WO2018126819A1 - 含氢过渡金属氧化物及其制备方法、固态燃料电池 - Google Patents

含氢过渡金属氧化物及其制备方法、固态燃料电池 Download PDF

Info

Publication number
WO2018126819A1
WO2018126819A1 PCT/CN2017/113205 CN2017113205W WO2018126819A1 WO 2018126819 A1 WO2018126819 A1 WO 2018126819A1 CN 2017113205 W CN2017113205 W CN 2017113205W WO 2018126819 A1 WO2018126819 A1 WO 2018126819A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
transition metal
metal oxide
containing transition
gas
Prior art date
Application number
PCT/CN2017/113205
Other languages
English (en)
French (fr)
Inventor
于浦
鲁年鹏
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2018126819A1 publication Critical patent/WO2018126819A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the field of materials and battery technologies, and in particular, to a hydrogen-containing transition metal oxide and a preparation method thereof, and a solid fuel cell.
  • a solid oxide fuel cell is an energy conversion device that generates direct current by electrochemically reacting a combustible gas (such as hydrogen, carbon monoxide, etc.) with an oxidant (such as oxygen) through an oxide electrolyte.
  • a combustible gas such as hydrogen, carbon monoxide, etc.
  • an oxidant such as oxygen
  • SOFC solid oxide fuel cell
  • Conventional solid oxide fuel cells typically have higher operating temperatures, typically greater than 600 degrees Celsius, due to material limitations such as weak ion conductance in the low temperature region of solid oxide fuel cells. In order to maintain better ionic conductance, it is difficult to further reduce the operating temperature of the solid oxide fuel cell.
  • the application provides a hydrogen-containing transition metal oxide and a preparation method thereof, and a solid fuel cell.
  • a method for preparing a hydrogen-containing transition metal oxide comprising:
  • A is one or more of an alkaline earth metal element and a rare earth metal element
  • B is one or more of transition metal elements
  • x is greater than Equal to 2 and less than or equal to 3;
  • the hydrogen-containing reaction gas generates hydrogen radicals under the action of the metal catalyst, and the hydrogen radicals are diffused into the transition metal oxide to obtain the hydrogen-containing transition metal oxide.
  • the S100 includes:
  • a substrate comprising one of a ceramic substrate, a silicon substrate, a glass substrate, a metal substrate, or a polymer substrate;
  • the metal catalyst in S200 is platinum or palladium.
  • the S300 includes:
  • the hydrogen-containing reaction gas is hydrogen
  • the hydrogen-containing reaction gas is a mixed gas of hydrogen and a sustained-release gas
  • the sustained-release gas is nitrogen or an inert gas
  • the volume content of the hydrogen gas is 3% to 100%.
  • the S400 further includes: raising a temperature of a reaction system of the transition metal oxide, the metal catalyst, and the hydrogen-containing reaction gas in the reaction chamber, wherein a temperature range of the reaction system is 20 degrees Celsius to 200 degrees Celsius.
  • the method for preparing a hydrogen-containing transition metal oxide further comprises: S500, separating the gold It is a catalyst and the hydrogen-containing transition metal oxide, and the separation method includes an ultrasonic separation method and a polymer adhesion method.
  • a hydrogen-containing transition metal oxide having a structural formula of ABO x H y wherein A is one or more of an alkaline earth metal element and a rare earth metal element, and B is a transition metal element
  • A is one or more of an alkaline earth metal element and a rare earth metal element
  • B is a transition metal element
  • x ranges from 1-3
  • y ranges from 0 to 3
  • the hydrogen-containing transition metal oxide has an ionic conductance of 10 -1 at 20 degrees Celsius to 200 degrees Celsius.
  • 10 -2 S ⁇ cm -1 the electron conductivity of the hydrogen-containing transition metal oxide is four orders of magnitude lower than that of the ion conductance.
  • the hydrogen-containing transition metal oxide has an ionic conductance higher than 10 -2 S ⁇ cm -1 and an electron conductance lower than 10 -5 S ⁇ cm -1 .
  • x is 1-3
  • y is 2.5-3
  • the electron-conducting transition of the hydrogen-containing transition metal oxide is 10 -6 S ⁇ cm -1 .
  • the alkaline earth metal elements include Be, Mg, Ca, Sr, and Ba
  • the rare earth metal elements include La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb
  • the transition metal elements include Co, Cr, Fe, Mn, Ni, Cu, Ti, Zn, Sc and V.
  • A is a mixture of one or more of the alkaline earth metal elements Ca, Sr, and Ba
  • B is a mixture of one or more of the transition metal elements Co, Fe, Mn.
  • A is an alkaline earth metal element Sr
  • B is a transition metal element Co
  • x is 1-3
  • y is 0-3.
  • a solid fuel cell comprising an anode, a cathode spaced apart from the anode, and a solid electrolyte disposed between the anode and the cathode, the solid electrolyte being a hydrogen-containing transition metal oxide as described above Things.
  • the application provides a hydrogen-containing transition metal oxide and a preparation method thereof, and a solid fuel cell.
  • the hydrogen content in the hydrogen-containing transition metal oxide is 0-3.
  • the ionic conductance of the hydrogen-containing transition metal oxide is 10 -1 -10 -2 S ⁇ cm -1 , and the electron conductivity of the hydrogen-containing transition metal oxide is four orders of magnitude lower than that of the ion conductance.
  • the method for preparing a hydrogen-containing transition metal oxide generates hydrogen radicals by a hydrogen-containing reaction gas under the action of a metal catalyst. The hydrogen radical is diffused into the transition metal oxide to obtain the hydrogen-containing transition metal oxide.
  • the hydrogen-containing transition metal oxide has higher ionic conductance and lower electronic conductance than the prior art and is capable of operating at lower temperature intervals.
  • the present application also provides a solid fuel cell using the above hydrogen-containing transition metal oxide as a solid electrolyte.
  • the solid fuel cell has a lower operating temperature range, as well as higher ion transport capacity and better insulating properties, making the solid fuel cell more widely applicable.
  • FIG. 1 is a flow chart of a method for preparing a hydrogen-containing transition metal oxide provided by an embodiment of the present application
  • FIG. 2a is a schematic view showing a catalytic hydrogenation reaction in a method for preparing a hydrogen-containing transition metal oxide according to an embodiment of the present application
  • 2b is an evolution diagram of an in-situ X-ray diffraction peak of a hydrogen-containing transition metal oxide (008) crystal face with temperature in the preparation process of the preparation method provided by the embodiment of the present application;
  • FIG. 3 is a structural characterization diagram of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application;
  • 5a is an absorption spectrum of an L-absorbing edge of a hydrogen-containing transition metal oxide Co prepared by the preparation method according to an embodiment of the present application;
  • 5b is an absorption spectrum of a K-absorbing edge of a hydrogen-containing transition metal oxide O prepared by the preparation method provided by the embodiment of the present application;
  • 6a is a magnetic field intensity dependence characteristic curve of a magnetization transition of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application;
  • 6b is a temperature-dependent characteristic curve of magnetization of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application;
  • 8a is a Nyquist curve of an impedance spectrum measured by a hydrogen-containing transition metal oxide prepared by a preparation method according to an embodiment of the present invention at different temperatures;
  • 8b is an ion conductance of a hydrogen-containing transition metal oxide prepared by the preparation method according to an embodiment of the present invention at different temperatures;
  • FIG. 10 is a graph showing the impedance spectrum of a hydrogen-containing transition metal oxide prepared by the preparation method according to an embodiment of the present application at different temperatures. The relationship between the imaginary part and the test frequency;
  • 11 is a temperature dependence comparison diagram of ionic conductance of a hydrogen-containing transition metal oxide prepared by a preparation method according to an embodiment of the present application and other electronic electrolytes, and its own electronic conductance;
  • FIG. 12 is a schematic structural diagram of a solid fuel cell according to an embodiment of the present application.
