: ICP) etching equipment is used for the process window pattern preset on the mask pattern. The P-type semiconductor layer 130 and the light-emitting layer are selectively etched to expose part of the N-type semiconductor layer 120, that is, the N-type semiconductor layer 120 at the preset process window pattern position on the mask pattern, as shown in FIG. 1 is a schematic diagram of the chip structure of the manufacturing process of a flip-chip LED chip provided by the embodiment.

S130,在P型半导体层的表面依次形成透明导电层和DBR层,其中,该透明导电层覆盖该P型半导体层,该DBR层覆盖该透明导电层、该N型半导体层、该发光层和该P型半导体层。S130, sequentially forming a transparent conductive layer and a DBR layer on the surface of the P-type semiconductor layer, wherein the transparent conductive layer covers the P-type semiconductor layer, and the DBR layer covers the transparent conductive layer, the N-type semiconductor layer, the light-emitting layer and The P-type semiconductor layer.

在本实施例中,可以采用蒸镀或溅镀的方式形成在上述图3所示结构的基础上生长透明导电层140,该透明导电层140的材料例如可为纳米铟锡(Indium Tin Oxides,简称为:ITO)、氧化铟(InO)、氧化锡(SnO)、三氧化二砷(As2O3,简称为:ATO)、氧化锌(ZnO)、磷化镓(GaP)或其组合,并通过光刻工艺制作光刻胶掩膜图形,进而通过刻蚀工艺形成预设的工艺窗口图形,该透明导电层140覆盖于P型半导体层130的上方,即刻蚀的工艺窗口为露出的N型半导体层120区域;类似地,采用通过蒸镀或溅镀的方式生长DBR反射层150,该DBR反射层150的材料通常为氧化物,例如可以是氧化硅(SiO2)或氧化钛(Ti3O5);具体地,该DBR层150覆盖在该透明导电层140、该N型半导体层120、该发光层和该P型半导体层130上,由于在上述工艺中去除了P型半导体层130、部分发光层和部分N型半导体层120,因此,该DBR反射层150可以完全包覆住由N型半导体层120、发光层P型半导体层130所形成的侧壁;如图4所示,为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图。In this embodiment, the transparent conductive layer 140 grown on the basis of the above-mentioned structure shown in FIG. 3 can be formed by evaporation or sputtering. Abbreviation: ITO), indium oxide (InO), tin oxide (SnO), arsenic trioxide (As 2 O 3 , abbreviation: ATO), zinc oxide (ZnO), gallium phosphide (GaP) or a combination thereof, and through light The photoresist mask pattern is produced by the etching process, and then the preset process window pattern is formed by the etching process. The transparent conductive layer 140 covers the top of the P-type semiconductor layer 130, that is, the etched process window is the exposed N-type semiconductor layer. 120 area; similarly, the DBR reflective layer 150 is grown by evaporation or sputtering, and the material of the DBR reflective layer 150 is usually an oxide, such as silicon oxide (SiO 2 ) or titanium oxide (Ti 3 O 5 ); Specifically, the DBR layer 150 covers the transparent conductive layer 140, the N-type semiconductor layer 120, the light-emitting layer and the P-type semiconductor layer 130, since the P-type semiconductor layer 130, part of light-emitting layer and part of the N-type semiconductor layer 120, therefore, the DBR reflective layer 150 can completely cover the sidewalls formed by the N-type semiconductor layer 120 and the light-emitting layer P-type semiconductor layer 130; as shown in Figure 4, it is 1 is a schematic diagram of the chip structure of the manufacturing process of a flip-chip LED chip provided by the embodiment.

需要说明的是,本实施例中不同工艺步骤中的掩膜图形上预置的工艺窗口图形通常是不同的,是根据需要制备的倒装LED芯片的结构确定的,在进行工艺生产前已预先制备该掩膜图形。It should be noted that in this embodiment, the preset process window patterns on the mask patterns in different process steps are usually different, and are determined according to the structure of the flip-chip LED chip to be prepared, and have been pre-set before the process production. This mask pattern is prepared.

S140,在DBR层的表面形成金属反射层,并在该DBR层和该金属反射层的相同位置形成通孔,以露出部分N型半导体层和部分透明导电层。S140, forming a metal reflective layer on the surface of the DBR layer, and forming via holes at the same positions of the DBR layer and the metal reflective layer, so as to expose part of the N-type semiconductor layer and part of the transparent conductive layer.

在本实施例中,类似地,通过光刻工艺制作光刻胶掩膜图形,进而通过等离子刻蚀、化学腐蚀或剥离等方式去除上述掩膜图形上预置的工艺窗口图形,以露出部分透明导电层140和部分N型半导体层120;需要说明的是,该露出的透明导电层140位于P型半导体层130的上方,用于形成P型区的欧姆接触层,该露出的N型半导体层120用于形成N型区的欧姆接触层,如图5所示,为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图。In this embodiment, similarly, a photoresist mask pattern is made by a photolithography process, and then the process window pattern preset on the mask pattern is removed by plasma etching, chemical etching or stripping, to expose a partially transparent The conductive layer 140 and part of the N-type semiconductor layer 120; it should be noted that the exposed transparent conductive layer 140 is located above the P-type semiconductor layer 130 for forming the ohmic contact layer of the P-type region, and the exposed N-type semiconductor layer 120 is used to form the ohmic contact layer of the N-type region, as shown in FIG. 5 , which is a schematic diagram of the chip structure in the process of a manufacturing method of a flip-chip LED chip provided by the embodiment shown in FIG. 1 .

