CN104025352A - 用于固体氧化物电化学电池的高性能燃料电极 - Google Patents

用于固体氧化物电化学电池的高性能燃料电极 Download PDF

Info

Publication number
CN104025352A
CN104025352A CN201280052264.0A CN201280052264A CN104025352A CN 104025352 A CN104025352 A CN 104025352A CN 201280052264 A CN201280052264 A CN 201280052264A CN 104025352 A CN104025352 A CN 104025352A
Authority
CN
China
Prior art keywords
cgo
catalyst
anode
eelctro
stn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280052264.0A
Other languages
English (en)
Inventor
M.H.A.贾布巴
J.霍格尔
N.博纳诺斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danmarks Tekniskie Universitet
Original Assignee
Danmarks Tekniskie Universitet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danmarks Tekniskie Universitet filed Critical Danmarks Tekniskie Universitet
Publication of CN104025352A publication Critical patent/CN104025352A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

用于固体氧化物电化学电池的高性能阳极(燃料电极),所述阳极通过包括以下步骤的方法获得:(a)提供具有阳极面的合适地掺杂的、稳定化的锆氧化物电解质,例如YSZ、ScYSZ,所述阳极面具有电传导的钙钛矿氧化物涂层,所述钙钛矿氧化物选自铌掺杂的钛酸锶、钒掺杂的钛酸锶、钽掺杂的钛酸锶及其混合物,从而获得多孔的阳极骨架,(b)将该经涂覆的电解质在空气或还原性气氛中在例如1200°C的高温下烧结充足的一段时间;(c)实现混合催化剂的前体浸润入所述骨架中,所述催化剂包含贵金属Pd或Pt或Pd或Ru和Ni与稀土金属例如Ce或Gd的组合,所述浸润由(1)含Pd、Ru和CGO的氯化物/硝酸盐前体的浸润和(2)含Ni和CGO的硝酸盐前体的浸润构成:和(d)将步骤(c)所得的结构进行热处理,包括在几个有浸润的步骤中的热处理。