  • an embodiment of the present application provides a method for preparing a hydrogen-containing transition metal oxide, comprising:
  • A is one or more of an alkaline earth metal element and a rare earth metal element
  • B is one or more of transition metal elements
  • x is greater than Equal to 2 and less than or equal to 3;
  • the hydrogen-containing reaction gas generates hydrogen radicals under the action of the metal catalyst, and the hydrogen radicals are diffused into the transition metal oxide to obtain the hydrogen-containing transition metal oxide.
  • A is one or more of an alkaline earth metal and a transition group element
  • B is one of transition metal elements Co, Cr, Fe, Mn, Ni, Cu, Ti, Zn, Sc, and V. Or a variety.
  • the alkaline earth metal includes Be, Mg, Ca, Sr, Ba.
  • the rare earth metal element includes one or more of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb.
  • A is a mixture of one or more of the alkaline earth metal elements Ca, Sr, and Ba
  • B is a mixture of one or more of the transition metal elements Co, Fe, Mn.
  • the structure of the transition metal oxide having the structural formula of ABO x is not limited, and may be a film, a powder, a body material, a nano particle or a composite material with other materials.
  • the transition metal oxide of the formula ABO x is a thin film. It can be understood that the method for preparing the transition metal oxide as a film is not limited and can be prepared by various methods.
  • the S100 includes:
  • the substrate is not limited and may be one of a ceramic substrate, a silicon substrate, a glass substrate, a metal substrate, or a polymer substrate, as long as a substrate that can be used for film formation can be applied to the S110.
  • the method of forming the thin film of the transition metal oxide of the formula ABO x is not limited, and may be various film forming methods such as ion sputtering, chemical vapor deposition, magnetron sputtering, and gel method. , laser pulse deposition, etc.
  • the S120 is epitaxially grown on the substrate by a method of pulsed laser deposition to obtain the transition metal oxide film.
  • the specific form of the metal catalyst is not limited as long as it can catalyze the decomposition of hydrogen to generate hydrogen radicals.
  • the material of the metal catalyst may be various metals such as platinum, palladium, gold, silver or aluminum.
  • the metal catalyst may be platinum or palladium.
  • the specific form of the metal catalyst is not limited, and the metal catalyst may be a nano thin film of a metal, a nanoparticle or a strip electrode. The metal catalyst is in contact with the surface of the transition metal oxide to facilitate insertion of the hydrogen radical into the transition metal oxide.
  • S300 includes:
  • the specific form of the reaction chamber is not limited as long as various reaction conditions for preparing the hydrogen-containing transition metal oxide can be satisfied.
  • the reaction chamber is a sphere having an opening for taking a test sample.
  • the reaction chamber also has a charging and discharging port, an observation window, a heating device and a vacuuming device.
  • the hydrogen atmosphere may be created by introducing a hydrogen-containing reaction gas into the reaction chamber.
  • the hydrogen-containing reaction gas is charged into the reaction chamber, and the reaction chamber can maintain a dynamically balanced pressure.
  • the hydrogen-containing reaction gas may be pure hydrogen. For safety reasons and to isolate oxygen from the air, a slow release gas can be mixed in the hydrogen.
  • the hydrogen gas that is introduced may also be a mixed gas of different ratios of hydrogen gas and slow-release gas.
  • the sustained release gas may be nitrogen, helium, neon, argon, helium, neon or xenon.
  • the volume content of the hydrogen gas is 3% to 100%.
  • the sustained release gas is selected from argon.
  • a mixed gas of hydrogen gas and argon in a volume ratio of 5:95 is used.
  • the S400 includes: at normal room temperature, hydrogen can react to the transition metal under the action of the catalyst.
  • the oxide is hydrogenated, but in order to accelerate the hydrogenation rate, the system is generally heated at a low temperature. Heating the reaction chamber raises the temperature of the reaction chamber to raise the temperature of the hydrogen atmosphere. In the heating process, the heating temperature is not particularly limited as long as the generation of the hydrogen radicals can be promoted.
  • the hydrogen atmosphere has a temperature ranging from 20 degrees Celsius to 200 degrees Celsius. Preferably, the temperature of the hydrogen atmosphere is 180 degrees Celsius.
  • the method for producing a hydrogen-containing transition metal oxide further includes S500, separating the metal catalyst from the hydrogen-containing transition metal oxide.
  • S500 separating the metal catalyst from the hydrogen-containing transition metal oxide.
  • the catalyst having a loose and mesoporous structure plated on the surface of the metal oxide is separated by ultrasonication.
  • the catalyst on the surface can be removed by adhesion using a polymer having a strong adhesion ability, such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the method of separating the metal catalyst and the hydrogen-containing transition metal oxide is not limited as long as the hydrogen-containing transition metal oxide can be separated and can be successfully realized in the industry.
  • the provided hydrogen-containing transition metal oxide is capable of achieving phase change regulation.
  • the hydrogen-containing transition metal oxide ABO x H y prepared by the method of catalytic hydrogenation has a stable crystal structure at normal temperature.
  • the phase change can be achieved by hydrogenation and hydrogen reduction of the hydrogen-containing transition metal oxide.
  • a transition metal oxide SrCoO 2.5 film is provided.
  • the SrCoO 2.5 film was grown on a (LaAlO 3 ) 0.3 (SrAl 0.5 Ta 0.5 O 3 ) 0.7 (001) substrate, abbreviated as LSAT (001).
  • Metal catalyst Pt nanoparticles are provided. The Pt nanoparticles were placed on the surface of the SrCoO 2.5 film and placed in a reaction chamber.
  • the reaction chamber was filled with a mixed gas of hydrogen gas and argon in a volume ratio of 5:95, and heated to 180 ° C. The hydrogen in the mixed gas generates hydrogen radicals.
  • the hydrogen radicals may diffuse longitudinally and laterally in the SrCoO 2.5 , and the hydrogen-containing transition metal oxide SrCoO 2.5 H y is formed in the intercalation film.
  • the Pt nanoparticles after the reaction were collected and separated from the hydrogen-containing transition metal oxide SrCoO 2.5 H y .
  • the hydrogen-containing transition metal oxide can also be prepared by a method of adding an ionic liquid to a gate voltage.
  • the method of applying a gate voltage to the ionic liquid is to plate an electrode on the surface of the transition metal oxide.
  • the transition metal oxide plated with an electrode is placed in an ionic liquid, and a voltage is applied to the electrode to prepare the hydrogen-containing transition metal oxide.
  • the hydrogen-containing transition metal oxide is prepared by a method of adding an ionic liquid and a gate voltage, and is accompanied by partial ionization of oxygen ions while inserting hydrogen ions. This is a mixing effect, so there is a small amount of oxygen vacancies in the hydrogen-containing transition metal oxide prepared.
  • the hydrogen-containing transition metal oxide prepared by the catalytic hydrogenation method only adds hydrogen ions, thereby avoiding unnecessary extraction of oxygen ions. Therefore, the preparation of the hydrogen-containing transition metal oxide by catalytic hydrogenation has a higher ion conductance and a lower electron conductance.
  • the higher ion conductance will ensure that the hydrogen ions are more easily conducted at low temperatures, thus effectively reducing the operating temperature range of the fuel cell.
  • the lower electronic conductance will effectively prevent the short circuit between the anode and cathode, increasing the energy conversion efficiency of the device. Therefore, the hydrogen-containing transition metal oxide prepared by the method of catalytic hydrogenation can be used as a fuel cell electrolyte to adapt to a low-temperature working environment and has better performance.
  • FIG. 2a is a schematic diagram of a catalytic hydrogenation reaction of a method for preparing a hydrogen-containing transition metal oxide according to an embodiment of the present application. It can be seen that under the action of the catalyst, hydrogen molecules are catalytically decomposed into hydrogen radicals. The hydrogen radical diffuses to the ABO x lattice under a concentration gradient to form the hydrogen-containing transition metal oxide. The hydrogen radical forms H ions after entering the ABO X lattice. Due to the concentration difference, the H ions also undergo a diffusion motion in the ABO X lattice. The H ions combine with the O ions in the ABO X lattice to form an OH bond during the diffusion motion.