通过本实施例方法所制备的倒装LED芯片,其中,DBR层150上形成的金属反射层160用于将外延层的光反射回去并通过蓝宝石衬底射出,该金属反射层160的材料直接影响倒装LED芯片的出光效率;举例来说,该金属反射层160可以由单一材料制备而成;也可以由多种材料依次形成的反射层、过渡层和屏障层叠加组成,在具体实现中,反射层可以由反射率较高的金属构成,例如可以是Al或Ag,当反射层的厚度大于或等于1000A时,可具备较佳的反射效果,过渡层可由Cr、铑(Rh)、Ti等金属材料形成,负责增强反射层与屏障层之间的粘附性的作用,由于其位于反射层之上,并不阻碍反射层对光线之反射效果,由于构成反射层的Al、Ag等金属具有活泼的化学性质,在温度和电流的作用下容易发生材料的迁移,因此,屏障层可由化学性质和热性质不活泼的金属或非金属氧化物构成,通过设置屏障层可以保护反射层在后续的加工中不容易被腐蚀或氧化,并且可阻碍电子迁移的发生,有效避免芯片的漏电。In the flip-chip LED chip prepared by the method of this embodiment, the metal reflective layer 160 formed on the DBR layer 150 is used to reflect the light of the epitaxial layer back and emit it through the sapphire substrate, and the material of the metal reflective layer 160 directly affects The light extraction efficiency of the flip-chip LED chip; for example, the metal reflective layer 160 can be prepared from a single material; it can also be composed of a reflective layer, a transition layer and a barrier layer formed sequentially by a variety of materials. In specific implementations, The reflective layer can be made of a metal with high reflectivity, such as Al or Ag. When the thickness of the reflective layer is greater than or equal to 1000A, it can have a better reflection effect. The transition layer can be made of Cr, rhodium (Rh), Ti, etc. Formed of metal materials, it is responsible for enhancing the adhesion between the reflective layer and the barrier layer. Because it is located on the reflective layer, it does not hinder the reflection effect of the reflective layer on light. Because the Al, Ag and other metals that make up the reflective layer have Active chemical properties are prone to material migration under the action of temperature and current. Therefore, the barrier layer can be composed of chemically and thermally inactive metal or non-metal oxides. By setting the barrier layer, the reflective layer can be protected in the subsequent It is not easy to be corroded or oxidized during processing, and can hinder the occurrence of electron migration, effectively avoiding chip leakage.

S150,在DBR层和金属反射层的通孔上形成金属导电层。S150, forming a metal conductive layer on the DBR layer and the through hole of the metal reflective layer.

以目前通常使用的DBR和金属材料的组合形成的金属反射层为例予以说明,该工艺的具体方式为:在DBR层上形成的金属层不仅需要对外延层的光进行反射,还需要形成欧姆接触,因此,在金属材料的选取上就受到了很大的限制;具体地,金属反射层不但需要具备较高的反射率,还需要形成良好的欧姆接触,即要较高的导电性,举例来说,在波长470~520nm范围内,Ag膜和Al膜的最佳反射率分别为接近95%和84%,但是Ag和Al的导电性较低,不易形成优良的欧姆接触,现有技术提供的方案在解决这个问题时,通过采用可以形成较好的欧姆接触的金属,例如Cr、Ti或Ni作为底层金属,进而在该底层金属上镀反射金属,例如可以采用Cr、Ti或Ni作为底层金属,并采用Al或Ag作为反射层金属,通过该方案形成的金属反射层虽然可以综合考虑对反射率和导电性这两个性能指标的要求,但是Cr、Ti或Ni的加入仍然会大幅地降低金属反射层的反射效果。Taking the metal reflective layer formed by the combination of DBR and metal materials commonly used at present as an example, the specific method of this process is: the metal layer formed on the DBR layer not only needs to reflect the light of the epitaxial layer, but also needs to form an ohmic layer. Therefore, the selection of metal materials is greatly restricted; specifically, the metal reflective layer not only needs to have high reflectivity, but also needs to form a good ohmic contact, that is, high conductivity, for example Generally speaking, in the wavelength range of 470-520nm, the best reflectivity of Ag film and Al film is close to 95% and 84% respectively, but the conductivity of Ag and Al is low, it is difficult to form excellent ohmic contact, the prior art The solution provided is to solve this problem by using metals that can form better ohmic contacts, such as Cr, Ti or Ni as the underlying metal, and then plating reflective metal on the underlying metal, such as Cr, Ti or Ni can be used as the underlying metal. The underlying metal, and Al or Ag is used as the reflective layer metal. Although the metal reflective layer formed by this scheme can comprehensively consider the requirements of the two performance indicators of reflectivity and conductivity, the addition of Cr, Ti or Ni will still greatly reduce the Minimize the reflective effect of the metal reflective layer.

在本实施例中,通过在DBR层150和金属反射层160的通孔上形成金属导电层170,以完成分别制备的金属导电层170与金属反射层160,因此,形成该金属反射层160和形成该金属导电层170的材料,可以分别采用满足所属层次性能需求的材料;举例来说,可以采用反射率较高的Ag或Al制备金属反射层160中的反射层,在施加单一反射层金属后,还可以増镀Cr或Ti形成过度层,以保证金属反射层160的粘附性和化学稳定性,并进一步増镀Au形成屏蔽层,通过该反射层、过渡层和屏蔽层同时组成金属反射层160;在本实施例的另一种实现方式中,在施加单一反射层金属后,可以増镀氧化物或硅化物,例如SiO2、TiO2、SiONx、SiNx或其组合材料形成屏障层,由于该屏蔽层通过氧化物或硅化物形成,因此本实施例中的金属反射层160可以仅包括反射层和屏蔽层;并采用导电性能优良的金属材料制备金属导电层170,本实施例采用分别制备金属反射层160和金属导电层170的工艺方式,金属材料的选取可以分别满足反射率和导电性的需要。In this embodiment, the metal conductive layer 170 is formed on the through holes of the DBR layer 150 and the metal reflective layer 160 to complete the respectively prepared metal conductive layer 170 and the metal reflective layer 160. Therefore, the metal reflective layer 160 and the metal reflective layer 160 are formed. The material forming the metal conductive layer 170 can adopt materials that meet the performance requirements of the respective levels; for example, Ag or Al with higher reflectivity can be used to prepare the reflective layer in the metal reflective layer 160. Finally, Cr or Ti can also be plated to form a transition layer to ensure the adhesion and chemical stability of the metal reflective layer 160, and Au can be further plated to form a shielding layer, through which the reflective layer, the transition layer and the shielding layer simultaneously form a metal Reflective layer 160; in another implementation of this embodiment, after applying a single reflective layer metal, it can be formed by plating oxide or silicide, such as SiO 2 , TiO 2 , SiON x , SiN x or a combination thereof Barrier layer, since the shielding layer is formed by oxide or silicide, the metal reflective layer 160 in this embodiment may only include the reflective layer and the shielding layer; For example, the metal reflective layer 160 and the metal conductive layer 170 are prepared separately, and the selection of metal materials can meet the needs of reflectivity and conductivity respectively.

