CN104036834A - 一种次临界系统次临界度的测量方法 - Google Patents

一种次临界系统次临界度的测量方法 Download PDF

Info

Publication number
CN104036834A
CN104036834A CN201410281628.3A CN201410281628A CN104036834A CN 104036834 A CN104036834 A CN 104036834A CN 201410281628 A CN201410281628 A CN 201410281628A CN 104036834 A CN104036834 A CN 104036834A
Authority
CN
China
Prior art keywords
subcriticality
measurement
detector
explorer count
preset group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410281628.3A
Other languages
English (en)
Other versions
CN104036834B (zh
Inventor
杨英坤
刘超
常博
曾勤
吴宜灿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201410281628.3A priority Critical patent/CN104036834B/zh
Publication of CN104036834A publication Critical patent/CN104036834A/zh
Application granted granted Critical
Publication of CN104036834B publication Critical patent/CN104036834B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本发明提供一种次临界系统次临界度的测量方法。其包括:将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;获取至少两个相同的探测器的探测器截面Σdet空间及能量分布;改变系统次临界度,测量预设组不同状态的“真实”次临界度;根据至少两个相同的探测器的探测器截面Σdet空间及能量分布,测量预设组不同状态的“测量”次临界度;根据预设组不同状态的“真实”次临界度与“测量”次临界度,得到“真实”与“测量”次临界度的对应关系;运行中,对任一当前状态,根据当前状态的“测量”次临界度和“真实”与“测量”次临界度的对应关系,获取当前的“真实”次临界度。本发明的技术方案对通量的畸变更不敏感,增强了测量的准确性。