  • 2b is a real-time evolution diagram of the in-situ X-ray diffraction of the (008) crystal plane of the hydrogen-containing transition metal oxide with temperature during the preparation process using the preparation method provided by the embodiment of the present application. It can also be seen from FIG. 2b that after the hydrogen radical enters the ABO x lattice, the lattice of the hydrogen-containing transition metal oxide changes greatly, thereby further promoting the hydrogen radical. Continue to spread.
  • the oxygen atom vacancies also provide a channel for the continued diffusion of the H ions.
  • a hydrogen-containing transition metal oxide prepared by adding a gate voltage by an ionic liquid is used.
  • FIG. 3 is a structural diagram of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application. It can be seen from FIG. 3 that after the catalytic hydrogenation, the X-ray diffraction peak position of the corresponding crystal plane of the hydrogen-containing transition metal oxide is greatly changed, but is caused by the periodic arrangement of tetrahedron and octahedron. Superstructure diffraction peaks still exist.
  • the c-direction lattice constant of the ruthenium cube of the hydrogen-containing transition metal oxide is from Increase to The crystal lattice has a 7.3% expansion. The increase in the lattice constant indicates that more hydrogen radicals are inserted into the ABO x lattice.
  • the hydrogen radical forms H ions after entering the ABO X lattice.
  • the increase in the c-direction lattice constant directly brings about an increase in the volume of the ABO x lattice.
  • the increase in the volume of the ABO x lattice is more favorable for the conductance of the H ions.
  • FIG. 4 is a representation of the H content in the hydrogen-containing transition metal oxide film prepared by the preparation method provided by the embodiment of the present application.
  • a method of secondary ion mass spectrometry (Secondary Ion Mass Spectroscopy) is used in combination with a reference sample having a known concentration (the reference sample is an oxide of silicon ion implanted with hydrogen ions) to the hydrogen-containing transition metal oxide film.
  • the H content in the analysis was quantitatively analyzed.
  • the ordinate on the left in Figure 4 is the nominal H ion concentration, and the ordinate on the right is the secondary ion intensity of the other atoms.
  • the interface identified in Figure 4 is the interface formed between the LSAT (001) substrate and the hydrogen-containing transition metal oxide ABO x H y , and it can be seen that either H ions or other ions are apparent here. Mutation.
  • the hydrogen-containing transition metal oxide ABO x H y has a ⁇ cubic lattice density of 1.57 ⁇ 10 22 /cm -3 , and the measured average density of hydrogen atoms is 4.7 ⁇ 10 22 /cm -3 . Therefore, the ratio of Co and H atoms in the film was 1:3.
  • consistent results were obtained by repeated experimental measurements, indicating that a large amount of hydrogen was present in the film. Further, in the hydrogen-containing transition metal oxide ABO x H y system formed, the amount of hydrogen content is positively correlated with the degree of increase in lattice constant.
  • FIG. 5a is an absorption spectrum of an L-absorbing edge of a hydrogen-containing transition metal oxide Co prepared by the preparation method according to an embodiment of the present application. It can be seen from Fig. 5a that the absorption edge of Co has obviously shifted to low energy, indicating that the Co ion has changed from Co 3+ to Co 2+ , and the valence of Co ion caused by the insertion of H ions into the SrCoO 2.5 lattice is reduced. Consistent.
  • FIG. 5b is an absorption spectrum of a K-absorbing edge of a hydrogen-containing transition metal oxide O prepared by the preparation method provided by the embodiment of the present application.
  • FIG. 6a is a magnetic field intensity dependence characteristic curve of the magnetization of the hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application.
  • FIG. 6b is a temperature-dependent characteristic curve of magnetization of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application. It can be seen from Figures 6a and 6b that the transition of the ABO x from antiferromagnetic to ferromagnetic occurs after catalytic hydrogenation.
  • the hydrogen-containing transition metal oxide prepared by catalytic hydrogenation has a higher saturation magnetic moment than the hydrogen-containing transition metal oxide prepared by the ionic liquid plus gate voltage. It is indicated that the hydrogenation-containing transition metal oxide ABO x H y prepared by the method of ionic liquid plus gate voltage is more hydrogenated by the method of catalytic hydrogenation provided by the present application.
  • FIG. 7 is a modulation result of a DC resistance corresponding to a hydrogenation and dehydrogenation process in a preparation process according to an embodiment of the present application.
  • the hydrogen-containing transition metal oxide gradually forms an insertion of hydrogen ions in an atmosphere of a mixed gas of hydrogen and argon, so that the DC resistance of the hydrogen-containing transition metal oxide gradually becomes large.
  • DC resistance can vary by up to 4 orders of magnitude.
  • the above-mentioned DC resistance has a variation of up to 4 orders of magnitude indicating that the electron conductance becomes small from the originally grown ABO x film to the hydrogenated transition metal oxide film thereof. Therefore, the hydrogen-containing transition metal oxide obtained by the above method has very low electron conductance.
  • the hydrogen-containing transition metal oxide when used as an electrolyte of a solid fuel cell, leakage current generation between the cathode and the anode can be effectively prevented, and the insulation property is better. Further, after the atmosphere of the mixed gas of hydrogen and argon is changed to air, the hydrogen-containing transition metal oxide precipitates hydrogen, and the DC resistance is accordingly lowered. At the same time, the phase transition of the hydrogen-containing transition metal oxide is understood to be changed from ABO x H y to ABO 2.5 .
  • FIG. 8 a is a Nyquist curve corresponding to impedance spectrum measurement of a hydrogen-containing transition metal oxide prepared by a preparation method according to an embodiment of the present application at different temperatures.
  • the curve in Figure 8a illustrates that the ionic conductance of the hydrogen-containing transition metal oxide gradually increases as the temperature increases.
  • FIG. 9 is an equivalent circuit corresponding to the impedance spectrum measurement of the hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application.
  • the CPE in Fig. 9 means Constant phase elment, which is commonly used in the description of the equivalent circuit of the AC impedance spectrum, which can be regarded as a capacitor.
  • FIG. 8b is a corresponding ionic conductance of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the preparation method of the present invention at different temperatures.
  • Figure 8b is a representation of Figure 8a, that is, the value of the ion conductance can be derived from Figure 8b.
  • the hydrogen ion-conducting activation energy of the hydrogen-containing transition metal oxide is about 0.3 eV, which is much smaller than the activation energy corresponding to oxygen ion conduction, indicating superior ion conductivity in the material system.
  • FIG. 10 is a graph showing the relationship between the imaginary part of the impedance and the test frequency in the impedance spectrum measurement of the hydrogen-containing transition metal oxide prepared by the preparation method according to the embodiment of the present application.
  • the data has only a single peak in the high frequency region, indicating that only one ion is involved in conduction. And its symmetrical peak shape indicates no disturbance caused by the inductive effect.
  • both electronic conductance and ion conductance are reflected.
  • the single peak of the data in the high frequency region indicates that only one ion (hydrogen ion) participates in conduction, and its good peak shape symmetry also excludes interference from other effects such as inductive effects.
  • the hydrogen-containing transition metal oxide ion conductance can be obtained directly from the impedance spectrum of FIG. 10 by the impedance value corresponding to the semi-circular arc.
  • FIG. 11 is a temperature dependence comparison diagram of ionic conductance and electronic conductance of a hydrogen-containing transition metal oxide prepared by the preparation method provided by the embodiment of the present application and ion conductivity of other different electrolytes. It can be seen from Figure 11 that the ABO x catalytic hydrogenation product has significantly superior hydrogen ion conductance in the low temperature region (less than 200 degrees Celsius). Moreover, the electronic conductance of the ABO x catalytic hydrogenation product is at least 3-4 orders of magnitude smaller than the ion conductance measured by the AC impedance spectroscopy.
  • the ABO x catalytic hydrogenation product acts as an electrolyte to allow ions to pass through, that is, to induce hydrogen ions (protons), and at the same time effectively prevent electrons from passing through and prevent leakage current. Therefore, the hydrogen-containing transition metal oxide prepared by the method of the present application is used as an electrolyte, and the performance of the solid fuel cell is more excellent. It can also be seen from Figure 11 that the ionic conductance of the ABO x catalyzed hydrogenation product is comparable to the ionic conductance of the ABO x ionic liquid plus the hydrogenation product of the gate voltage.