进一步地,本实施例提供的方法中S160可以包括:在DBR层150和金属反射层160的通孔上形成填充DBR层150的通孔和填充金属反射层160的通孔的金属导电层170;可选地,该金属导电层170在通孔的位置形成相互独立的区域;由于在DBR层150和金属反射层160上形成的通孔是重叠的,具体地,填充了露出部分N型半导体层120位置的通孔的金属导电层170用于形成N型区的欧姆接触,填充了露出部分透明导电层140位置的通孔的金属导电层170用于形成P型区的欧姆接触,本实施例中的金属导电层170可以为在DBR层150和金属反射层160上的通孔位置相互独立的金属填充层,如图6所示,为图1所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图,如图7所示,为图1所示实施例提供的一种倒装LED芯片的金属导电层的俯视图,图7仅示出的金属导电层170下方的金属反射层160,通常地,金属反射层160可以分为位于N型半导体层120上方和位于透明导电层140上方相互独立的区域,N型半导体层120和透明导电层140上方的金属反射层160被设置的隔离孔163分开。Further, S160 in the method provided by this embodiment may include: forming a metal conductive layer 170 filling the through holes of the DBR layer 150 and filling the through holes of the metal reflective layer 160 on the DBR layer 150 and the through holes of the metal reflective layer 160; Optionally, the metal conductive layer 170 forms mutually independent regions at the positions of the through holes; since the through holes formed on the DBR layer 150 and the metal reflective layer 160 overlap, specifically, the exposed part of the N-type semiconductor layer is filled The metal conductive layer 170 of the through hole at position 120 is used to form the ohmic contact of the N-type region, and the metal conductive layer 170 filled with the through hole at the position of the exposed part of the transparent conductive layer 140 is used to form the ohmic contact of the P-type region. The metal conductive layer 170 in the DBR layer 150 and the metal reflective layer 160 can be a metal filling layer whose through hole positions are independent of each other, as shown in FIG. 6 , which is a flip-chip LED chip provided by the embodiment shown in FIG. 1 The chip structure schematic diagram of the process of the preparation method, as shown in Figure 7, is a top view of the metal conductive layer of a flip-chip LED chip provided by the embodiment shown in Figure 1, and Figure 7 only shows the metal conductive layer 170 below metal reflective layer 160, generally, the metal reflective layer 160 can be divided into independent regions located above the N-type semiconductor layer 120 and above the transparent conductive layer 140, the metal reflective layer above the N-type semiconductor layer 120 and the transparent conductive layer 140 160 are separated by isolation holes 163 provided.

本实施例所提供的倒装LED芯片的制备方法,通过在衬底上形成由缓冲层、本征半导体层、N型半导体层、发光层和P型半导体层所构成的外延层,在去除部分P型半导体层和部分发光层,并露出部分N型半导体层后,在P型半导体层的表面依次形成透明导电层、DBR层和金属反射层,并在DBR层和金属反射层的相同位置形成通孔,以露出部分N型半导体层和部分透明导电层,进而在该通孔的上形成金属导电层,本实施例通过分别形成用于反射光的金属反射层和用于欧姆接触的金属导电层所制备的倒装LED芯片,解决了现有技术制备的倒装LED芯片,由于金属材料的性能限制,在制备金属反射层时无法兼顾反射率和导电性的要求而导致反射效率降低的问题,提高了倒装LED芯片的发光效率。In the preparation method of the flip-chip LED chip provided in this embodiment, an epitaxial layer composed of a buffer layer, an intrinsic semiconductor layer, an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer is formed on the substrate. After the P-type semiconductor layer and part of the light-emitting layer are exposed, and part of the N-type semiconductor layer is exposed, a transparent conductive layer, a DBR layer and a metal reflective layer are sequentially formed on the surface of the P-type semiconductor layer, and formed at the same position of the DBR layer and the metal reflective layer. Through holes to expose part of the N-type semiconductor layer and part of the transparent conductive layer, and then form a metal conductive layer on the through hole. In this embodiment, a metal reflective layer for reflecting light and a metal conductive layer for ohmic contact are respectively formed. The flip-chip LED chip prepared by the existing technology solves the problem that the flip-chip LED chip prepared by the prior art, due to the performance limitation of the metal material, cannot meet the requirements of reflectivity and conductivity when preparing the metal reflective layer, which leads to the problem of reduced reflection efficiency. , improving the luminous efficiency of the flip-chip LED chip.

可选地,在本实施例的一种实现方式中,S140可以包括:在DBR层150的表面直接形成金属反射层160;并在DBR层150和金属反射层160上同时形成穿过该金属反射层160和穿过该DBR层150的通孔。在本实施中,具体通过一次光刻和刻蚀形成用于填充金属导电层170的通孔,该方式可以节省倒装LED芯片的制作工序,降低制作成本。Optionally, in an implementation of this embodiment, S140 may include: directly forming the metal reflective layer 160 on the surface of the DBR layer 150; layer 160 and vias through the DBR layer 150. In this implementation, the through hole for filling the metal conductive layer 170 is formed by photolithography and etching once, which can save the manufacturing process of the flip-chip LED chip and reduce the manufacturing cost.

图8为本发明提供的一种倒装LED芯片的制备方法的另一个实施例的流程图。在上述实施例的另一种可能实现方式中,S140可以包括:S141,在DBR层上形成通孔;S142,在DBR层的表面形成金属反射层,并在该DBR层的通孔位置形成金属反射层上的通孔,其中,该金属反射层的覆盖范围不超出该DBR层的覆盖范围。在本实施中,通过两次光刻和刻蚀工艺分别形成DBR层150上的通孔和金属反射层160上的通孔,该方式较上述实施例来说,虽然增加了工艺层次,但是,通过不同的光刻层次制作的掩膜图形,在形成通孔时,可以将金属反射层160上通孔的直径设计成大于等于DBR层150上通孔的直径,以保证金属反射层160的覆盖范围不超出DBR层150的覆盖范围,有利于防止倒装LED芯片的漏电,提高芯片的使用效率。FIG. 8 is a flowchart of another embodiment of a method for manufacturing a flip-chip LED chip provided by the present invention. In another possible implementation manner of the above embodiment, S140 may include: S141, forming a through hole on the DBR layer; S142, forming a metal reflective layer on the surface of the DBR layer, and forming a metal reflection layer at the position of the through hole of the DBR layer. A through hole on the reflection layer, wherein the coverage of the metal reflection layer does not exceed the coverage of the DBR layer. In this implementation, the through holes on the DBR layer 150 and the through holes on the metal reflective layer 160 are respectively formed through two photolithography and etching processes. Compared with the above-mentioned embodiment, although this method increases the process level, but, Mask patterns made by different photolithography levels, when forming the through hole, the diameter of the through hole on the metal reflective layer 160 can be designed to be greater than or equal to the diameter of the through hole on the DBR layer 150, to ensure the coverage of the metal reflective layer 160 The range does not exceed the coverage of the DBR layer 150, which is beneficial to prevent the leakage of the flip-chip LED chip and improve the use efficiency of the chip.