Description

用于固体氧化物电化学电池的高性能燃料电极
本发明涉及用于固体氧化物电化学电池的高性能阳极(燃料电极)。更具体地,本发明涉及通过二次浸润(dual infiltration)制备新型阳极结构,其中通过添加小量的单一贵金属或其混合物可将含Ni的电极的电催化活性增大。特别地,将本发明应用于提供低温固体氧化物燃料电池(SOFC)阳极。
固体氧化物燃料电池(SOFC)是具有阳极 (燃料电极)和阴极的电化学电池,阳极和阴极由稠密的氧化物离子导电性电解质隔开,所述电池在高温(800-1000°C)下运行。这些常用的高温导致电极问题,例如所用的电极材料的致密化和快速降解,并因而在电极/电解液界面处增大电阻。在中等温度(600-850°C)下运行时,这些问题较不明显。进一步降低此类电池的运行温度(≤600°C)使得能够有较广的材料选择的可能,和相对较少的在高温下运行遭遇的问题。虽有此优点,降低运行温度会导致电极与电解质的触碰阻力增大。低温运行也因为氢的氧化而对电极的性能造成严重挑战。克服此挑战的一个方法是用足够装载量的前体浸润特定的妥当选择的电催化剂。
SOFC的阳极包含沉积在电解质上的催化活性的、(对电子和氧离子)导电的多孔结构。SOFC阳极的作用是与燃料(例如氢气或烃)进行电化学反应,而阴极的作用是与氧气(或空气)反应来产生电流。常规SOFC阳极是包含金属催化剂和陶瓷材料组合物混合物,更具体地分别是镍和氧化钇稳定化的氧化锆(YSZ)。但是,对于SOFC在低温范围的运行,镍基组合物阳极的界面电阻还是太高。
近年来,已进行很多努力以改进SOFC阳极的功能。例如,US 6.051.329描述了具有多孔陶瓷阳极的SOFC,其包含选自Pt、Rh、Ru及其混合物的贵金属催化剂。阳极中的陶瓷材料可例如是YSZ;其没有具体提及铌掺杂的钛酸锶,但一般性地提及钙钛矿材料。 
US 2005/0120827 提到合金催化剂可用作SOFC的阳极,例如镍、Ni-Pd 和 Ni-Pt合金。
此外,US 2009/0305090 关注用于燃料电池的催化剂组合物,根据该公开,阳极的催化剂可以是 Ce-氧化物、Ce-Zr-氧化物、Ce-Y-氧化物、Cu、Ag、Au、Ni、Mn、Mo、Cr、V、Fe、Co、Ru、Rh、Pd、Pt、Ir、Os、钙钛矿或任何其组合。
US 2010/0151296 描述了用于燃料电池的电极催化剂,更具体地是与 Ce-催化剂(可以是金属Ce或Ce-氧化物)一起使用的非铂催化剂 (Mn、Pd、Ir、Au、Cu、Co、Ni、Fe、Ru、WC、W、Mo、Se)。由于Ce的存在,该电极催化剂具有提高的催化效率。 
US 2011/0003235 描述了具有多孔阳极夹层的纳米结构的SOFC,其可由纳米-Ni和纳米-Y稳定化的氧化锆(YSZ/Ni)的混合物构成或由纳米-Ni和纳米-Gd掺杂的氧化铈(GDC/Ni)的混合物构成。
JP2007-149431 关注一个具有由Ce-氧化物涂覆的电解质构成的夹层的SOFC,其中通过丝网印刷施加该涂层。在形成Ce-氧化物烧结层后,将含镍金属前体浸渍进入该层。
US 2002/0187389 公开了基于过渡金属(Pr、Sm、Tb或Nd)钙钛矿的高性能电催化剂,其与YSZ反应并在其内形成具有作为燃料电池阴极的活性的产物。具有单单由YSZ和PrCoO3的反应产物构成的阴极的SOFC展现出好性能,表明该相自身不只是好导体,但也是氧活化的好催化剂。
最后,申请人的公开US 2009/0061284 提到铌掺杂的钛酸锶可用作SOFC阳极,所述阳极用金属(例如镍)和掺杂的氧化铈浸渍。但是没有提及运用贵金属催化剂或“多催化剂”来获得可能的协同效应。
最普遍研究的低温SOFC阳极是基于Ni-电催化剂和氧化物离子导体,例如选自Ni-CGO(钆掺杂的氧化铈)金属陶瓷。影响Ni-CGO 阳极性能的参数有:粒度、孔隙率、Ni/CGO比率和CGO化学计量。通过喷溅热解沉积在YSZ电解质上的具体Ni-CGO 阳极展现了在600°C为7.2 Ωcm2和在400°C为61.5 Ωcm2的加湿的氢气燃料中的极化电阻(Rp) (U.P. Muecke et al., electrochemical performance of nanocrystalline nickel/gadolinia-doped ceria thin film anodes for solid oxide fuel cell, Solid State Ionics 178(33-34), p. 1762-1768 (2008))。可通过使用前体浸润技术在多孔阳极上进行电催化剂前体浸润,进一步改进阳极的电化学性能。通过将Pd浸润入Ni-CGO骨架中,可获得在650°C 的加湿的H2燃料中为1.66 Ωcm2的极化电阻(A. Babaei et al., electrocatalytic promotion of palladium nanoparticles for hydrogen oxidation on Ni-CGO anodes of solid oxide fuel cells via spillover, J. Electrochem. Soc.156(9) B 1022-1029 (2009))。另外,在中等温度下,与单是钙钛矿相比用Ni-氧化铈浸润的钙钛矿(例如Nb-掺杂的SrTiO3(STN))展现出改进的电化学性能,另外阳极条件下Nb-掺杂的SrTiO具有稳定的骨架以保持浸润的催化剂,低温下具有足够的电导率(P. Blennow et al., Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics 179(35-36), p. 2047-2058 (2008))。
因此,高性能SOFC阳极的新近开发都集中在使用导电性钙钛矿氧化物(例如铌掺杂的钛酸锶(STN))。虽然STN在阳极测试条件下是稳定的并且与电解质兼容,它缺乏氢的氧化的电化学催化活性,而且该离子电导率不足以延伸到可能的氧化位。