  • the electronic conductance of the ABO x catalyzed hydrogenation product is three orders of magnitude smaller than the electron conductance of the ABO x ionic liquid plus gate voltage hydrogenation product. Therefore, the hydrogen-containing transition metal oxide prepared by the method of catalytic hydrogenation provided by the present application has high ionic conductance at a low temperature, and has low electronic conductance, and simultaneously satisfies two necessary requirements for electrolytes in a fuel cell. condition.
  • an embodiment of the present application provides a solid fuel cell 100 including a cathode 110 , an anode 130 , and a solid electrolyte 120 .
  • the solid electrolyte 120 is disposed between the cathode 110 and the anode 130.
  • the anode 110 and the cathode 130 can be the anode and cathode of any known solid fuel cell 100.
  • the solid electrolyte 120 has a lower operating temperature and can operate below 200 degrees Celsius.
  • the solid electrolyte 120 is a hydrogen-containing transition metal oxide.
  • the structural formula of the hydrogen-containing transition metal oxide is ABO x H y , wherein A is one or more of an alkaline earth metal and a rare earth element, B is a transition metal element, and x has a value ranging from 1-3. The value of y ranges from 0 to 3.
  • a and B In ABO x H y the ratio of A to B is not necessarily strictly 1:1, and may be deviated due to the presence of vacancies and interstitial atoms that are ubiquitous in the oxide. Therefore, the hydrogen-containing transition metal oxide having a ratio of A to B of approximately 1:1 is within the scope of the present application.
  • the alkaline earth metal includes Be, Mg, Ca, Sr, Ba.
  • the rare earth metal element includes La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb.
  • the transition group element includes one or more of Co, Cr, Fe, Mn, Ni, Cu, Ti, Zn, Sc, and V.
  • A is a mixture of one or more of the alkaline earth metal elements Ca, Sr, and Ba
  • B is a mixture of one or more of the transition metal elements Co, Fe, Mn. It can be understood that A can also be an alloy of an alkaline earth metal and a rare earth metal, and B can also be an alloy of a transition metal and a main group metal.
  • the hydrogen-containing transition metal oxide is used as the solid electrolyte 120.
  • Catalytic hydrogenation Method for preparing the hydrogen-containing transition metal oxide since only hydrogen ions are added without extraction of oxygen ions, the prepared hydrogen-containing transition metal oxide has lower ion conductivity and lower Electronic conductance. Since the hydrogen-containing transition metal oxide has a high ionic conductance, hydrogen ions can be more easily conducted in the dielectric, thereby effectively increasing the reaction efficiency. Since the hydrogen-containing transition metal oxide has a lower electronic conductance, the generation of leakage currents of the cathode and the yang can be prevented, the insulation performance of the solid fuel cell 100 is better, and the loss of the energy conversion process is avoided.
  • the hydrogen-containing transition metal oxide can react below 200 degrees Celsius, the operating temperature of the solid fuel cell 100 can be greatly reduced, thereby reducing the cost of auxiliary implementation such as heat insulation in a conventional fuel cell.
  • low-temperature fuel cells have higher energy conversion efficiency than high- and medium-temperature fuel cells.
  • the lower operating temperature can further exploit the range of use of the fuel cell 100.
  • the hydrogen-containing transition metal oxide prepared by the method of catalytic hydrogenation is used for the electrolyte of a solid fuel cell, and the overall performance of the solid fuel cell is greatly improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

一种含氢过渡金属氧化物的制备方法。包括以下步骤:提供一种结构式为ABO x的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,x大于等于2且小于等于3;提供金属催化剂,并使所述金属催化剂与所述过渡金属氧化物的表面接触;将所述过渡金属氧化物与所述金属催化剂放置于含氢反应气体中;所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。一种含氢过渡金属氧化物材料及其制备方法,以及该含氢过渡金属氧化物材料作为电解质的固态燃料电池。

Description

含氢过渡金属氧化物及其制备方法、固态燃料电池
相关申请
本申请要求2017年1月3日申请的,申请号为201710003203X,名称为“含氢过渡金属氧化物及其制备方法、固态燃料电池”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及材料和电池技术领域,尤其涉及一种含氢过渡金属氧化物及其制备方法、固态燃料电池。
背景技术
固态氧化物燃料电池(SOFC)是一种能量转换装置,它通过让可燃性气体(例如氢、一氧化碳等)与氧化剂(例如氧)经氧化物电解质发生电化学反应,从而产生直流电。传统固态氧化物燃料电池通常具有较高的工作温度,一般大于600摄氏度,这是由于固态氧化物燃料电池中电解质在低温区较弱的离子电导等材料特性的限制。为了维持较好的离子电导,很难将固态氧化物燃料电池的工作温度进一步降低。