进一步地,在本实施例中,S142中在DBR层150的通孔位置形成金属反射层160上的通孔的具体方式可以包括:在金属反射层160上形成通孔,该通孔包括与DBR层150的通孔位置相同的用于形成金属导电层170的通孔,以及用于将金属反射层160隔离成相互独立的第一金属反射层161和第二金属反射层162的隔离孔163;其中,第一金属反射层161上的通孔位于N型半导体层120之上,并使得部分N型半导体层120露出,第二金属反射层162上的通孔位于透明导电层140之上,并使得部分透明导电层140露出。如图9所示,为图8所示实施例提供的一种倒装LED芯片的金属导电层的俯视图。Further, in this embodiment, the specific manner of forming a through hole on the metal reflective layer 160 at the position of the through hole of the DBR layer 150 in S142 may include: forming a through hole on the metal reflective layer 160, the through hole including the DBR layer The through holes in the layer 150 are at the same position for forming the metal conductive layer 170, and the isolation holes 163 for isolating the metal reflective layer 160 into mutually independent first metal reflective layers 161 and second metal reflective layers 162; Wherein, the through hole on the first metal reflective layer 161 is located on the N-type semiconductor layer 120, and part of the N-type semiconductor layer 120 is exposed, and the through hole on the second metal reflective layer 162 is located on the transparent conductive layer 140, and A part of the transparent conductive layer 140 is exposed. As shown in FIG. 9 , it is a top view of a metal conductive layer of a flip-chip LED chip provided by the embodiment shown in FIG. 8 .

类似地,通过本实施例的方法所制备的倒装LED芯片,金属导电层170也可以包括第一金属导电层171和第二金属导电层172,具体地,第一金属导电层171位于第一金属反射层161上,第二金属导电层171位于第二金属反射层172上。在具体实现中,形成金属导电层170的具体方式可以为:去除部分金属反射层160,使得第一金属反射层161上的通孔和第二金属反射层162上的通孔分别连通;在DBR层150和金属反射层160的通孔上形成分别连接第一金属导电层171和第二金属导电层172,其中,第一金属导电层171与第二金属导电层172相互独立。Similarly, in the flip-chip LED chip prepared by the method of this embodiment, the conductive metal layer 170 may also include a first conductive metal layer 171 and a second conductive metal layer 172, specifically, the first conductive metal layer 171 is located on the first On the metal reflective layer 161 , the second metal conductive layer 171 is located on the second metal reflective layer 172 . In a specific implementation, the specific method of forming the metal conductive layer 170 can be: remove part of the metal reflective layer 160, so that the through holes on the first metal reflective layer 161 and the through holes on the second metal reflective layer 162 are respectively connected; The through holes of the layer 150 and the metal reflective layer 160 are respectively formed to connect the first metal conductive layer 171 and the second metal conductive layer 172 , wherein the first metal conductive layer 171 and the second metal conductive layer 172 are independent of each other.

在本实施例中,第一金属导电层171覆盖在由DBR层150、第一金属反射层161共同形成的通孔,并与第一半导体层120形成欧姆接触;第二金属导电层172覆盖在由DBR层150、第二金属反射层162共同形成的通孔,与透明导电层140形成欧姆接触;由于金属导电层170位于金属反射层160之上,其本身的设计结构并不影响金属反射层170的反射效果,因此,本实施例将第一金属导电层171和第二金属导电层172设计为分别连续的布局结构,有利于电流在金属导电层170中均匀的传导,金属导电层170的材料可以为通常使用的电极材料,例如Cr、铂(Pt)、Au、Ti和Al等金属的组合。In this embodiment, the first metal conductive layer 171 covers the through hole jointly formed by the DBR layer 150 and the first metal reflective layer 161, and forms an ohmic contact with the first semiconductor layer 120; the second metal conductive layer 172 covers the The through hole formed by the DBR layer 150 and the second metal reflective layer 162 forms an ohmic contact with the transparent conductive layer 140; since the metal conductive layer 170 is located on the metal reflective layer 160, its design structure does not affect the metal reflective layer. 170 reflection effect, therefore, in this embodiment, the first metal conductive layer 171 and the second metal conductive layer 172 are designed as respectively continuous layout structures, which is conducive to the uniform conduction of current in the metal conductive layer 170, and the metal conductive layer 170 The material may be a commonly used electrode material, such as a combination of metals such as Cr, platinum (Pt), Au, Ti, and Al.

需要说明的是,对于设计成在通孔位置上相互独立的金属导电层170的结构,还是设计成分别连续布局的第一金属导电层171和第二金属导电层172的结构,其选择条件通常可以为:如果金属反射层160的屏障层采用金属材料,由于其导电性能良好,则金属导电层170可设置为通孔位置上相互独立的区域;如果屏障层采用绝缘氧化物材料,则可以设计为分别连续布局的第一金属导电层171和第二金属导电层172,以达到更好的导电效果。It should be noted that, for the structure designed as the mutually independent metal conductive layer 170 at the position of the through hole, or the structure designed as the first metal conductive layer 171 and the second metal conductive layer 172 respectively arranged continuously, the selection conditions are generally It can be: if the barrier layer of the metal reflective layer 160 is made of a metal material, due to its good electrical conductivity, the metal conductive layer 170 can be set as mutually independent regions on the position of the through hole; if the barrier layer is made of an insulating oxide material, it can be designed The first metal conduction layer 171 and the second metal conduction layer 172 are arranged continuously respectively to achieve better conduction effect.