沉积在电解质上的STN具有多孔框架结构(后文中称为“骨架”),其能够保持电催化剂。阳极研发的最近趋势是通过相应的盐(例如硝酸镍或氯化镍)进行催化剂浸润,在骨架上加入纳米结构化的电催化剂。电催化剂可以是金属、陶瓷材料(例如钆掺杂的氧化铈(CGO))或两者的混合物。除了催化活性,CGO在STN骨架中提供氧化物离子导电性。
目前,根据本发明STN是优选的骨架材料,但也可以使用其他材料。这些其他材料中,需要特别提及FeCr-3YSZ因而可通过用多成分催化剂浸润由FeCr-3YSZ构成的骨架生产具有非常高性能的阳极。
更具体地,本发明基于混合的电催化剂前体在骨架(优选是STN骨架)中的二次浸润,所述混合的电催化剂包含贵金属(Pd、Ru 和 Pt)和Ni与CGO的组合。组合的电催化剂的协同效应提供与在STN骨架中的氢的氧化有关的改进的电化学反应。加入混合催化剂的STN骨架的界面电阻与作为电催化剂的CGO、Ni-CGO、Pd-CGO 和 Ru-CGO相比较低。 
更具体地,本发明涉及用于固体氧化物电化学电池的高性能阳极 (燃料电极),所述阳极通过包含以下步骤的方法可获得:(a) 提供具有阳极面的合适地掺杂的、稳定化的锆氧化物电解质,例如YSZ、ScYSZ,所述阳极面具有电传导的钙钛矿氧化物涂层,从而获得多孔的阳极骨架,所述钙钛矿氧化物选自铌掺杂的钛酸锶、钒掺杂的钛酸锶、钽掺杂的钛酸锶及其混合物,(b) 将经涂覆的电解质在空气或还原性气氛中在例如1200°C的高温下烧结充足的一段时间,(c) 实现混合的催化剂的前体浸润入所述骨架中,所述催化剂包含贵金属Pd或Pt或Pd或 Ru和Ni与稀土金属例如Ce或Gd的组合,例如Ce或Gd,所述浸润由如下组成:(1)浸润含Pd、Ru 和 CGO 的氯化物前体和(2)浸润含Ni和CGO的硝酸盐前体,和(d) 将步骤(c)所得的结构进行煅烧,包括在几个有浸润的步骤中煅烧。
通过添加小量的贵金属或此类金属的混合物可以改进含Ni催化剂的电催化活性,相对于现有技术其有新颖性。以下的特别想法也是有新颖性的:单独使用贵金属催化剂的电催化活性或将其与类似的贵金属催化剂、镍、陶瓷电催化剂(CGO)、或其组合进行组合使用,以在钙钛矿氧化物STN骨架上获得较高的协同电催化活性。本发明尤其可用于低温SOFC阳极,但也可用于高温运行的SOFC和SOEC(600-850°C)。 
含Pd和Ru混合物,或Pt或Pd或Ru和含CGO的氯化物/硝酸盐的前体浸润之后优选地在含Ni和CGO的硝酸盐前体浸润前进行第一次煅烧。
本发明也涉及具体的阳极结构,其中上述步骤(c)中的浸润由包含以下步骤的方法获得:(1)先用Pd-CGO或Pt-CGO或Ru-CGO二元电催化剂接着用Ni-CGO二元电催化剂浸润STN骨架,以得到三元电催化剂组合或(2)先用Pd-Ru-CGO 三元电催化剂催化剂接着用Ni-CGO二元电催化剂浸润STN骨架,来得到四元电催化剂的组合。
根据本发明的阳极结构中电解质优选地是有约120μm厚度的带。此外优选步骤(d)的热处理在约650°C温度的空气中进行约2小时,并在约350°C温度的空气中进行步骤 (f)的热处理约1小时。
根据本发明的阳极结构优选地用于固体氧化物燃料电池(SOFC)中,但其也可运用于固体氧化物电解电池(SOEC)中。
在固体氧化物电池中电极的界面电阻在低温环境下非常高。本发明通过利用贵金属催化剂与Ni和CGO组合的协同作用,有可能在低温范围显著降低阳极的界面电阻。
通常低温SOFC阳极是由催化剂(Ni) 和氧化物离子导体(YSZ)的组合物混合物制备的。本发明使得可能用与Ni和CGO组合的贵金属催化剂浸渍的高导电钙钛矿类氧化物代替传统阳极。在SOFC与现有技术对比的优势中,已提到在低温范围下运行的本发明的SOFC阳极的低界面电阻。另一实质优势是通过添加少量的贵金属作为添加剂增大Ni-CGO 电催化剂的电化学活性。
现通过以下具体实施例来进一步说明本发明。 并参考附图1-7:
图1示出说明未经浸润的与用例如Ni-CGO、Pd-CGO、Ru-CGO 和 Pt-CGO浸润的STN骨架的性能的Arrhenius 图。跟未经浸润的STN相比,受浸润的STN性能因浸润而实现相当大改进;
图2示出与只含Pd-CGO 的电催化剂相比,添加了Pd的Ni-CGO 的性能改进的Arrhenius图;
图3示出与只含Pt-CGO 的电催化剂相比,添加了Pt的Ni-CGO 的性能改进的Arrhenius图;
图4示出与Ni-CGO与Ru-Pd-CGO的性能相比,Ru-Pd-Ni-CGO电催化剂具有协同性能的Arrhenius图。注意:多催化剂性能显示在STN骨架中;
图5示出说明Ru-Pd-Ni-CGO 电催化剂在骨架 (FeCr-3YSZ)中的性能与在STN中的不同的Arrhenius 图。Rp是总电阻 (R1+R2),其中R1是电极过程电阻和R2指扩散电阻;
图6图示了透射电子显微镜(TEM)显微图像,其显示了轮廓清晰的含孔STN骨架和经浸润的多催化剂均匀覆盖的STN(a)和Ce、Ni、Ru 和 Pd(b)的各元素映射,和
图7图示了Ru-Pd-Ni-CGO 多催化剂的扫描透射电子显微镜(STEM)图像和能量分散式光谱(EDS)映射(a),行扫描显微分析(b)和Ru-Pd-Ni-CGO 电催化剂的STEM-EDS结果(c-d)。
实施例描述了用Pt、Ru、Pd、Ni和CGO或其组合浸润的多孔对称Sr0.94Ti0.9Nb0.1O3-δ(STN)电池在低运行温度下的电化学特征。 
用Ni-CGO、Pd-CGO、Pt-CGO 和 Pd-Ru-CGO浸润的STN阳极性能分别跟含Ni催化剂Pd-Ni-CGO、Pt-Ni-CGO 和 Ru-Pd-Ni-CGO电催化剂比较。未经浸润的STN阳极也跟已浸润的阳极比较。经浸润的前体的改进性能可能依赖于各电催化剂的催化活性、混合的催化剂的协同效应和煅烧步骤后电催化剂的所得形态。
 