当前,人们尝试通过各种方法来进一步提高固体氧化物电解质的离子电导,但所获得的离子电导和工作温度仍然不能满足实际应用中低温(室温到200摄氏度)燃料电池发展的需求。此外,虽然很多电解质体系中存在着比较高的离子电导,但是同时也具有较高的电子电导,这会引起两个工作电极之间很大的漏电流,严重影响燃料电池的性能。因此,寻找同时具有较高离子电导和较低的电子电导以及具有较低工作温度的电解质材料仍然是目前相关领域发展亟待解决的关键问题。
发明内容
基于此,有必要针对上述技术问题,提供一种在较低的工作温度下,具有较高的离子电导和较低电子电导的固态燃料电池电解质材料。
本申请提供了一种含氢过渡金属氧化物及其制备方法、固态燃料电池。
一种含氢过渡金属氧化物的制备方法,所述方法包括:
S100,提供一种结构式为ABOx的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,x大于等于2且小于等于3;
S200,提供金属催化剂,并使所述金属催化剂与所述过渡金属氧化物的表面接触;
S300,将所述过渡金属氧化物与所述金属催化剂放置于含氢反应气体中;
S400,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。
在一个实施例中,所述S100包括:
S110,提供基底,所述基底包括陶瓷基底、硅基底、玻璃基底、金属基底或者聚合物基底中的一种;
S120,在所述基底表面沉积形成所述过渡金属氧化物薄膜。
在一个实施例中,所述S200中的所述金属催化剂为铂或钯。
在一个实施例中,所述S300包括:
S310,提供反应腔,并将所述过渡金属氧化物与所述金属催化剂放置于所述反应腔中;
S320,向所述反应腔中通入含氢反应气体,使得所述过渡金属氧化物与所述金属催化剂置于所述含氢反应气体氛围中。
在一个实施例中,所述S320中,所述含氢反应气体为氢气。
在一个实施例中,所述S320中,所述含氢反应气体为氢气和缓释气体的混合气体,所述缓释气体为氮气或惰性气体。
在一个实施例中,所述S320中,所述氢气与所述缓释气体的混合气体中,所述氢气的体积含量是3%-100%。
在一个实施例中,所述S400进一步包括:对所述反应腔内的所述过渡金属氧化物、所述金属催化剂及所述含氢反应气体的反应体系升温,所述反应体系的温度范围为20摄氏度至200摄氏度。
在一个实施例中,所述含氢过渡金属氧化物的制备方法进一步包括:S500,分离所述金 属催化剂与所述含氢过渡金属氧化物,所述分离方法包括超声分离法和聚合物粘连法。
一种含氢过渡金属氧化物,所述含氢过渡金属氧化物的结构式为ABOxHy,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3,所述含氢过渡金属氧化物在20摄氏度到200摄氏度时,离子电导为10-1-10-2S·cm-1,所述含氢过渡金属氧化物的电子电导比离子电导低四个数量级。
在一个实施例中,所述含氢过渡金属氧化物的离子电导高于10-2S·cm-1,电子电导低于10-5S·cm-1
在一个实施例中,x为1-3,y为2.5-3,所述含氢过渡金属氧化物的电子电导为10-6S·cm-1
在一个实施例中,所述碱土金属元素包括Be、Mg、Ca、Sr和Ba,所述稀土金属元素包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb,所述过渡族金属元素包括Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc和V。
在一个实施例中,A为碱土金属元素Ca、Sr和Ba中的一种或者几种的混合物,B为过渡金属元素Co,Fe,Mn中的一种或者几种的混合物。
在一个实施例中,A为碱土金属元素Sr,B为过渡族金属元素Co,x为1-3,y为0-3。
一种固态燃料电池,包括阳极、与所述阳极间隔设置的阴极,以及设置于所述阳极和所述阴极之间的固态电解质,所述固态电解质为上述任一所述的含氢过渡金属氧化物。
本申请提供了一种含氢过渡金属氧化物以及制备方法、固态燃料电池。所述含氢过渡金属氧化物中的氢含量为0-3。所述含氢过渡金属氧化物的离子电导为10-1-10-2S·cm-1,所述含氢过渡金属氧化物的电子电导比离子电导低四个数量级。所述含氢过渡金属氧化物的制备方法,通过含氢反应气体在金属催化剂的作用下产生氢自由基。所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。与现有技术相比所述含氢过渡金属氧化物具有较高的离子电导和较低的电子电导,且能够在较低的温度区间工作。另外,本申请还提供了一种利用上述含氢过渡金属氧化物作为固态电解质的固态燃料电池。所述固态燃料电池具有较低的工作温度区间,以及更高的离子输运能力和更好的绝缘性能,使固态燃料电池适用范围更加广范。
附图说明
图1为本申请实施例提供的含氢过渡金属氧化物制备方法的流程图;
图2a为本申请实施例提供的含氢过渡金属氧化物的制备方法中发生催化氢化反应的示意图;
图2b为本申请实施例提供的制备方法制备过程中,含氢过渡金属氧化物(008)晶面原位X射线衍射峰随温度的演化图;
图3为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的结构表征图;
图4为本申请实施例提供的制备方法制备的含氢过渡金属氧化物薄膜中的H含量的标定;
图5a为本申请实施例提供的制备方法制备的含氢过渡金属氧化物Co的L吸收边的吸收谱;
图5b为本申请实施例提供的制备方法制备的含氢过渡金属氧化物O的K吸收边的吸收谱;
图6a为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的磁化强度的磁场强度依赖特征曲线;
图6b为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的磁化强度的温度依赖特征曲线;
图7为本申请实施例提供的制备方法制备过程中加氢和去氢过程所对应的直流电阻的调制;
图8a为本申请实施例提供的制备方法制备的含氢过渡金属氧化物在不同温度下测量的阻抗谱的尼奎斯特曲线;
图8b为本申请实施例提供的制备方法制备的含氢过渡金属氧化物在不同温度下的离子电导;
图9为本申请实施例提供的制备方法制备的含氢过渡金属氧化物在阻抗谱测量中所对应的等效电路;
图10为本申请实施例提供的制备方法制备的含氢过渡金属氧化物在不同温度下,阻抗谱 虚部和测试频率的关系曲线;
图11为本申请实施例提供的制备方法制备的含氢过渡金属氧化物与其它不同电解质的离子电导以及其自身的电子电导的温度依赖对比图;
图12为本申请实施例提供的固态燃料电池的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本申请含氢过渡金属氧化物及其制备方法、固态燃料电池进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参见图1,本申请实施例提供一种含氢过渡金属氧化物的制备方法,包括:
S100,提供一种结构式为ABOx的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,x大于等于2且小于等于3;
S200,提供金属催化剂,并使所述金属催化剂与所述过渡金属氧化物的表面接触;
S300,将所述过渡金属氧化物与所述金属催化剂放置于含氢反应气体中;
S400,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。
所述S100中,A为碱土金属和过渡族元素中的一种或多种,B为过渡族金属元素Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc、V中的一种或多种。所述碱土金属包括Be、Mg、Ca、Sr、Ba。所述稀土金属元素包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb中的一种或多种。在一个实施例中,A为碱土金属元素Ca、Sr和Ba中的一种或者几种的混合物,B为过渡金属元素Co,Fe,Mn中的一种或者几种的混合物。所述结构式为ABOx的过渡金属氧化物的结构不限,可以是薄膜、粉末、体材、纳米颗粒或者与其他材料的复合材料。在一个实施例中,所述结构式为ABOx的过渡金属氧化物为薄膜。可以理解所述过渡金属氧化物为薄膜的制备方法不限,可以采用各种方法制备。
在一个实施例中,所述S100包括:
S110,提供基底;
S120,在所述基底表面沉积形成结构式为ABOx的过渡金属氧化物薄膜。
所述基底不限,可以为陶瓷基底、硅基底、玻璃基底、金属基底或者聚合物基底中的一种,只要可以用于成膜的基底都可以应用于所述S110中。进一步地,形成所述结构式为ABOx的过渡金属氧化物的薄膜的方法不限,可以是各种成膜方法,如离子溅射法、化学气相沉积法、磁控溅射法、凝胶法、激光脉冲沉积等。在一个实施例中,所述S120通过脉冲激光沉积的方法在所述基底上外延生长获得所述过渡金属氧化物薄膜。
所述S200中,所述金属催化剂的具体形式并不限制,只要能催化氢气分解产生氢自由基即可。所述金属催化剂的材质可以是各种金属,如铂、钯、金、银或铝。优选地,所述金属催化剂可以是铂或钯。所述金属催化剂的具体形式并不限制,所述金属催化剂可以是金属的纳米薄膜、纳米颗粒或条状电极。所述金属催化剂与所述过渡金属氧化物的表面接触,能够促进所述氢自由基插入所述过渡金属氧化物。
在一个实施例中,S300包括:
S310,提供反应腔,并将所述过渡金属氧化物与所述金属催化剂混合后放置于所述反应腔中;
S320,将反应腔中通入含氢反应气体,使得所述过渡金属氧化物与所述金属催化剂置于所述含氢反应气体氛围中。
所述S310中,所述反应腔的具体形式不限,只要能够满足制备所述含氢过渡金属氧化物的而各种反应条件即可。在一个实施例中,所述反应腔为球体,具有开口以便放取试验样品。所述反应腔还具有充、放气口,观察窗,加热装置以及抽真空装置。所述氢气氛围的营造可以是向所述反应腔中通入含氢反应气体。所述含氢反应气体的充入所述反应腔体,所述反应腔可以保持动态平衡的压强。所述含氢反应气体可以为纯氢气。为了安全起见和隔绝空气中的氧气,可以在氢气中混合缓释气体。因此,通入的所述氢气,也可以是氢气和缓释气体不同比例的混合气体。所述缓释气体可以为氮气、氦气、氖气、氩气、氪气、氙气、氡气。所述氢气与所述缓释气体的混合气体中,所述氢气的体积含量是3%-100%。在一个实施例中,所述缓释气体选择氩气。优选地,采用氢气和氩气的体积比为5:95的混合气体。