更进一步地,本实施例提供的方法还包括:S160,在金属反射层160和金属导电层170上形成绝缘层180,在该绝缘层180上形成露出部分金属导电层170的通孔;S170,在绝缘层180的通孔上形成金属电极层190。具体地,该绝缘层180上的通孔至少包括两个,其中,一个通孔位于第一金属导电层171上,另一个通孔位于第二金属导电层172上;该金属电极层190包括覆盖于第一金属导电层171上的第一金属电极层191和覆盖于第二金属导电层172上的第二金属电极层192,该第一金属电极层191为倒装LED芯片的N极管脚,该第二金属电极层192为倒装LED芯片的P极管脚;优选地,绝缘层180上的两个通孔可以分别设置在倒装LED芯片的两端,即第一金属电极层191和第二金属电极层192分别布置于该倒装LED芯片的两端;如图10所示,为图8所示实施例提供的一种倒装LED芯片的制备方法的工艺过程的芯片结构示意图。本实施例在具体实现中,绝缘层180可以通过常规的气相沉积或者蒸镀方式形成,并用湿法或等离子蚀刻绝缘层180使得部分第一金属导电层171和部分第一金属导电层172露出;该绝缘层180的材质例如可以是SiO2、SiN、Al2O3等一种或其组合,其厚度通常可以为4000~10000A之间;金属电极层190也可以通过常规的蒸镀方式形成,其材料例如可以是Cr、Al、Ti、Ni、Au等一种或其组合,但不限于这些金属的组合形式。Furthermore, the method provided in this embodiment further includes: S160, forming an insulating layer 180 on the metal reflective layer 160 and the metal conductive layer 170, and forming a through hole exposing part of the metal conductive layer 170 on the insulating layer 180; S170, The metal electrode layer 190 is formed on the through hole of the insulating layer 180 . Specifically, the insulating layer 180 includes at least two through holes, wherein one through hole is located on the first metal conductive layer 171, and the other through hole is located on the second metal conductive layer 172; the metal electrode layer 190 includes covering The first metal electrode layer 191 on the first metal conductive layer 171 and the second metal electrode layer 192 covering the second metal conductive layer 172, the first metal electrode layer 191 is the N pole pin of the flip-chip LED chip , the second metal electrode layer 192 is the P pole pin of the flip-chip LED chip; and the second metal electrode layer 192 are arranged at both ends of the flip-chip LED chip respectively; . In a specific implementation of this embodiment, the insulating layer 180 can be formed by conventional vapor deposition or evaporation, and the insulating layer 180 is etched by a wet method or plasma to expose part of the first metal conductive layer 171 and part of the first metal conductive layer 172; The material of the insulating layer 180 can be, for example, SiO 2 , SiN, Al 2 O 3 , etc. or a combination thereof, and its thickness can generally be between 4000-10000 Å; the metal electrode layer 190 can also be formed by conventional evaporation methods, The material thereof can be, for example, one or a combination of Cr, Al, Ti, Ni, Au, etc., but is not limited to the combination of these metals.

需要说明的是,在以上各实施例提供的倒装LED芯片的制备方法中,在形成金属电极层后,还可以依照常规工艺手段对制作的晶片实施研磨切割获得倒装LED芯片。It should be noted that, in the methods for preparing the flip-chip LED chips provided in the above embodiments, after the metal electrode layer is formed, the fabricated wafer can also be ground and cut according to a conventional process to obtain the flip-chip LED chip.

本发明实施例提供的倒装LED芯片的制备方法,采用性能较佳的透明导电层、DBR层和金属反射层等基本单元结构,并采用在N型区和P型区分别连接设置的金属导电层优化电流分布,不但使得电流扩展分布更加合理,而且解决了现有技术中金属反射层充当导电层需要在底部增镀其它金属,而导致反射率降低的问题,最大程度上提高了倒装LED芯片的产品亮度,同时使得金属反射层不参与电流扩展,避免了金属化电迁移的发生,提高了产品可靠性。The preparation method of the flip-chip LED chip provided by the embodiment of the present invention adopts basic unit structures such as a transparent conductive layer, a DBR layer, and a metal reflective layer with better performance, and adopts metal conductive layers respectively connected to the N-type area and the P-type area. Layer optimization current distribution not only makes the current spread more reasonable, but also solves the problem that the metal reflective layer acts as a conductive layer in the prior art and needs to add other metals on the bottom, which leads to a decrease in reflectivity, and improves the flip-chip LED to the greatest extent. The product brightness of the chip also prevents the metal reflective layer from participating in the current expansion, avoids the occurrence of metallization electromigration, and improves product reliability.

如图10所示,也为本发明提供的一种倒装LED芯片的一个实施例的结构示意图。本实施例所提供的倒装LED芯片采用本发明任意实施例所述的方法制得,需要说明的是,本实施例提供的倒装LED芯片在封装后采用倒装安装的方法制备LED照明灯,具体地,金属电极层190,即该倒装LED芯片发光部分与支架连接,衬底100向上,即在照明灯的上方,电极发光后透过衬底,因此通常采用透光率较高的蓝宝石衬底制备倒装LED芯片。As shown in FIG. 10 , it is also a structural schematic diagram of an embodiment of a flip-chip LED chip provided by the present invention. The flip-chip LED chip provided in this embodiment is prepared by the method described in any embodiment of the present invention. It should be noted that the flip-chip LED chip provided in this embodiment is prepared by flip-chip mounting method after packaging. Specifically, the metal electrode layer 190, that is, the light-emitting part of the flip-chip LED chip is connected to the bracket, the substrate 100 is upward, that is, above the lighting lamp, and the electrode emits light and passes through the substrate. Flip-chip LED chips were fabricated on sapphire substrates.

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.

Claims (10)