实施例1
STN粉末的制备
该实施例阐明粉末状STN的制备用自身已知的湿化学路线制备STN钙钛矿氧化物。用化学计量量的碳酸锶(SrCO3)、草酸铌(C2NbO4)和异丙氧基钛(IV)(Ti[OCH(CH3)2]4)用来得到Sr0.94Ti0.9Nb0.1O3。分别将化合物Ti[OCH(CH3)2]和C2NbO4溶解在柠檬酸一水合物(HOC(COOH)(CH2COOH)2·H2O)中并将前体混合。然后缓慢加入SrCO3粉末与过氧化氢(H2O2)作为SrCO3分解的促进剂。混合物在300℃热板上加热5小时。然后将所得固体,在1000℃空气中进行3小时的热处理并随后磨成细粉。
 
实施例2
制备对称电池用于阳极表征
利用丝网印刷将多孔STN阳极沉积在氧化钪,氧化钇稳定化的氧化锆(在1摩尔%Y2O3稳定化的ZrO2(ScYSZ)中含10摩尔%Sc2O3)电解质胶带上。通过添加表面活性剂(高分子分散剂)、增塑剂(邻苯二甲酸二丁酯)和粘合剂(乙基纤维素)并在机械振动筛中隔夜混合将STN粉末制备成丝网印刷墨。
然后将在ScYSZ胶带上丝网印刷的STN在1200°C在还原性气氛(9% H2/N2)中烧结4小时。将多孔STN 阳极沉积在ScYSZ 电解质胶带的双面,面积为6x6cm2。将各胶带剪成大约面积为0.25 cm2的更小块,以便用于电化学结构中。
通过将硝酸铈(Ce(NO3)3·6H2O)、硝酸钆(Gd(NO3)3·6H2O)与高分子表面活性剂一起溶解在水中制备0.75MCGO(Ce0.8Gd0.2O2-δ)前体溶液。通过将各金属的金属硝酸盐/氯化物溶解在CGO前体溶液中制备具有以下组成的前体溶液:Ni0.25CGO0.75、Pd0.1CGO0.9、Ru0.25CGO0.75、Pt0.25CGO0.75、Pt0.08Ru0.07CGO0.85、Pt0.07Pd0.08CGO0.85、Ni0.16Pt0.09CGO0.75、Pd0.04Ru0.16CGO0.75、Ni0.16Ru0.09CGO0.75或Ni0.16Pd0.04CGO0.75 。以上成分中提到的下标代表了金属和CGO的重量百分比。对Ni、Pt 和 Pd 金属,分别使用硝酸镍(Ni(NO3)2·6H2O)、四氨合铂(II)硝酸盐(H12N6O6Pt) 和硝酸钯(Pd(NO3)2·6H2O)。在含Ru浸润的情况下,使用氯化钌(RuCl3·xH2O)和氯化钯(PdCl2)作为前体。在STN骨架中的催化剂混合物的体积百分比在下页的表内显示。
 