Description

一种次临界系统次临界度的测量方法
技术领域
本发明涉及测量次临界系统次临界度的测量技术领域,尤其涉及一种次临界系统次临界度的测量方法。
背景技术
源倍增法是一种测量次临界系统次临界度水平的方法。对于有外源的系统,其需要一个次临界度ρ0和探测器的归一化计数R0已知的参考态,然后在知道待测状态的归一化计数R1之后,可以通过如下的公式1计算得到待测状态的次临界度ρ1
ρ 1 = R 0 R 1 ρ 0 - - - ( 1 )
由于其原理与实施简单易行,且不需额外的堆芯参数,故其被认为是实现次临界堆芯次临界度在线测量的有效手段。但是对于传统的源倍增方法,在同一次临界度水平下,当通量形状发生不同畸变时,探测器计数有很大不同,进而测量结果也会有很大不同。这样,对于未知原因造成的通量畸变,传统的源倍增法可能给出错误的结果,给安全带来潜在的威胁。
发明内容
本发明提供一种次临界系统次临界度的测量方法,用以对于未知原因造成的通量畸变,传统的源倍增法可能给出错误的结果,给安全带来潜在的威胁的问题。
一方面,本发明提供的一种次临界系统次临界度的测量方法,包括如下步骤:
(1)、将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;
(2)、获取所述至少两个相同的探测器的探测器截面Σdet空间及能量分布;
(3)、改变系统次临界度,测量预设组不同状态的“真实”次临界度;
(4)、根据所述至少两个相同的探测器的探测器截面Σdet空间及能量分布,测量所述预设组不同状态的“测量”次临界度;
(5)、根据所述预设组不同状态的“真实”次临界度与“测量”次临界度,得到“真实”次临界度与“测量”次临界度的对应关系;
(6)、运行中,对任一当前状态,根据所述当前状态的“测量”次临界度和所述“真实”次临界度与“测量”次临界度的对应关系,获取所述当前状态的“真实”次临界度。
可选地,上述所述的方法中,所述改变系统次临界度,测量预设组不同状态的“真实”次临界度,包括:
通过调节控制棒、调节燃料富集度、改变燃料组件数或者改变反射层厚度以改变系统次临界度,使用脉冲源法测量所述预设组不同状态的“真实”次临界度。
可选地,上述所述的方法中,根据所述至少两个相同的探测器的探测器截面Σdet空间及能量分布,测量所述预设组不同状态的“测量”次临界度,包括:
根据所述至少两个相同的探测器探测到的探测器截面Σdet空间及能量分布抽象一个集总探测器;
选择一次临界度值已知的参考态,记录第一已知源强和所述集总探测器测量出第一探测器计数;
对所述预设组的任一待测状态,记录第二已知源强和所述集总探测器测量出的第二探测器计数;
将所述第一已知源强、所述第一探测器计数、所述第二已知源强以及所述第二探测器计数,代入源倍增法公式中求得所述预设组中待测状态的所述“测量”次临界度。
可选地,上述所述的方法中,所述集总探测器测量出的第一探测器计数等于在所述次临界度值已知的参考态下,所述至少两个相同的探测器的探测器计数之和。
可选地,上述所述的方法中,所述集总探测器测量出的第二探测器计数等于在所述待测状态下,所述至少两个相同的探测器的探测器计数之和。
可选地,上述所述的方法中,所述预设组包括数十种不同的状态。
另一方面,本发明提供一种次临界系统次临界度的测量方法,包括如下步骤:
(a)将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;
(b)获取所述至少两个相同的探测器探测到的探测器截面Σdet空间及能量分布;
(c)根据所述至少两个相同的探测器探测到的探测器截面Σdet空间及能量分布抽象一个集总探测器;
(d)选择一次临界度值已知的参考态,记录第一已知源强和所述集总探测器测量出的第一探测器计数;
(e)对所述预设组的任一待测状态,记录第一已知源强和所述集总探测器测量出的第二探测器计数;
(f)将所述第一已知源强、所述第一探测器计数、所述第二已知源强以及所述第二探测器计数,代入源倍增法公式中求得所述预设组中待测状态的次临界度。
可选地,上述所述的方法中,所述集总探测器测量出的第一探测器计数等于在所述次临界度值已知的参考态下,所述至少两个相同的探测器的探测器计数之和。
可选地,上述所述的方法中,所述集总探测器测量出的第二探测器计数等于在所述待测状态下,所述至少两个相同的探测器的探测器计数之和。