在一个实施例中,所述S400包括:一般室温下氢气在催化剂的作用下就可以对过渡金属 氧化物进行氢化,但为了加快氢化速率,一般对其体系进行低温加热。加热所述反应腔使所述反应腔的温度升高以使所述氢气氛围的温度升高。所述升温过程,对于加热温度并不作具体限定只要能促进所述氢自由基的产生即可。在一个实施例中,所述氢气氛围的温度范围为20摄氏度至200摄氏度。优选地,所述氢气氛围的温度是180摄氏度。
在一个实施例中,所述含氢过渡金属氧化物的制备方法,进一步包括S500,分离所述金属催化剂与所述含氢过渡金属氧化物。可以理解,将所述金属催化剂与所述含氢过渡金属氧化物分离的方法有多种。如:利用超声的方法将镀在金属氧化物表面的具有疏松和介孔结构的催化剂进行分离。或是利用具有很强粘附能力的聚合物,如聚二甲基硅氧烷(PDMS)将表面的催化剂粘附去除。分离所述金属催化剂与所述含氢过渡金属氧化物的方法并不限制,只要能够使所述含氢过渡金属氧化物能够分离并在产业中能够成功实现即可。
在一个实施例中,提供的含氢过渡金属氧化物能够实现相变调控。采用催化氢化的方法制备的所述含氢过渡金属氧化物ABOxHy在常温下具有稳定的晶体结构。可以通过对所述含氢过渡金属氧化物加氢和减氢实现相变。
在一个实施例中,提供一种过渡金属氧化物SrCoO2.5薄膜。所述SrCoO2.5薄膜为生长在(LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7(001)基底,简称为LSAT(001)。提供金属催化剂Pt纳米颗粒。将所述Pt纳米颗粒放置于所述SrCoO2.5薄膜的表面,一并放入反应腔体中。向所述反应腔体中充入氢气与氩气的体积比为5:95的混合气体,并加热升温至180摄氏度。所述混合气体中的氢气产生氢自由基。所述氢自由基会在所述SrCoO2.5中发生纵向和横向扩散,插入薄膜中形成所述含氢过渡金属氧化物SrCoO2.5Hy。将反应后的所述Pt纳米颗粒收集,与所述含氢过渡金属氧化物SrCoO2.5Hy分离。
采用离子液体加栅极电压的方法也可以制备所述含氢过渡金属氧化物。所述离子液体加栅极电压的方法就是在过渡金属氧化物表面镀上电极。并将镀有电极的所述过渡金属氧化物置于离子液体中,并在所述电极加电压,以制备所述含氢过渡金属氧化物。采用离子液体加栅极电压的方法制备所述含氢过渡金属氧化物,在插入氢离子的同时,也伴随着部分氧离子的抽离。这是一个混合效应,所以制备的所述含氢过渡金属氧化物中会有少量氧空位的存在。这些氧空位贡献电子,从而导致了制备的所述含氢过渡金属氧化物具有较高的电子电导。而 采用催化氢化的方法制备的所述含氢过渡金属氧化物,只是加入氢离子,避免了不必要的氧离子的抽出。所以采用催化氢化的方法制备所述含氢过渡金属氧化物在具有较高离子电导的同时,也具有较低的电子电导。而较高的离子电导将可以保证使氢离子在低温下更容易传导,从而有效的降低了燃料电池的工作温度区间。而较低的电子电导,将有效的防止了阴阳极之间的短路,增加了器件的能量转换效率。因此,采用催化氢化的方法制备的所述含氢过渡金属氧化物作为燃料电池的电解质能够适应低温的工作环境,具有更好的性能。
请参见图2,图2a为本申请实施例提供的含氢过渡金属氧化物的制备方法发生催化氢化反应的示意图。图中可以看出,在催化剂的作用下,氢气分子会被催化分解为氢自由基。所述氢自由基在浓度梯度作用下向ABOx晶格扩散,进而形成所述含氢过渡金属氧化物。所述氢自由基在进入所述ABOX晶格后,形成H离子。由于存在浓度差,所述H离子在所述ABOX晶格同样会进行扩散运动。所述H离子在扩散运动中会和所述ABOX晶格中的O离子结合形成O-H键。由于所述H离子在所述ABOx晶格中的扩散势垒非常小,因此,所述H离子在所述ABOx晶格中会有很高的扩散系数。这也导致了形成的所述含氢过渡金属氧化物具有较高的离子电导。图2b为利用本申请实施例提供的制备方法制备过程中,含氢过渡金属氧化物的(008)晶面原位X射线衍射随温度的实时演化图。从图2b中也可以看到,所述氢自由基进入所述ABOx晶格后,所述含氢过渡金属氧化物的晶格会发生很大的变化,从而进一步促进所述氢自由基的继续扩散。同时,在所述含氢过渡金属氧化物的结构中,存在有序排列的氧原子空位,所述氧原子空位也会为H离子的继续扩散提供通道。另外,相比于通过离子液体加栅电压制备的含氢过渡金属氧化物。本申请的采用催化加氢的方法制备的所述含氢过渡金属氧化物中,没有额外的氧空位产生所导致电子掺杂效应。
请参见图3,图3为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的结构表征图。从图3中可以看到,在催化氢化后,形成的所述含氢过渡金属氧化物对应晶面的X射线衍射峰位发生了很大的变化,但由四面体和八面体周期排列引起的超结构衍射峰依然存在。所述含氢过渡金属氧化物的赝立方的c方向晶格常数从
Figure PCTCN2017113205-appb-000001
增加到
Figure PCTCN2017113205-appb-000002
晶格有7.3%的膨胀。所述晶格常数的增大说明有更多的氢自由基插入到所述的ABOx晶格中。所述氢自由基在进入所述ABOX晶格后,形成H离子。所述c方向晶格常数的增大直接带来了所述ABOx 晶格体积的增大。所述ABOx晶格体积的增大则更有利于H离子的电导。
请参阅图4,图4为本申请实施例提供的制备方法制备的含氢过渡金属氧化物薄膜中的H含量的表征。本实施例中,采用二次离子质谱(Secondary Ion Mass Spectroscopy)的方法并结合具有已知浓度的参考样品(参考样品为氢离子注入的硅的氧化物)对所述含氢过渡金属氧化物薄膜中的H含量进行了定量的分析。图4中左边的纵坐标为标定的H离子浓度,右边的纵坐标为其它原子的二次离子强度。此外,图4中标识的界面为LSAT(001)基底和所述含氢过渡金属氧化物ABOxHy之间形成的界面,可以看到无论是H离子还是其它离子,都在此处有一明显的突变。根据测量结果,所述含氢过渡金属氧化物ABOxHy的赝立方晶格密度为1.57×1022/cm-3,而测量到的氢原子的平均密度为4.7×1022/cm-3,因此得到薄膜中Co和H原子的比例为1:3。另外,通过多次重复实验测量,都得到一致的结果,说明薄膜中已有大量的氢存在。此外在形成的所述含氢过渡金属氧化物ABOxHy体系中,氢含量的多少与晶格常数的增加程度成正相关。
请参见图5,图5a为本申请实施例提供的制备方法制备的含氢过渡金属氧化物Co的L吸收边的吸收谱。图5a可以看到Co的吸收边已经发生了很明显得向低能量移动,说明Co离子已经由Co3+变到了Co2+,与H离子插入SrCoO2.5晶格中造成的Co离子价态降低相吻合。图5b为本申请实施例提供的制备方法制备的含氢过渡金属氧化物O的K吸收边的吸收谱。对于O的K吸收边,其525-530eV之间的吸收峰在氢化后完全消失,说明氢化作用导致Co-O杂化作用的削弱,使得其带隙增大,电学特性变得更绝缘。同时532.5eV附近出现很强的O-H键对应的吸收峰,则进一步证明了H离子的有效插入。
请参见图6,图6a为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的磁化强度的磁场强度依赖特征曲线。图6b为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的磁化强度的温度依赖特征曲线。由图6a和图6b可以看到所述ABOx在催化氢化后,发生了从反铁磁到铁磁的转变。另外,相比于离子液体加栅电压制备的所述含氢过渡金属氧化物,采用催化加氢的方法制备的所述含氢过渡金属氧化物具有更高的饱和磁矩。说明采用本申请提供的催化加氢的方法,相比离子液体加栅电压的方法制备的所述含氢过渡金属氧化物ABOxHy的氢化程度更强。
请参见图7,图7为本申请实施例提供的制备方法制备过程中加氢和去氢过程所对应的直流电阻的调制结果。图7中可以看到,所述含氢过渡金属氧化物在氢气和氩气混合气体的氛围中逐渐形成氢离子的插入,使得所述含氢过渡金属氧化物的直流电阻逐渐变大。具体的,直流电阻会有高达4个数量级的变化。上述直流电阻有高达4个数量级的变化说明从原来生长的所述ABOx薄膜到其氢化产物所述含氢过渡金属氧化物薄膜后,电子电导会变的很小。因此,上述方法获得的所述含氢过渡金属氧化物具有非常低的电子电导。这样所述含氢过渡金属氧化物在作为固态燃料电池的电解质时,就可以有效防止在阴极和阳极之间的漏电流产生,具有更好的绝缘特性。此外,将氢气和氩气混合气体的氛围换成空气后,所述含氢过渡金属氧化物析出氢,直流电阻会相应降低。于此同时所述含氢过渡金属氧化物发生相变,可以理解为由ABOxHy变为ABO2.5
请参见图8和图9,图8a为本申请实施例提供的制备方法制备的含氢过渡金属氧化物在不同温度下阻抗谱测量所对应的尼奎斯特曲线。图8a中曲线说明随着温度升高,所述含氢过渡金属氧化物的离子电导逐渐升高。图9为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的阻抗谱测量所对应的等效电路。图9中CPE的意思是Constant phase elment,在交流阻抗谱的等效电路的描述中普遍采用此种表示方法,其可以看作一个电容。通过所述等效电路进行拟合,可以得到氢离子在所述含氢过渡金属氧化物中的离子电导。图8b为本申请实施例提供的制备方法制备的含氢过渡金属氧化物不同温度下所对应的离子电导。图8b为图8a的具体体现,即通过图8b可以得出离子电导的数值。图8b可以看到,所述含氢过渡金属氧化物的氢离子传导激活能约为0.3eV,其远小于氧离子传导所对应的激活能,标志着该材料体系中较优的离子传导能力。
请参见图10,图10为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的阻抗谱测量中,阻抗虚部和测试频率的关系曲线。从图10可以看到,数据在高频区只有一个单峰,说明只有一种离子参与传导。并且其对称的峰形表明没有电感效应导致的扰动。在交流阻抗谱的测试中,电子电导和离子电导都会有体现。数据在高频区单峰说明只有一种离子(氢离子)参与传导,而其良好的峰形对称性也排除了其它效应(如电感效应)的干扰。可以直接从图10的阻抗谱中,通过从半圆弧对应的阻抗值得到所述含氢过渡金属氧化物离子电导。