骨架 I:  STN (还原的)
 含Ni的混合催化剂
 骨架II:  FeCr–3YSZ
 
在以上的表中,浸润(Inf.)如下:
A:     Ni0.25CGO0.75[1]
B:     Ni0.25CGO0.75[2]
C:     Pt0.25CGO0.75
D:     Pd0.1CGO0.9
E:     Ru0.25CGO0.75
F:     Pd0.04Ru0.16CGO0.75
G:     Pt0.07Pd0.08CGO0.85
H:     Pt0.08Ru0.07CGO0.85
J:      Ni0.16Pt0.09CGO0.75
K:     Ni0.16Pd0.04CGO0.75
L:     Ni0.16Ru0.09CGO0.75
M:    (RuPd)0.16Ni0.09CGO0.75
N:     (RuPd)0.13Ni0.12CGO0.75
注意: 在A-N中提到的下标代表金属和CGO的重量百分比。
 
该表阐明了在骨架中的金属(Ni)和陶瓷(CGO)装载的重量百分比。立柱“总值”表示包含Ni-CGO的总催化剂量。以在500和600°C下H2/3%H2O中的活化能量表示性能。
通过将前体放入多孔的STN对称电池中,然后将电池放在真空室内制备经浸润的STN阳极。施加真空以从多孔的STN骨架中去除气泡并利用毛细管力促进前体溶液均匀覆盖阳极表面。将Ni-CGO、Pd-CGO、Pt-CGO和Ru-CGO浸润3次以增大在多孔STN中的装载,并且每次浸润后将电池在350℃下进行1小时的煅烧。Ru-Pd-Ni-CGO浸润通过用Ru-Pd-CGO 混合的前体浸润一次然后在650°C煅烧2小时以去除氯残留来完成。之后将对称电池用以上提到的方法用Ni-CGO浸润3次。对Ni-Pt-CGO、Ni-Pd-CGO 和 Ni-Ru-CGO 电催化剂运用类似方法,其中先进行Pt-CGO、Pd-CGO和Ru-CGO浸润,然后是3次Ni-CGO浸润。煅烧后的重量变化在每次浸润后记录。
 
实施例3
阳极表征
对称电池用Pt-浆(paste)和Pt-栅极(grid)进行电接触。在9% H2/N2中将电池加热到650°C,然后将气体成分换成干H2并将温度保持在650°C12小时。在开路条件(OCV)下通过施加50毫伏的振幅(取决于温度Solartron频率响应分析仪的输出电压变化为5至50毫伏)在1MHz-1mHz的频率范围记录EIS数据。在含3%H2O的H2中,在650至350℃的温度范围内测量阻抗。通过室温下在水中加湿H2来制备气体成分。氧气分压(pO2)用氧气传感器测量。在650、600、550 和 500°C 温度,EMF值为-1.125、-1.131、-1.140 和 -1.147 V,相应的pO2分别为10-26、10-27、10-29 和 10-31。计算H2的百分比大概为97%H2和3%水蒸汽。 
未经浸润的STN的Rp值高几个数量级。表1列出了被测试的阳极的活化能量。仅STN作为阳极的活化能量是示出的1.14eV。经浸润的阳极与未经浸润的STN骨架相比活化能量较低。 
图 6描述了用Ru-Pd-Ni-CGO浸润的STN阳极的微结构。轮廓清晰的多孔STN骨架和电催化剂浸润均匀覆盖的STN 显示在图6(a)中。TEM-EDS映射微型结构中存在的元素。 
相对于图6(a)中的微型结构,Ce、Ni、Ru 和 Pd的各元素映射描述在图6(b)中。经浸润进结构中的Ni、Pd 和 Ru量小并因此探测到的x-射线信号弱,不过电催化剂的主要成分是CGO。因Ce是较重元素,其显出清晰的x-射线映射,说明了STN骨架的均一覆盖。
描述在图 7中的是具有EDS映射的STEM图像。阳极最高运行温度是650°C,并且由TEM确定的Ni电催化剂大小约为10-15nm。在纳米组合物中的其它元素(Ru、Pd 和 Ce)小于10nm,如在图7(a)中的描述。如图7(b)中所示在用箭头标注的纳米组合物上距离115nm进行行扫描显微分析。在图7(c)中显示Ni似乎已与Pd形成合金,并且在低温下跟纯Ni相比,这可能加强电化学活性。图7(d)显示了在微结构中的Ce和Gd浓度,Ru和Pd是低浓度。从分析可见Ce和Ru的混合的纳米组合物覆盖了没被 Ni和Pd覆盖的区域,并且因此它们在整个阳极面上都是催化活性的。Ni-Pd、Ru 和CGO促进了H2的电化学氧化反应。此外,CGO纳米颗粒帮助促进氧离子。因此增强了三相界面以利于更多电化学活性位点。