1.一种倒装LED芯片的制备方法,其特征在于,包括:1. A method for preparing a flip-chip LED chip, comprising: 在衬底上依次生长缓冲层、本征半导体层、N型半导体层、发光层和P型半导体层,以形成外延层;growing a buffer layer, an intrinsic semiconductor layer, an N-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer sequentially on the substrate to form an epitaxial layer; 去除部分P型半导体层和部分发光层,露出部分N型半导体层;removing part of the P-type semiconductor layer and part of the light-emitting layer to expose part of the N-type semiconductor layer; 在所述P型半导体层的表面依次形成透明导电层和分布式布拉格反射镜DBR层,其中,所述透明导电层覆盖所述P型半导体层,所述DBR层覆盖所述透明导电层、所述N型半导体层、所述发光层和所述P型半导体层;A transparent conductive layer and a distributed Bragg reflector DBR layer are sequentially formed on the surface of the P-type semiconductor layer, wherein the transparent conductive layer covers the P-type semiconductor layer, and the DBR layer covers the transparent conductive layer and the DBR layer. The N-type semiconductor layer, the light-emitting layer and the P-type semiconductor layer; 在所述DBR层的表面形成金属反射层,并在所述DBR层和所述金属反射层的相同位置形成通孔,以露出部分N型半导体层和部分透明导电层;Forming a metal reflective layer on the surface of the DBR layer, and forming a through hole at the same position of the DBR layer and the metal reflective layer to expose part of the N-type semiconductor layer and part of the transparent conductive layer; 在所述DBR层和所述金属反射层的通孔上形成金属导电层。A metal conductive layer is formed on the through holes of the DBR layer and the metal reflective layer. 2.根据权利要求1所述的方法,其特征在于,所述在所述DBR层的表面形成金属反射层,并在所述DBR层和所述金属反射层的相同位置形成通孔,包括:2. The method according to claim 1, wherein the forming a metal reflective layer on the surface of the DBR layer, and forming a through hole at the same position of the DBR layer and the metal reflective layer comprises: 在所述DBR层的表面直接形成所述金属反射层;directly forming the metal reflective layer on the surface of the DBR layer; 在所述DBR层和所述金属反射层上同时形成穿过所述金属反射层和穿过所述DBR层的通孔。Via holes passing through the metal reflective layer and through the DBR layer are simultaneously formed on the DBR layer and the metal reflective layer. 3.根据权利要求1所述的方法,其特征在于,所述在所述DBR层的表面形成金属反射层,并在所述DBR层和所述金属反射层的相同位置形成通孔,包括:3. The method according to claim 1, wherein the forming a metal reflective layer on the surface of the DBR layer, and forming a through hole at the same position of the DBR layer and the metal reflective layer comprises: 在所述DBR层上形成通孔;forming vias on the DBR layer; 在所述DBR层的表面形成金属反射层,并在所述DBR层的通孔位置形成所述金属反射层上的通孔,其中,所述金属反射层的覆盖范围不超出所述DBR层的覆盖范围。Form a metal reflective layer on the surface of the DBR layer, and form a through hole on the metal reflective layer at the position of the through hole of the DBR layer, wherein the coverage of the metal reflective layer does not exceed the DBR layer coverage. 4.根据权利要求3所述的方法,其特征在于,所述在所述DBR层的通孔位置形成所述金属反射层上的通孔,包括:4. The method according to claim 3, wherein the forming the through hole on the metal reflective layer at the through hole position of the DBR layer comprises: 在所述金属反射层上形成通孔,所述通孔包括与所述DBR层的通孔位置相同的用于形成所述金属导电层的通孔,以及用于将所述金属反射层隔离成相互独立的第一金属反射层和第二金属反射层的隔离孔;A through hole is formed on the metal reflective layer, the through hole includes a through hole for forming the metal conductive layer at the same position as the through hole of the DBR layer, and is used for isolating the metal reflective layer into isolation holes of the first metal reflective layer and the second metal reflective layer which are independent of each other; 其中,所述第一金属反射层上的通孔位于所述N型半导体层之上,并使得部分N型半导体层露出,所述第二金属反射层上的通孔位于所述透明导电层之上,并使得部分透明导电层露出。Wherein, the through hole on the first metal reflective layer is located on the N-type semiconductor layer and exposes part of the N-type semiconductor layer, and the through hole on the second metal reflective layer is located on the transparent conductive layer. and expose part of the transparent conductive layer. 5.根据权利要求1所述的方法,其特征在于,所述金属反射层由单一材料形成;或者,5. The method according to claim 1, wherein the metal reflective layer is formed of a single material; or, 所述金属反射层由多种材料依次形成的反射层、过渡层和屏障层叠加组成。The metal reflective layer is composed of a reflective layer, a transition layer and a barrier layer formed sequentially by multiple materials. 6.根据权利要求1所述的方法,其特征在于,所述在所述DBR层和所述金属反射层的通孔上形成金属导电层,包括:6. The method according to claim 1, wherein the forming a metal conductive layer on the through hole of the DBR layer and the metal reflective layer comprises: 在所述DBR层和所述金属反射层的通孔上形成填充所述DBR层的通孔和填充所述金属反射层的通孔的金属导电层,所述金属导电层在所述通孔的位置形成相互独立的区域。A metal conductive layer filling the through holes of the DBR layer and the through holes of the metal reflective layer is formed on the through holes of the DBR layer and the metal reflective layer, and the metal conductive layer is formed on the through holes of the through holes. Locations form mutually independent regions. 7.根据权利要求4所述的方法,其特征在于,所述金属导电层包括第一金属导电层和第二金属导电层,所述第一金属导电层位于第一金属反射层上,所述第二金属导电层位于第二金属反射层上;则所述在所述DBR层和所述金属反射层的通孔上形成金属导电层,包括:7. The method according to claim 4, wherein the metal conductive layer comprises a first metal conductive layer and a second metal conductive layer, the first metal conductive layer is located on the first metal reflective layer, and the The second metal conductive layer is located on the second metal reflective layer; then forming the metal conductive layer on the through holes of the DBR layer and the metal reflective layer includes: 去除部分金属反射层,使得所述第一金属反射层上的通孔和所述第二金属反射层上的通孔分别连通;removing part of the metal reflective layer, so that the through holes on the first metal reflective layer and the through holes on the second metal reflective layer communicate with each other; 在所述DBR层和所述金属反射层的通孔上形成分别连接所述第一金属导电层和所述第二金属导电层,其中,所述第一金属导电层与所述第二金属导电层相互独立。On the through holes of the DBR layer and the metal reflective layer, respectively connect the first metal conductive layer and the second metal conductive layer, wherein the first metal conductive layer is electrically conductive with the second metal Layers are independent of each other. 8.根据权利要求1~7中任一项所述的方法,其特征在于,还包括:8. The method according to any one of claims 1 to 7, further comprising: 在所述金属反射层和所述金属导电层上形成绝缘层,在所述绝缘层上形成露出部分金属导电层的通孔;forming an insulating layer on the metal reflective layer and the metal conductive layer, and forming a through hole exposing part of the metal conductive layer on the insulating layer; 在所述绝缘层的通孔上形成金属电极层。A metal electrode layer is formed on the through hole of the insulating layer. 9.根据权利要求8所述的方法,其特征在于,所述绝缘层上的通孔至少包括两个,其中,一个通孔位于所述第一金属导电层上,另一个通孔位于所述第二金属导电层上,分别设置在所述倒装LED芯片的两端;9. The method according to claim 8, wherein the through hole on the insulating layer comprises at least two, wherein one through hole is located on the first metal conductive layer, and the other through hole is located on the first metal conductive layer. The second metal conductive layer is respectively arranged at both ends of the flip-chip LED chip; 所述金属电极层包括覆盖于所述第一金属导电层上的第一金属电极层和覆盖于所述第二金属导电层上的第二金属电极层。The metal electrode layer includes a first metal electrode layer covering the first metal conducting layer and a second metal electrode layer covering the second metal conducting layer. 10.一种倒装LED芯片,其特征在于,所述倒装LED芯片采用如权利要求1~9中任一项所述的方法制得。10. A flip-chip LED chip, characterized in that the flip-chip LED chip is manufactured by the method according to any one of claims 1-9.
CN201410300102.5A 2014-06-26 2014-06-26 LED flip chip manufacturing method and LED flip chip Pending CN104037277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410300102.5A CN104037277A (en) 2014-06-26 2014-06-26 LED flip chip manufacturing method and LED flip chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410300102.5A CN104037277A (en) 2014-06-26 2014-06-26 LED flip chip manufacturing method and LED flip chip