请参见图11,图11为本申请实施例提供的制备方法制备的含氢过渡金属氧化物的离子电导和电子电导以及和其它不同电解质的离子电导的温度依赖对比图。从图11中可以看出ABOx催化氢化产物在低温区(低于200摄氏度)具有显著优异的氢离子电导。并且,ABOx催化氢化产物的电子电导相比交流阻抗谱测量的离子电导小至少3-4个数量级。说明ABOx催化氢化产物作为电解质既可以让离子通过,即导氢离子(质子),同时又可以有效阻止电子的通过,防止漏电流的产生。因此,以本申请的方法制备的含氢过渡金属氧化物作为电解质,固态燃料电池的工作性能会更为优异。从图11中还可以看出,ABOx催化氢化产物的离子电导与ABOx离子液体加栅极电压的氢化产物的离子电导相当。但ABOx催化氢化产物的电子电导比ABOx离子液体加栅极电压的氢化产物的电子电导却小了3个数量级。所以本申请提供的采用催化氢化的方法制备的所述含氢过渡金属氧化物,在低温具有高离子电导的同时,又具有较低的电子电导,同时满足燃料电池中电解质所需要的两个必要条件。
请参见图12,本申请实施例提供一种固态燃料电池100,包括阴极110、阳极130以及固态电解质120。所述固态电解质120设置于所述阴极110与所述阳极130之间。所述阳极110和所述阴极130可以是任何已知的固态燃料电池100的阳极和阴极。所述固态电解质120具有较低的工作温度,可以在200摄氏度以下工作。
所述固态电解质120为一种含氢过渡金属氧化物。所述含氢过渡金属氧化物的结构式为ABOxHy,其中A为碱土金属和稀土族元素中的一种或多种,B为过渡族金属元素,x的取值范围为1-3,y的取值范围为0-3。A与B在ABOxHy中,A和B的比例不一定是严格的1:1,可以因为存在氧化物中普遍存在的空位和填隙原子等而产生偏离。因此,A与B的比例接近1:1的所述含氢过渡金属氧化物均在本申请保护范围之内。所述碱土金属包括Be、Mg、Ca、Sr、Ba。所述稀土金属元素包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb。所述过渡族元素包括Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc、V中的一种或多种。在一个实施例中,A为碱土金属元素Ca、Sr和Ba中的一种或者几种的混合物,B为过渡金属元素Co,Fe,Mn中的一种或者几种的混合物。可以理解,A还可以是碱土金属与稀土金属的合金,B还可以是过渡金属和主族金属的合金。
本实施例中,以所述含氢过渡金属氧化物作为所述固态电解质120。在采用催化氢化的 方法制备所述含氢过渡金属氧化物中,由于只是氢离子的加入,而没有氧离子的抽出,所制备的所述含氢过渡金属氧化物在具有较高离子电导的同时,也具有较低的电子电导。由于所述含氢过渡金属氧化物具有较高的离子电导,使得氢离子能够更容易在电介质中传导,从而有效增加反应效率。由于所述含氢过渡金属氧化物具有较低的电子电导,可以防止阴阳两级漏电流的产生,使所述固态燃料电池100的绝缘性能更好,避免能源转换过程的损耗。由于所述含氢过渡金属氧化物可以在200摄氏度以下发生反应,使所述固态燃料电池100的工作温度可以很大程度的降低,从而降低传统燃料电池中隔热等辅助实施的成本。同时低温燃料电池相比于高、中温燃料电池的能源转换效率更高。同时,较低的工作温度可以进一步开拓燃料电池100的使用范围。总之,采用催化氢化的方法制备的所述含氢过渡金属氧化物用于固体燃料电池的电解质,将使的固体燃料电池的综合性能得到极大的提升。
以上所述实施例仅表达了本申请的几种实施方式,随其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种含氢过渡金属氧化物的制备方法,其特征在于,所述方法包括:
    S100,提供一种结构式为ABOx的过渡金属氧化物,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素中的一种或多种,x大于等于2且小于等于3;
    S200,提供金属催化剂,并使所述金属催化剂与所述过渡金属氧化物的表面接触;
    S300,将所述过渡金属氧化物与所述金属催化剂放置于含氢反应气体中;
    S400,所述含氢反应气体在所述金属催化剂的作用下产生氢自由基,所述氢自由基扩散插入所述过渡金属氧化物中以获得所述含氢过渡金属氧化物。
  2. 如权利要求1所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S100包括:
    S110,提供基底,所述基底包括陶瓷基底、硅基底、玻璃基底、金属基底或者聚合物基底中的一种;
    S120,在所述基底表面沉积形成所述过渡金属氧化物薄膜。
  3. 如权利要求1所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S200中的所述金属催化剂为铂或钯。
  4. 如权利要求1所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S300包括:
    S310,提供反应腔,并将所述过渡金属氧化物与所述金属催化剂放置于所述反应腔中;
    S320,向所述反应腔中通入含氢反应气体,使得所述过渡金属氧化物与所述金属催化剂置于所述含氢反应气体氛围中。
  5. 如权利要求4所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S320中,所述含氢反应气体为氢气。
  6. 如权利要求4所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S320中,所述含氢反应气体为氢气和缓释气体的混合气体,所述缓释气体为氮气或惰性气体。
  7. 如权利要求6所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S320中,所述氢气与所述缓释气体的混合气体中,所述氢气的体积含量是3%-100%。
  8. 如权利要求4所述的含氢过渡金属氧化物的制备方法,其特征在于,所述S400进一步包括:对所述反应腔内的所述过渡金属氧化物、所述金属催化剂及所述含氢反应气体的反 应体系升温,所述反应体系的温度范围为20摄氏度至200摄氏度。
  9. 如权利要求1所述的含氢过渡金属氧化物的制备方法,其特征在于,进一步包括:S500,分离所述金属催化剂与所述含氢过渡金属氧化物,所述分离方法包括超声分离法和聚合物粘连法。
  10. 一种含氢过渡金属氧化物,其特征在于:所述含氢过渡金属氧化物的结构式为ABOxHy,其中,A为碱土金属元素和稀土金属元素中的一种或多种,B为过渡族金属元素的一种或多种,x的取值范围为1-3,y的取值范围为0-3,所述含氢过渡金属氧化物在20摄氏度到200摄氏度时,离子电导为10-1-10-2S·cm-1,所述含氢过渡金属氧化物的电子电导比离子电导低四个数量级。
  11. 如权利要求10所述的含氢过渡金属氧化物,其特征在于:所述含氢过渡金属氧化物的离子电导高于10-2S·cm-1,电子电导低于10-5S·cm-1
  12. 如权利要求10所述的含氢过渡金属氧化物,其特征在于:x为1-3,y为2.5-3,所述含氢过渡金属氧化物的电子电导为10-6S·cm-1
  13. 如权利要求10所述的含氢过渡金属氧化物,其特征在于,所述碱土金属元素包括Be、Mg、Ca、Sr和Ba,所述稀土金属元素包括La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb,所述过渡族金属元素包括Co、Cr、Fe、Mn、Ni、Cu、Ti、Zn、Sc和V。
  14. 如权利要求10所述的含氢过渡金属氧化物,其特征在于,A为碱土金属元素Ca、Sr和Ba中的一种或者几种的混合物,B为过渡金属元素Co,Fe,Mn中的一种或者几种的混合物。
  15. 如权利要求10所述的含氢过渡金属氧化物,其特征在于,A为碱土金属元素Sr,B为过渡族金属元素Co,x为1-3,y为0-3。
  16. 一种固态燃料电池,包括阳极、与所述阳极间隔设置的阴极,以及设置于所述阳极和所述阴极之间的固态电解质,其特征在于,所述固态电解质包括如权利要求10-15中任一项所述的含氢过渡金属氧化物。
PCT/CN2017/113205 2017-01-03 2017-11-27 含氢过渡金属氧化物及其制备方法、固态燃料电池 WO2018126819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710003203.XA CN108390086B (zh) 2017-01-03 2017-01-03 含氢过渡金属氧化物及其制备方法、固态燃料电池
CN201710003203.X 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018126819A1 true WO2018126819A1 (zh) 2018-07-12

Family

ID=62789108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113205 WO2018126819A1 (zh) 2017-01-03 2017-11-27 含氢过渡金属氧化物及其制备方法、固态燃料电池

Country Status (2)

Country Link
CN (1) CN108390086B (zh)
WO (1) WO2018126819A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273575A2 (en) * 1986-11-21 1988-07-06 The British Petroleum Company p.l.c. Process for the hydrogenation of unsaturated organic compounds using solid catalysts
CN104025352A (zh) * 2011-10-24 2014-09-03 丹麦技术大学 用于固体氧化物电化学电池的高性能燃料电极
KR20160123135A (ko) * 2015-04-15 2016-10-25 포항공과대학교 산학협력단 가역적 수소저장소자 및 그 사용방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645543B2 (en) * 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US20060078765A1 (en) * 2004-10-12 2006-04-13 Laixia Yang Nano-structured ion-conducting inorganic membranes for fuel cell applications