Claims (9)

1.用于固体氧化物电化学电池的高性能的阳极(燃料电极),所述阳极通过包括以下步骤的方法可获得: 
(a)提供具有阳极面的合适地掺杂的、稳定化的锆氧化物电解质,例如YSZ、ScYSZ,所述阳极面具有电传导的钙钛矿氧化物涂层,所述钙钛矿氧化物选自铌掺杂的钛酸锶(STN)、钒掺杂的STN、钽掺杂的STN 及其混合物,从而获得多孔的阳极骨架,
(b)将经涂覆的电解质在空气或还原性气氛中在例如1200°C的高温下烧结充足的一段时间; 
(c)实现混合催化剂的前体浸润入所述骨架中,所述催化剂包含贵金属Pd、Pt和/或 Ru和Ni与稀土金属例如Ce或Gd的组合,其中所述浸润组合是二元的(Pt-CGO或Pd-CGO或 Ru-CGO或 Ni-CGO)、三元的(Ni-Pt-CGO或 Ni-Pd-CGO或 Ni-Ru-CGO)或四元的(Ni-Pd-Ru-CGO)电催化剂,并且其中用于浸润的所述前体是氯化物或硝酸盐形式,和
(d)将步骤(c)所得的结构进行空气中的煅烧以形成所述纳米结构化的电催化剂,包括在几个有浸润的步骤中煅烧。
2.根据权利要求1的阳极结构,其中步骤(c)中的所述浸润通过包括以下步骤的方法获得:(1)先用Pd-CGO或Pt-CGO或Ru-CGO二元电催化剂接着用Ni-CGO二元电催化剂浸润所述STN骨架,以获得三元电催化剂组合或(2)先用Pd-Ru-CGO 三元电催化剂催化剂接着用Ni-CGO二元电催化剂浸润所述STN骨架,以获得四元电催化剂的组合。
3.根据权利要求1的阳极结构,其中所述电解质是具有丝网印刷的20μmSTN骨架的具有约120 μm厚度的带。
4.根据权利要求1的阳极结构,其中在约650°C的温度下进行所述热处理步骤(d)。
5.根据权利要求1的阳极结构,其中在约350°C的温度下进行所述热处理步骤(f)。
6.根据权利要求1的阳极结构,其中通过采用所述步骤(c)-(f)将多催化剂浸润入所述FeCr-3YSZ骨架中。
7.根据权利要求1-6中任意项的所述阳极结构在固体氧化物燃料电池(SOFC)中的用途。
8.根据权利要求1-6中任意项的所述阳极结构在固体氧化物电解电池(SOEC)中的用途,在该情况下其是阴极。
9.根据权利要求1-6中任意项的所述阳极结构在高温(600至850°C)运行的SOEC或SOFC中的用途。
CN201280052264.0A 2011-10-24 2012-10-23 用于固体氧化物电化学电池的高性能燃料电极 Pending CN104025352A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201100811 2011-10-24
DKPA201100811 2011-10-24
PCT/EP2012/070951 WO2013060671A1 (en) 2011-10-24 2012-10-23 High performance fuel electrode for a solid oxide electrochemical cell

Publications (1)

Publication Number Publication Date
CN104025352A true CN104025352A (zh) 2014-09-03

Family

ID=47046630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280052264.0A Pending CN104025352A (zh) 2011-10-24 2012-10-23 用于固体氧化物电化学电池的高性能燃料电极

Country Status (10)