可选地,上述所述的方法中,数十种不同的状态。
本发明的次临界系统次临界度的测量方法,通过至少两个相同的探测器均匀分布在受外源影响模式相似的位置,并将这多个探测器作为一个抽象的集总探测器,之后利用集总探测器的探测结果和源倍增公式,测得次临界度。计算结果表明,本发明的次临界系统次临界度的测量方法相对于传统的源倍增法,对通量的畸变更不敏感,增强了测量的准确性,减少了潜在的威胁,提高了安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的次临界系统次临界度的测量方法的流程图。
图2为本发明实施例提供的铅冷快堆的堆芯布置示意图。
图3为本发明实施例中特殊工况下的“测量”次临界度与“理论”次临界度相对于“真实”次临界度和“测量”次临界度的对应关系的位置示意图。
图4为本发明另一实施例提供的次临界系统次临界度的测量方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为克服传统源倍增法在通量畸变时的缺陷,本申请提供一种改进的基于总探测器计数的源倍增法来测量次临界系统的临界度,因此本申请的次临界系统次临界度的测量方法可以称之为基于集总探测器计数的源倍增法。其通过联合使用多个探测器,减少通量畸变的影响。对于次临界度相同但是通量发生畸变的情况,使用该方法可以得到相近的结果。
本发明实施例解决减少通量畸变影响的原理是:
为简单起见,在本发明实施例中,中子通量密度Φ、探测器伴随函数探测器计数R以及外源分布S都归一化到一个外源中子,在实际应用中,将实际量除以源强即可(外源源强通过其他方法得知)。
中子输运方程可以表示为:
(M-F)Φ=S
探测器的计数可以表示为R=<Σdet,Φ>,引入探测器伴随函数其表征空间某处某能量在某一方向的中子对探测器计数的贡献,也可以称之为探测器价值函数。
( M 0 * - F 0 * ) &Phi; det * = &Sigma; det
则探测器计数可以表示为:
R = < &Sigma; det , &Phi; > = < ( M 0 * - F 0 * ) &Phi; det * , &Phi; > = < ( M - F ) &Phi; , &Phi; det * > = < &Phi; det * , S >
从推导的式子中可以看到,探测器计数取决于外源S以及探测器伴随(价值)函数取决于次临界系统的M、F矩阵和探测器的截面分布Σdet,当M、F矩阵发生变化时,系统次临界度发生变化,同时也会发生变化。但是不同原因造成的次临界度改变,次临界度可能相同,而可能会不一样。但是可以通过合适的探测器布置,以得到合适的探测器截面Σdet及能量分布,使得相同次临界度时M、F矩阵对的影响减小。这样在外源分布不变时,不同原因造成的次临界度相同时,探测器计数基本相同,进而能得到相同的测量结果。其中探测器截面Σdet及能量分布是一个依赖空间和能量的矢量。
在本发明实施例中,通过使用多个(2个以上)相同探测器均匀分布在受外源影响模式相似的位置,并将这多个探测器作为一个抽象的集总探测器。之后将集总探测器计数代入源倍增公式中,以测得次临界度。计算结果表明,基于集总探测器计数的源倍增法比原来的源倍增法对通量的畸变更不敏感。
图1为本发明一实施例提供的次临界系统次临界度的测量方法的流程图。本实施例的次临界系统次临界度的测量方法是一种在线测量的方案。如图1所示,本实施例的次临界系统次临界度的测量方法,具体可以包括如下步骤:
100、将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;
具体地探测器的数目可以根据实际需求选取。
101、获取至少两个相同的探测器的探测器截面Σdet空间及能量分布;
102、改变系统次临界度,测量预设组不同状态的“真实”次临界度;
例如本实施例中的预设组中可以包括数十种不同的状态,如10种、20种、50种或者100种等等,具体可以根据实际需求选择。当预设组包括100种状态时,这里需要测量100种不同状态中每种状态的“真实”次临界度。
103、根据至少两个相同的探测器的探测器截面Σdet空间及能量分布,测量预设组不同状态的“测量”次临界度;
例如当预设组包括100种状态时,这里需要测量100种不同状态中每种状态的“测量”次临界度。