Publications (1)

Publication Number Publication Date
CN104037277A true CN104037277A (en) 2014-09-10

Family

ID=51467975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410300102.5A Pending CN104037277A (en) 2014-06-26 2014-06-26 LED flip chip manufacturing method and LED flip chip

Country Status (1)

Country Link
CN (1) CN104037277A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733572A (en) * 2015-03-30 2015-06-24 映瑞光电科技(上海)有限公司 Flip led chip and manufacturing method thereof
CN104821351A (en) * 2015-05-05 2015-08-05 湘能华磊光电股份有限公司 Manufacturing method of inversion structure of III semiconductor light-emitting device
CN104868021A (en) * 2015-03-30 2015-08-26 映瑞光电科技(上海)有限公司 Flip led chip and manufacturing method thereof
CN104952995A (en) * 2015-05-05 2015-09-30 湘能华磊光电股份有限公司 Inverted structure of III conductor light-emitting device
CN105047774A (en) * 2015-07-06 2015-11-11 天津宝坻紫荆科技有限公司 Composite reflecting layer and semiconductor light emitting device
CN105098018A (en) * 2015-06-01 2015-11-25 圆融光电科技股份有限公司 Manufacturing method of flip LED chip
CN106252477A (en) * 2016-10-31 2016-12-21 江苏新广联半导体有限公司 The flip LED chips structure of a kind of compound completely reflecting mirror and manufacture method
CN106997917A (en) * 2017-05-08 2017-08-01 珠海市芯半导体科技有限公司 A kind of LED flip chip and preparation method thereof
CN107170857A (en) * 2017-04-25 2017-09-15 淮安澳洋顺昌光电技术有限公司 The preparation method of LED flip chip
CN107968143A (en) * 2017-11-22 2018-04-27 中山大学 A kind of blue LED flip chip with high reflectance wide range oxide speculum and preparation method thereof
CN108172674A (en) * 2018-02-06 2018-06-15 佛山市国星半导体技术有限公司 A flip-chip LED chip and manufacturing method thereof
CN108369977A (en) * 2015-10-01 2018-08-03 克利公司 Low optical loses flip-chip solid state illumination device
CN108807612A (en) * 2018-06-26 2018-11-13 山东浪潮华光光电子股份有限公司 A kind of light-emitting diodes tube preparation method
CN108963037A (en) * 2017-05-27 2018-12-07 合肥彩虹蓝光科技有限公司 A kind of manufacturing method of deep ultraviolet LED chip
CN109524514A (en) * 2018-11-23 2019-03-26 江苏新广联半导体有限公司 A kind of flip LED chips and preparation method thereof with Ag reflection layer structure
CN110212062A (en) * 2019-06-20 2019-09-06 合肥彩虹蓝光科技有限公司 A kind of inverted light-emitting diode (LED) and its manufacturing method
US10879441B2 (en) 2018-12-17 2020-12-29 Cree, Inc. Interconnects for light emitting diode chips
US10985294B2 (en) 2019-03-19 2021-04-20 Creeled, Inc. Contact structures for light emitting diode chips
US11031527B2 (en) 2018-01-29 2021-06-08 Creeled, Inc. Reflective layers for light-emitting diodes
US11094848B2 (en) 2019-08-16 2021-08-17 Creeled, Inc. Light-emitting diode chip structures
CN113363365A (en) * 2021-08-09 2021-09-07 南昌凯捷半导体科技有限公司 Multi-current-channel flip AlGaInPmini-LED chip and preparation method thereof
CN113990995A (en) * 2021-12-27 2022-01-28 南昌凯捷半导体科技有限公司 A kind of mini/micro LED with Ag reflector and manufacturing method thereof
US11387389B2 (en) 2018-01-29 2022-07-12 Creeled, Inc. Reflective layers for light-emitting diodes
US11923481B2 (en) 2018-01-29 2024-03-05 Creeled, Inc. Reflective layers for light-emitting diodes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710726A (en) * 2004-06-17 2005-12-21 泰谷光电科技股份有限公司 High-brightness light-emitting diode device and manufacturing method thereof
JP2009164423A (en) * 2008-01-08 2009-07-23 Nichia Corp Light-emitting element
CN102412355A (en) * 2010-09-17 2012-04-11 Lg伊诺特有限公司 Light emitting device
CN102969414A (en) * 2011-08-31 2013-03-13 日亚化学工业株式会社 Semiconductor light emitting device
CN103107260A (en) * 2011-11-15 2013-05-15 Lg伊诺特有限公司 Light emitting device
CN103426990A (en) * 2012-05-17 2013-12-04 晶元光电股份有限公司 Light emitting device with reflective electrode
CN103515504A (en) * 2013-10-23 2014-01-15 扬州中科半导体照明有限公司 LED chip and processing technology thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1710726A (en) * 2004-06-17 2005-12-21 泰谷光电科技股份有限公司 High-brightness light-emitting diode device and manufacturing method thereof
JP2009164423A (en) * 2008-01-08 2009-07-23 Nichia Corp Light-emitting element
CN102412355A (en) * 2010-09-17 2012-04-11 Lg伊诺特有限公司 Light emitting device
CN102969414A (en) * 2011-08-31 2013-03-13 日亚化学工业株式会社 Semiconductor light emitting device
CN103107260A (en) * 2011-11-15 2013-05-15 Lg伊诺特有限公司 Light emitting device
CN103426990A (en) * 2012-05-17 2013-12-04 晶元光电股份有限公司 Light emitting device with reflective electrode
CN103515504A (en) * 2013-10-23 2014-01-15 扬州中科半导体照明有限公司 LED chip and processing technology thereof