Country Link
US (1) US20140287342A1 (zh)
EP (1) EP2771932A1 (zh)
JP (1) JP2015501515A (zh)
KR (1) KR20140096310A (zh)
CN (1) CN104025352A (zh)
AU (1) AU2012327278A1 (zh)
CA (1) CA2853169A1 (zh)
EA (1) EA201490860A1 (zh)
IN (1) IN2014CN03490A (zh)
WO (1) WO2013060671A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126819A1 (zh) * 2017-01-03 2018-07-12 清华大学 含氢过渡金属氧化物及其制备方法、固态燃料电池
CN108360010A (zh) * 2018-01-26 2018-08-03 济南大学 一种新型固体氧化物电解电池电极催化涂层的制备方法
CN109802148A (zh) * 2019-02-01 2019-05-24 上海亮仓能源科技有限公司 一种车载燃料电池用负载型铂稀土金属阴极催化剂的制备方法
CN109852988A (zh) * 2019-04-12 2019-06-07 清华大学 一种微纳树状固体氧化物电解池阳极及其制备方法
CN112647089A (zh) * 2020-12-15 2021-04-13 中国科学院大连化学物理研究所 一种固体氧化物电解池三元复合阳极的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181148B2 (en) * 2013-05-22 2015-11-10 Saudi Arabian Oil Company Ni/CGO and Ni-Ru/CGO based pre-reforming catalysts formulation for methane rich gas production from diesel processing for fuel cell applications
US9469908B2 (en) * 2014-05-12 2016-10-18 The Trustees Of The University Of Pennsylvania Synergistic oxygen evolving activity of non-stoichiometric surfaces
KR101835956B1 (ko) * 2015-03-06 2018-03-08 주식회사 엘지화학 전극의 제조방법, 이로 제조된 전극, 상기 전극을 포함하는 전극 구조체, 상기 전극을 포함하는 연료 전지 또는 금속 공기 이차 전지, 상기 연료 전지 또는 금속 공기 이차 전지를 포함하는 전지 모듈, 및 전극 제조용 조성물
EP3340349A1 (de) * 2016-12-21 2018-06-27 sunfire GmbH Schwefeltoleranter katalysator für festoxid-brennstoffzelle sowie herstellungsverfahren
US11283084B2 (en) 2017-05-03 2022-03-22 The Regents Of The University Of California Fabrication processes for solid state electrochemical devices
JP7076788B2 (ja) * 2017-08-01 2022-05-30 国立研究開発法人物質・材料研究機構 固体酸化物形燃料電池のアノード材料及びその製造方法、並びに固体酸化物形燃料電池
WO2021162975A1 (en) * 2020-02-11 2021-08-19 Phillips 66 Company Solid oxide fuel cell cathode materials
CN115552058A (zh) * 2020-05-14 2022-12-30 博隆能源股份有限公司 用于固态氧化物电解电池的电解质材料
US20230138222A1 (en) * 2020-06-24 2023-05-04 Korea Advanced Institute Of Science And Technology Solid oxide fuel cell comprising anode alkaline-based promoter loaded
KR102369060B1 (ko) * 2020-06-24 2022-03-02 한국과학기술원 알칼리 기반 프로모터가 도입된 연료극을 포함하는 고체 산화물 연료전지
CN113151847A (zh) * 2021-04-16 2021-07-23 上海大学 一种固体氧化物电解池工作电极的制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075383A2 (en) * 2002-02-28 2003-09-12 Us Nanocorp, Inc. Solid oxide fuel cell components and method of manufacture thereof
CN1788841A (zh) * 2005-12-21 2006-06-21 华东师范大学 一种制氢催化剂、制备及其用途
CN101107740A (zh) * 2003-12-02 2008-01-16 纳米动力公司 使用金属陶瓷电解质的阳极支撑的固体氧化物燃料电池
CN101383417A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和钛酸锶的电极

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548203B2 (en) 1995-11-16 2003-04-15 The Dow Chemical Company Cathode composition for solid oxide fuel cell
US6051329A (en) 1998-01-15 2000-04-18 International Business Machines Corporation Solid oxide fuel cell having a catalytic anode
US6841512B1 (en) 1999-04-12 2005-01-11 Ovonic Battery Company, Inc. Finely divided metal catalyst and method for making same
AU2003228791A1 (en) * 2002-05-03 2003-11-17 Battelle Memorial Institute Cerium-modified doped strontium titanate composition for solid oxide fuel cell anodes and electrodes for other electrochemical devices
JP4620572B2 (ja) 2005-11-25 2011-01-26 日本電信電話株式会社 固体酸化物形燃料電池及びその作製方法
CN101601154B (zh) 2006-09-13 2013-08-28 阿克伦大学 用于燃料电池的催化剂组合物
ES2367885T3 (es) * 2007-08-31 2011-11-10 Technical University Of Denmark Electrodos que se basan en óxido de cerio y un acero inoxidable.
KR20100069492A (ko) 2008-12-16 2010-06-24 삼성전자주식회사 연료전지용 전극 촉매, 상기 전극 촉매를 포함하는 전극을 구비한 연료전지
TWI385851B (zh) 2009-07-03 2013-02-11 Iner Aec Executive Yuan 固態氧化物燃料電池及其製作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075383A2 (en) * 2002-02-28 2003-09-12 Us Nanocorp, Inc. Solid oxide fuel cell components and method of manufacture thereof
CN101107740A (zh) * 2003-12-02 2008-01-16 纳米动力公司 使用金属陶瓷电解质的阳极支撑的固体氧化物燃料电池
CN1788841A (zh) * 2005-12-21 2006-06-21 华东师范大学 一种制氢催化剂、制备及其用途
CN101383417A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和钛酸锶的电极