104、根据预设组不同状态的“真实”次临界度与“测量”次临界度,得到“真实”次临界度与“测量”次临界度的对应关系;
根据上述步骤102和步骤103中得到的预设组中每种状态的“真实”次临界度与“测量”次临界度,建立“真实”次临界度与“测量”次临界度的对应关系。
105、运行中,对任一当前状态,根据当前状态的“测量”次临界度和“真实”次临界度与“测量”次临界度的对应关系,获取当前状态的“真实”次临界度。
由于步骤104得到“真实”次临界度与“测量”次临界度的对应关系,这样,在运行中,对于任意一个未知的当前状态,当测量到当前状态的“测量”次临界度时,可以根据“真实”次临界度与“测量”次临界度的对应关系,获取当前状态的“真实”次临界度。
本实施例的次临界系统次临界度的测量方法,通过至少两个相同的探测器均匀分布在受外源影响模式相似的位置,并将这多个探测器作为一个抽象的集总探测器,之后利用集总探测器的探测结果和源倍增公式,测得次临界度。计算结果表明,本实施例的次临界系统次临界度的测量方法相对于传统的源倍增法,对通量的畸变更不敏感,增强了测量的准确性,减少了潜在的威胁,提高了安全性。
可选地,在上述图1所示实施例的技术方案的基础上,其中步骤102“改变系统次临界度,测量预设组不同状态的“真实”次临界度,具体可以包括:通过调节控制棒、调节燃料富集度、改变燃料组件数或者改变反射层厚度以改变系统次临界度,使用脉冲源法等传统方法测量预设组不同状态的“真实”次临界度。
可选地,在上述图1所示实施例的技术方案的基础上,其中步骤103“根据至少两个相同的探测器的探测器截面Σdet空间及能量分布,测量所述预设组不同状态的“测量”次临界度“,具体可以包括如下步骤:
(1)根据至少两个相同的探测器的探测器截面Σdet空间及能量分布抽象一个集总探测器;
(2)选择一次临界度值已知的参考态,记录第一已知源强和集总探测器测量出的第一探测器计数;
(3)对预设组的任一待测状态,记录第二已知源强和集总探测器测量出的第二探测器计数;
(4)将第一已知源强、第一探测器计数、第二已知源强以及第二探测器计数,代入源倍增法公式中求得预设组中待测状态的“测量”次临界度。
需要说明的是,上述所述中,第一已知源强和第一探测器计数都是对应于次临界度已知的参考态,第二已知源强和第二探测器计数都是对应于待测状态。第一已知源强和第二已知源强可以通过由加速器输出的质子束强度计算得到,也可以通过其它某种可能的方法测量得到。
需要注意的是,源倍增法公式(1)中的计数是归一化之后的,即默认公式中的计数R等于实际计数除以源强。亦即,利用对应于参考态的第一探测器计数除以对应于参考态的第一已知源强,可以得到对应于参考态的归一化计数;利用对应于待测状态的第二探测器计数除以对应于待测状态的第二已知源强可以得到对应待测状态的归一化计数。
需要说明的是,上述实施例中的集总探测器测量出的第一探测器计数等于在次临界度值已知的参考态下,至少两个相同的探测器的探测器计数之和。
需要说明的是,集总探测器测量出的第二探测器计数等于在待测状态下,至少两个相同的探测器的探测器计数之和。
上述实施例的次临界系统次临界度的测量方法,通过至少两个相同的探测器均匀分布在受外源影响模式相似的位置,并将这多个探测器作为一个抽象的集总探测器,之后利用集总探测器的探测结果和源倍增公式,测得次临界度。计算结果表明,本实施例的次临界系统次临界度的测量方法相对于传统的源倍增法,对通量的畸变更不敏感,增强了测量的准确性,减少了潜在的威胁,提高了安全性。
图2为本发明实施例提供的铅冷快堆的堆芯布置示意图。如图2所示,图中标识了6相同个探测器的布置。由于要选择受外源影响模式相同的探测器,在本实例中使用1-4#探测器,那么Σdet为1-4#探测器探测截面分布之和。下面使用上述图1所示实施例的方法来实现次临界系统次临界度的测量。具体步骤如下:
(1)首先在反应堆启动之前,选定最接近临界的状态,作为参考态。使用其它测量方法测得该状态的真实次临界度ρ0。同时记录对外源源强归一化的将1-4#探测器抽象成的集总探测器的计数,即1-4#探测器计数之和R0
(2)通过调节控制棒,获得不同的次临界度状态。使用如脉冲源法,测量得到这些状态的真实次临界度。同时,记录外源源强归一化的集中探测器计数,即1-4#探测器计数之和。