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104868021A (en) * 2015-03-30 2015-08-26 映瑞光电科技(上海)有限公司 Flip led chip and manufacturing method thereof
CN104733572A (en) * 2015-03-30 2015-06-24 映瑞光电科技(上海)有限公司 Flip led chip and manufacturing method thereof
CN104821351A (en) * 2015-05-05 2015-08-05 湘能华磊光电股份有限公司 Manufacturing method of inversion structure of III semiconductor light-emitting device
CN104952995A (en) * 2015-05-05 2015-09-30 湘能华磊光电股份有限公司 Inverted structure of III conductor light-emitting device
CN104952995B (en) * 2015-05-05 2017-08-25 湘能华磊光电股份有限公司 A kind of inverted structure of III light emitting semiconductor device
CN104821351B (en) * 2015-05-05 2017-08-29 湘能华磊光电股份有限公司 The preparation method of III light emitting semiconductor device inverted structure
CN105098018B (en) * 2015-06-01 2017-11-21 圆融光电科技股份有限公司 The manufacture method of flip LED chips
CN105098018A (en) * 2015-06-01 2015-11-25 圆融光电科技股份有限公司 Manufacturing method of flip LED chip
CN105047774A (en) * 2015-07-06 2015-11-11 天津宝坻紫荆科技有限公司 Composite reflecting layer and semiconductor light emitting device
CN105047774B (en) * 2015-07-06 2018-04-24 天津宝坻紫荆科技有限公司 A kind of complex reflex layer and light emitting semiconductor device
CN113345988A (en) * 2015-10-01 2021-09-03 克利公司 Light emitting device comprising flip chip light emitting diode
CN108369977B (en) * 2015-10-01 2021-06-15 克利公司 Low optical loss flip chip solid state lighting device
US10991861B2 (en) 2015-10-01 2021-04-27 Cree, Inc. Low optical loss flip chip solid state lighting device
CN113345988B (en) * 2015-10-01 2025-01-17 科锐Led公司 Light emitting device comprising flip chip light emitting diode
CN108369977A (en) * 2015-10-01 2018-08-03 克利公司 Low optical loses flip-chip solid state illumination device
CN106252477A (en) * 2016-10-31 2016-12-21 江苏新广联半导体有限公司 The flip LED chips structure of a kind of compound completely reflecting mirror and manufacture method
CN106252477B (en) * 2016-10-31 2018-11-02 江苏新广联科技股份有限公司 A kind of the flip LED chips structure and production method of compound total reflection mirror
CN107170857A (en) * 2017-04-25 2017-09-15 淮安澳洋顺昌光电技术有限公司 The preparation method of LED flip chip
CN106997917A (en) * 2017-05-08 2017-08-01 珠海市芯半导体科技有限公司 A kind of LED flip chip and preparation method thereof
CN108963037A (en) * 2017-05-27 2018-12-07 合肥彩虹蓝光科技有限公司 A kind of manufacturing method of deep ultraviolet LED chip
CN107968143A (en) * 2017-11-22 2018-04-27 中山大学 A kind of blue LED flip chip with high reflectance wide range oxide speculum and preparation method thereof
US12328980B2 (en) 2018-01-29 2025-06-10 Creeled, Inc. Reflective layers for light-emitting diodes
US11923481B2 (en) 2018-01-29 2024-03-05 Creeled, Inc. Reflective layers for light-emitting diodes
US11387389B2 (en) 2018-01-29 2022-07-12 Creeled, Inc. Reflective layers for light-emitting diodes
US11031527B2 (en) 2018-01-29 2021-06-08 Creeled, Inc. Reflective layers for light-emitting diodes
CN108172674A (en) * 2018-02-06 2018-06-15 佛山市国星半导体技术有限公司 A flip-chip LED chip and manufacturing method thereof
CN108807612A (en) * 2018-06-26 2018-11-13 山东浪潮华光光电子股份有限公司 A kind of light-emitting diodes tube preparation method
CN109524514A (en) * 2018-11-23 2019-03-26 江苏新广联半导体有限公司 A kind of flip LED chips and preparation method thereof with Ag reflection layer structure
US11398591B2 (en) 2018-12-17 2022-07-26 Creeled, Inc. Interconnects for light emitting diode chips
US11817537B2 (en) 2018-12-17 2023-11-14 Creeled, Inc. Interconnects for light emitting diode chips
US10879441B2 (en) 2018-12-17 2020-12-29 Cree, Inc. Interconnects for light emitting diode chips
US10985294B2 (en) 2019-03-19 2021-04-20 Creeled, Inc. Contact structures for light emitting diode chips
US11545595B2 (en) 2019-03-19 2023-01-03 Creeled, Inc. Contact structures for light emitting diode chips
CN110212062A (en) * 2019-06-20 2019-09-06 合肥彩虹蓝光科技有限公司 A kind of inverted light-emitting diode (LED) and its manufacturing method
US11094848B2 (en) 2019-08-16 2021-08-17 Creeled, Inc. Light-emitting diode chip structures
CN113363365A (en) * 2021-08-09 2021-09-07 南昌凯捷半导体科技有限公司 Multi-current-channel flip AlGaInPmini-LED chip and preparation method thereof
CN113990995A (en) * 2021-12-27 2022-01-28 南昌凯捷半导体科技有限公司 A kind of mini/micro LED with Ag reflector and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN104037277A (en) LED flip chip manufacturing method and LED flip chip
TWI878023B (en) Light-emitting device
CN103367593B (en) Light emitting semiconductor device
TWI873423B (en) Light-emitting device
CN106340576A (en) Light emitting element and light emitting device
CN107863434A (en) A kind of highlighted flip LED chips with insulation protection structure and preparation method thereof
TWI782286B (en) Flip chip led and manufacturing method thereof
CN112164742A (en) a light emitting diode
CN106159057B (en) LED chip and preparation method thereof
CN102447016A (en) LED (Light Emitting Diode) structure and manufacturing method thereof
CN104037294B (en) GaN-based light-emitting diode and manufacturing method thereof
CN106848006A (en) Flip LED chips and preparation method thereof
CN105161607B (en) A kind of flip LED chips and preparation method thereof
CN113782658B (en) Light-emitting semiconductor and preparation method thereof
CN105098018B (en) The manufacture method of flip LED chips
CN113284997B (en) Flip LED chip and preparation method thereof
CN114038964A (en) Flip light-emitting chip and preparation method thereof
WO2023060752A1 (en) Led chip and preparation method therefor
CN106848005B (en) Flip-chip LED chip with improved brightness and preparation method thereof
CN108155273A (en) Increase the structure and production method of LED flip chip light-emitting area
CN107681035A (en) A kind of transparency conducting layer and preparation method thereof, light emitting diode
CN104347773A (en) Light emitting diode structure
CN104037279A (en) Method for manufacturing light emitting diode (LED) with current blocking layer
CN115440864A (en) Light emitting diode with improved light emitting uniformity and preparation method thereof
CN114464710A (en) LED chip and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140910

RJ01 Rejection of invention patent application after publication