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALIREZA BABAEI,SAN PING JIANG,JIAN LI: "Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/GDC Anodes of SOFCs via Spillover", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126819A1 (zh) * 2017-01-03 2018-07-12 清华大学 含氢过渡金属氧化物及其制备方法、固态燃料电池
CN108360010A (zh) * 2018-01-26 2018-08-03 济南大学 一种新型固体氧化物电解电池电极催化涂层的制备方法
CN108360010B (zh) * 2018-01-26 2019-09-06 济南大学 一种固体氧化物电解电池电极催化涂层的制备方法
CN109802148A (zh) * 2019-02-01 2019-05-24 上海亮仓能源科技有限公司 一种车载燃料电池用负载型铂稀土金属阴极催化剂的制备方法
CN109852988A (zh) * 2019-04-12 2019-06-07 清华大学 一种微纳树状固体氧化物电解池阳极及其制备方法
CN112647089A (zh) * 2020-12-15 2021-04-13 中国科学院大连化学物理研究所 一种固体氧化物电解池三元复合阳极的制备方法
CN112647089B (zh) * 2020-12-15 2021-12-07 中国科学院大连化学物理研究所 一种固体氧化物电解池三元复合阳极的制备方法

Also Published As

Publication number Publication date
EA201490860A1 (ru) 2014-09-30
WO2013060671A1 (en) 2013-05-02
US20140287342A1 (en) 2014-09-25
EP2771932A1 (en) 2014-09-03
JP2015501515A (ja) 2015-01-15
IN2014CN03490A (zh) 2015-10-09
AU2012327278A1 (en) 2014-05-15
KR20140096310A (ko) 2014-08-05
CA2853169A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
CN104025352A (zh) 用于固体氧化物电化学电池的高性能燃料电极
Connor et al. Tailoring SOFC electrode microstructures for improved performance
Choi et al. Performance of La0. 1Sr0. 9Co0. 8Fe0. 2O3− δ and La0. 1Sr0. 9Co0. 8Fe0. 2O3− δ–Ce0. 9Gd0. 1O2 oxygen electrodes with Ce0. 9Gd0. 1O2 barrier layer in reversible solid oxide fuel cells
Vohs et al. High‐performance SOFC cathodes prepared by infiltration
Liu et al. Enhanced performance of LSCF cathode through surface modification
Liu et al. LSM-infiltrated LSCF cathodes for solid oxide fuel cells
US7740772B2 (en) Ceramic anodes and method of producing the same
Zhu et al. A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods
JP5366804B2 (ja) 高温型燃料電池用アノードのためのセラミック材料の組み合わせ
US8021799B2 (en) High-performance ceramic anodes for use with strategic and other hydrocarbon fuels
Yang et al. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells
Gu et al. YSZ electrolyte support with novel symmetric structure by phase inversion process for solid oxide fuel cells
Rehman et al. Parametric study on electrodeposition of a nanofibrous LaCoO3 SOFC cathode
US20140287341A1 (en) Modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure
US20040185327A1 (en) High performance ceramic anodes and method of producing the same
Liang et al. Electroless deposition of Co (Mn)/Pd-decorator into Y2O3-stabilized ZrO2 scaffold as cathodes for solid oxide fuel cells
Guo et al. Anode-supported LaGaO3-based electrolyte SOFCs with Y2O3-doped Bi2O3 and La-doped CeO2 buffer layers
Fu et al. Comparison of the electrochemical properties of infiltrated and functionally gradient Sm0. 5Sr0. 5CoO3− δ-Ce0. 8Sm0. 2O1. 9 composite cathodes for solid oxide fuel cells
Yu et al. Engineering nanostructured fuel electrodes for high-performance, durable SOCs through infiltration
Zhao et al. A high-performance intermediate temperature reversible solid oxide cell with a new barrier layer free oxygen electrode
Qi et al. Enhancing the catalytic activity of PrBaFe2O5+ δ double perovskite with BaCoO3-δ modification as an electrode material for symmetrical solid oxide fuel cells
Babaei A mechanistic investigation of fuel oxidation reactions on the solid oxide fuel cell electrodes by using palladium catalyst nanoparticles
EP2814100A1 (en) Impregnation of an electrochemical cell cathode backbone
KR20120139384A (ko) 리포밍 복합 소재, 이를 채용한 연료전지용 음극 구조체 및 고체산화물 연료전지

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140903