JP2018515900A (ja) * 2015-04-03 2018-06-14 イエ ヤン 固体電池セルならびにその製造方法および使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0273575A2 (en) * 1986-11-21 1988-07-06 The British Petroleum Company p.l.c. Process for the hydrogenation of unsaturated organic compounds using solid catalysts
CN104025352A (zh) * 2011-10-24 2014-09-03 丹麦技术大学 用于固体氧化物电化学电池的高性能燃料电极
KR20160123135A (ko) * 2015-04-15 2016-10-25 포항공과대학교 산학협력단 가역적 수소저장소자 및 그 사용방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASUDA, N. ET AL.: "Hydride in BaTiO2.5H0.5: A Labile Ligand in Solid State Chemistry", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 137, no. 48, 17 November 2015 (2015-11-17), pages 15315 - 15321, XP055513207, ISSN: 0002-7863 *
NORBY, T. ET AL.: "Hydrogen In oxides", DALTON TRANSACTIONS, vol. 40, no. 19, 23 July 2004 (2004-07-23), pages 3012 - 3019, XP055172845, ISSN: 1477-9226 *
YAJIMA, T. ET AL.: "Epitaxial Thin Films of ATi03-xHx (A = Ba, Sr, Ca) with Metallic Conductivity", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 21, 5 July 2012 (2012-07-05), pages 8782 - 8785, XP055173135, ISSN: 0002-7863 *

Also Published As

Publication number Publication date
CN108390086A (zh) 2018-08-10
CN108390086B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
Moskon et al. Morphology and electrical properties of conductive carbon coatings for cathode materials
Maekawa et al. Catalytic activity of zirconium oxynitride prepared by reactive sputtering for ORR in sulfuric acid
Zhu et al. High-performance anode-supported solid oxide fuel cells based on nickel-based cathode and Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ electrolyte
JP6883353B2 (ja) 固体燃料電池及び固体電解質の調製方法
Sharma et al. Lan+ 1NinO3n+ 1 (n= 2 and 3) phases and composites for solid oxide fuel cell cathodes: Facile synthesis and electrochemical properties
Choi et al. Performance degradation of lanthanum strontium cobaltite after surface modification
Osinkin et al. Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1. 95Fe1. 4Ni0. 1Mo0. 5O6-δ promising electrode for solid state electrochemical devices
Chen et al. Tailoring the activity via cobalt doping of a two-layer Ruddlesden-Popper phase cathode for intermediate temperature solid oxide fuel cells
Tsvetkova et al. Investigation of GdBaCo2− xFexO6− δ (x= 0, 0.2)–Ce0. 8Sm0. 2O2 composite cathodes for intermediate temperature solid oxide fuel cells
Singh et al. Electrical behavior of CeP2O7 electrolyte for the application in low-temperature proton-conducting ceramic electrolyte fuel cells
Hussain et al. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface
Shibata et al. Effect of Heat Treatment on Catalytic Activity for Oxygen Reduction Reaction of TaO x N y∕ Ti Prepared by Electrophoretic Deposition
Yang et al. Y2O3–Lu2O3 co-doped molybdenum secondary emission material
Lyskov et al. Development of lanthanum-doped praseodymium cuprates as cathode materials for intermediate-temperature solid oxide fuel cells
Sun et al. Study on Sm1. 8Ce0. 2CuO4–Ce0. 9Gd0. 1O1. 95 composite cathode materials for intermediate temperature solid oxide fuel cell
Park et al. Ruddlesden–Popper Oxide (La0. 6Sr0. 4) 2 (Co, Fe) O4 with Exsolved CoFe Nanoparticles for a Solid Oxide Fuel Cell Anode Catalyst
Wen et al. High performance and stability of PrBa0. 5Sr0. 5Fe2O5+ δ symmetrical electrode for intermediate temperature solid oxide fuel cells
Li et al. Electrochemical performance of (Ba0. 5Sr0. 5) 0.9 Sm0. 1Co0. 8Fe0. 2O3− δ as an intermediate temperature solid oxide fuel cell cathode
Lim et al. Ni diffusion in ceria lattice: A combined experimental and theoretical study
Wang et al. Microwave-induced oxygen vacancy-rich surface boosts the cathode performance for proton-conducting solid oxide fuel cells
Kojo et al. Fabrication and electrochemical performance of anode-supported solid oxide fuel cells based on proton-conducting lanthanum tungstate thin electrolyte
Solovyev et al. Magnetron sputtered LSC-GDC composite cathode interlayer for intermediate-temperature solid oxide fuel cells
Meng et al. Highly efficient and stable intermediate-temperature solid oxide fuel cells using Bi-deficient perovskite cathode
WO2018126819A1 (zh) 含氢过渡金属氧化物及其制备方法、固态燃料电池
Banerjee et al. Effect of ‘A’-site non stoichiometry in strontium doped lanthanum ferrite based solid oxide fuel cell cathodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889752

Country of ref document: EP

Kind code of ref document: A1