(3)针对以上的不同状态,将集总探测器计数代入源倍增公式中,求得这个状态的“测量”次临界度。即将集总探测器计数代入公式(1)中。
(4)将步骤(2)和步骤(3)得到的“真实”次临界度和“测量”次临界度画出刻度,做出“真实”次临界度和“测量”次临界度的对应关系;
(5)反应堆启动后,对任一稳定的状态,通过记录集总探测器计数,再通过公式1可以得到该状态的“测量”次临界度ρ1
(6)将该状态的“测量”次临界度代入“真实”次临界度和“测量”次临界度的对应关系,便能得到步骤(5)中状态的“真实”次临界度。
使用程序对测量进行了模拟计算,这里使用“理论”次临界度表示“真实”次临界度,结果如图3所示。图3为本发明实施例中特殊工况下的“测量”次临界度与“理论”次临界度相对于“真实”次临界度和“测量”次临界度的对应关系的位置示意图。图3中,ρm表示的是“测量”次临界度,ρr表示的是“理论”次临界度。在图3中,还表示了在通量发生畸变的特殊工况(如单根控制棒发生落棒或弹棒事故等事故工况)下,使用集总探测器源倍增法测量得到的“测量”次临界度与“理论”次临界度相对于“真实”次临界度和“测量”次临界度的对应关系的刻度曲线的位置。
图4为本发明另一实施例提供的次临界系统次临界度的测量方法的流程图。本实施例的次临界系统次临界度的测量方法是一种离线测量的方案。如图4所示,本实施例的次临界系统次临界度的测量方法,具体可以包括如下步骤:
200、将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;
201、获取至少两个相同的探测器的探测器截面Σdet空间及能量分布;
202、根据至少两个相同的探测器的探测器截面Σdet空间及能量分布抽象一个集总探测器;
203、选择一次临界度值已知的参考态,记录第一已知源强和集总探测器测量出的第一探测器计数;
204、对预设组的任一待测状态,记录第二已知源强和集总探测器测量出的第二探测器计数;
205、将第一已知源强、第一探测器计数、第二已知源强以及第二探测器计数,代入源倍增法公式中求得预设组中待测状态的次临界度。
需要说明的是,上述所述中,第一已知源强和第一探测器计数都是对应于次临界度已知的参考态,第二已知源强和第二探测器计数都是对应于待测状态。第一已知源强和第二已知源强可以通过由加速器输出的质子束强度计算得到,也可以通过其它某种可能的方法测量得到。
本实施例的步骤的具体实现详细可以参考上述图1所示实施例及其可选技术方案的具体实现,在此不再步骤。
本实施例与上述图所示实施例的区别主要在于:上述图1所示实施例为一种次临界系统次临界度的在线测量方案;而本实施例为一种次临界系统次临界度的离线测量方案。
在“离线测量”中,不依靠“真实”次临界度与“测量”次临界度的对应关系,所以仅能在测量次临界度较浅的状态得到比较精确的结果。而在“在线测量”中,可以通过“真实”次临界度与“测量”次临界度的对应关系,即使在偏离临界较远的情况下,依然可以得到比较精确的结果。
本实施例的次临界系统次临界度的测量方法,通过至少两个相同的探测器均匀分布在受外源影响模式相似的位置,并将这多个探测器作为一个抽象的集总探测器,之后利用集总探测器的探测结果和源倍增公式,测得次临界度。计算结果表明,本实施例的次临界系统次临界度的测量方法相对于传统的源倍增法,对通量的畸变更不敏感,增强了测量的准确性,减少了潜在的威胁,提高了安全性。
可选地,在上述图4所示实施例的技术方案的基础上,其中集总探测器测量出的第一探测器计数等于在次临界度值已知的参考态下,至少两个相同的探测器的探测器计数之和。
可选地,在上述图4所示实施例的技术方案的基础上,集总探测器测量出的第二探测器计数等于在待测状态下,至少两个相同的探测器的探测器计数之和。
例如上述实施例中的预设组中可以包括数十种不同的状态,如10种、20种、50种或者100种等等,具体可以根据实际需求选择。当预设组包括100种状态时,这里需要测量100种不同状态中每种状态的“真实”次临界度。
上述实施例的次临界系统次临界度的测量方法,通过至少两个相同的探测器均匀分布在受外源影响模式相似的位置,并将这多个探测器作为一个抽象的集总探测器,之后利用集总探测器的探测结果和源倍增公式,测得次临界度。计算结果表明,本实施例的次临界系统次临界度的测量方法相对于传统的源倍增法,对通量的畸变更不敏感,增强了测量的准确性,减少了潜在的威胁,提高了安全性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种次临界系统次临界度的测量方法,其特征在于,包括如下步骤:
(1)、将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;
(2)、获取所述至少两个相同的探测器的探测器截面Σdet空间及能量分布;
(3)、改变系统次临界度,测量预设组不同状态的“真实”次临界度;
(4)、根据所述至少两个相同的探测器的探测器截面Σdet空间及能量分布,测量所述预设组不同状态的“测量”次临界度;
(5)、根据所述预设组不同状态的“真实”次临界度与“测量”次临界度,得到“真实”次临界度与“测量”次临界度的对应关系;
(6)、运行中,对任一当前状态,根据所述当前状态的“测量”次临界度和所述“真实”次临界度与“测量”次临界度的对应关系,获取所述当前状态的“真实”次临界度。
2.根据权利要求1所述的方法,其特征在于,所述改变系统次临界度,测量预设组不同状态的“真实”次临界度,包括:
通过调节控制棒、调节燃料富集度、改变燃料组件数或者改变反射层厚度以改变系统次临界度,使用脉冲源法测量所述预设组不同状态的“真实”次临界度。
3.根据权利要求1所述的方法,其特征在于,根据所述至少两个相同的探测器探测到的探测器截面Σdet空间及能量分布,测量所述预设组不同状态的“测量”次临界度,包括:
根据所述至少两个相同的探测器的探测器截面Σdet空间及能量分布抽象一个集总探测器;
选择一次临界度值已知的参考态,记录第一已知源强和所述集总探测器测量出第一探测器计数;
对所述预设组的任一待测状态,记录第二已知源强和所述集总探测器测量出的第二探测器计数;
将所述第一源强、所述第一探测器计数、所述第二源强以及所述第二探测器计数,代入源倍增法公式中求得所述预设组中待测状态的所述“测量”次临界度。
4.根据权利要求3所述的方法,其特征在于,所述集总探测器测量出的第一探测器计数等于在所述次临界度值已知的参考态下,所述至少两个相同的探测器的探测器计数之和。
5.根据权利要求3所述的方法,其特征在于,所述集总探测器测量出的第二探测器计数等于在所述待测状态下,所述至少两个相同的探测器的探测器计数之和。
6.根据权利要求1-5任一所述的方法,其特征在于,所述预设组包括数十种不同的状态。
7.一种次临界系统次临界度的测量方法,其特征在于,包括如下步骤:
(a)将至少两个相同的探测器均匀布置在受外源影响相同的对称位置;
(b)获取所述至少两个相同的探测器的探测器截面Σdet空间及能量分布;
(c)根据所述至少两个相同的探测器的探测器截面Σdet空间及能量分布抽象一个集总探测器;
(d)选择一次临界度值已知的参考态,记录第一已知源强和所述集总探测器测量出的第一探测器计数;
(e)对所述预设组的任一待测状态,记录第二已知源强和所述集总探测器测量出的第二探测器计数;
(f)将所述第一已知源强、所述第一探测器计数、所述第二已知源强以及所述第二探测器计数,代入源倍增法公式中求得所述预设组中待测状态的次临界度。
8.根据权利要求7所述的方法,其特征在于,所述集总探测器测量出的第一探测器计数等于在所述次临界度值已知的参考态下,所述至少两个相同的探测器的探测器计数之和。
9.根据权利要求7所述的方法,其特征在于,所述集总探测器测量出的第二探测器计数等于在所述待测状态下,所述至少两个相同的探测器的探测器计数之和。
10.根据权利要求7-9任一所述的方法,其特征在于,所述预设组包括数十种不同的状态。
CN201410281628.3A 2014-06-20 2014-06-20 一种次临界系统次临界度的测量方法 Expired - Fee Related CN104036834B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410281628.3A CN104036834B (zh) 2014-06-20 2014-06-20 一种次临界系统次临界度的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410281628.3A CN104036834B (zh) 2014-06-20 2014-06-20 一种次临界系统次临界度的测量方法

Publications (2)

Publication Number Publication Date
CN104036834A true CN104036834A (zh) 2014-09-10
CN104036834B CN104036834B (zh) 2017-01-25

Family

ID=51467573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410281628.3A Expired - Fee Related CN104036834B (zh) 2014-06-20 2014-06-20 一种次临界系统次临界度的测量方法

Country Status (1)

Country Link
CN (1) CN104036834B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934083A (zh) * 2015-04-27 2015-09-23 中国原子能科学研究院 一种测量缓发中子有效份额的方法
CN111554419A (zh) * 2020-05-18 2020-08-18 中国核动力研究设计院 一种基于不确定度分析的核反应堆次临界度测量方法
CN115331844A (zh) * 2022-09-08 2022-11-11 中国核动力研究设计院 一种核反应堆次临界下控制棒价值测量方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121156A (ja) * 2005-10-28 2007-05-17 Toshiba Corp 未臨界度監視装置及び方法
CN102246242A (zh) * 2008-12-11 2011-11-16 西屋电气有限责任公司 次临界反应性测量方法
CN103093841A (zh) * 2013-01-14 2013-05-08 中国科学院合肥物质科学研究院 加速器驱动次临界堆分体式中心测量柱系统
JP2013257209A (ja) * 2012-06-12 2013-12-26 Nais:Kk 核分裂生成ガスの測定値を用いた未臨界濃度監視の方法
JP2014106104A (ja) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd 未臨界度測定方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121156A (ja) * 2005-10-28 2007-05-17 Toshiba Corp 未臨界度監視装置及び方法
CN102246242A (zh) * 2008-12-11 2011-11-16 西屋电气有限责任公司 次临界反应性测量方法
JP2013257209A (ja) * 2012-06-12 2013-12-26 Nais:Kk 核分裂生成ガスの測定値を用いた未臨界濃度監視の方法
JP2014106104A (ja) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd 未臨界度測定方法及び装置
CN103093841A (zh) * 2013-01-14 2013-05-08 中国科学院合肥物质科学研究院 加速器驱动次临界堆分体式中心测量柱系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FURO-CHO ET AL: "Search Strategy of Detector Position For Neutron Source Multiplication Method by Using Detected-Neutron Multiplication Factor", 《TRANSACTIONS OF THE KOREAN NUCLEAR SOCIETY SPRING MEETING》 *
史永谦等: "反应堆物理实验中的源倍增法研究", 《核科学与工程》 *
魏书成等: "加速器次临界反应堆测量方法研究", 《核科学与工程》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104934083A (zh) * 2015-04-27 2015-09-23 中国原子能科学研究院 一种测量缓发中子有效份额的方法
CN111554419A (zh) * 2020-05-18 2020-08-18 中国核动力研究设计院 一种基于不确定度分析的核反应堆次临界度测量方法
CN111554419B (zh) * 2020-05-18 2022-11-15 中国核动力研究设计院 一种基于不确定度分析的核反应堆次临界度测量方法
CN115331844A (zh) * 2022-09-08 2022-11-11 中国核动力研究设计院 一种核反应堆次临界下控制棒价值测量方法及系统
CN115331844B (zh) * 2022-09-08 2024-04-23 中国核动力研究设计院 一种核反应堆次临界下控制棒价值测量方法及系统

Also Published As

Publication number Publication date
CN104036834B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN204613057U (zh) 煤炭灰分在线测量系统
CN106990428B (zh) 一种中子测量含铀液体中铀含量的方法及其实现装置
KR100991441B1 (ko) 원자력발전소 노외계측기의 재규격화 교정방법
CN104036834A (zh) 一种次临界系统次临界度的测量方法
CN103049596A (zh) 一种提高叶轮零件逆向工程精度的方法
Abashian et al. Neutron and Proton Distribution in Pb
CN102208219A (zh) 在高温气冷堆初装堆芯和过渡堆芯中分拣燃料元件的方法
Mihovilovič et al. Methods for optical calibration of the BigBite hadron spectrometer
KR101633232B1 (ko) 원자력 발전소의 노외계측기 형상처리함수 결정의 오차 축소방법
JP2018159669A (ja) 中性子検出器等の信号のみに基づいて核分裂性物質の組成、未臨界度、遅発中性子割合、中性子世代時間、即発中性子寿命を測定する方法。
CN104122492B (zh) 一种预测半导体器件10年寿命对应的工作电压的方法
CN105242299B (zh) 采用固体核径迹探测器识别不同能量高能粒子的方法
RU2362222C1 (ru) Способ определения подкритичности остановленной ядерной установки без выхода в критическое состояние
CN107402559B (zh) 一种基于动态超球结构变化的间歇过程测量数据异常检测方法
Eleon et al. Study of Boron Coated Straws and mixed (10 B/3 He) detectors for passive neutron measurements of radioactive waste drums
WO2016196799A1 (en) Systems and methods for determining an amount of fissile material in a reactor
CN111505703A (zh) 钚物质的钚质量测量方法、装置、设备及介质
CN102662189B (zh) 一种基于计数管的辐射测试的分析方法
CN109324070A (zh) 一种废包壳中铀钚含量的无源中子分析方法
CN104347128A (zh) 分析经辐射燃料的几何形状变化的方法
CN111312417A (zh) 一种测量反应性的方法
CN103257206A (zh) 有机磷和氨基甲酸酯类农药残留快速检测仪检测结果准确性的评价方法
Bezerra et al. Measurement of Effective $\Delta m_ {31}^ 2$ using Baseline Differences of Daya Bay, RENO and Double Chooz Reactor Neutrino Experiments
CN113836709B (zh) 堆芯指套管磨损速率的评估方法
KR102436013B1 (ko) 원자력발전소용 측정 불확도 정량화를 이용한 검출기 검증 방법과 모니터링 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170125

Termination date: 20180620