CN104010719A - 使用机械表面活化制备钯-银合金气体分离膜的方法 - Google Patents

使用机械表面活化制备钯-银合金气体分离膜的方法 Download PDF

Info

Publication number
CN104010719A
CN104010719A CN201280062472.9A CN201280062472A CN104010719A CN 104010719 A CN104010719 A CN 104010719A CN 201280062472 A CN201280062472 A CN 201280062472A CN 104010719 A CN104010719 A CN 104010719A
Authority
CN
China
Prior art keywords
layer
silver
palladium
palladium layer
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280062472.9A
Other languages
English (en)
Other versions
CN104010719B (zh
Inventor
J·C·索凯蒂斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN104010719A publication Critical patent/CN104010719A/zh
Application granted granted Critical
Publication of CN104010719B publication Critical patent/CN104010719B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0076Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0055Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0227Metals comprising an intermediate layer for avoiding intermetallic diffusion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1644Composition of the substrate porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1806Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Electrochemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemically Coating (AREA)

Abstract

一种制备钯-银合金气体分离膜系统的方法,其中将钯层或银层的表面通过包括研磨至受控的表面粗糙度以及研磨图案的非化学活化方法活化,从而使得银覆盖层镀覆或沉积于钯层上,银覆盖层镀覆或沉积于银层上,或者钯覆盖层镀覆或沉积于银层上。所述钯层和银层优选被负载于已施用金属间扩散阻挡层的多孔金属载体上。

Description

使用机械表面活化制备钯-银合金气体分离膜的方法
技术领域
本发明涉及制备钯-银合金气体分离膜系统的方法、所述气体分离膜系统本身以及其用途。
背景技术
复合气体分离组件通常用于从气体混合物中选择性分离特定气体。这些复合气体分离组件可由多种材料制成,包括例如聚合物和金属复合材料。虽然这些复合气体分离组件在低温过程条件下可以提供有效的和节省成本的气体分离的替代方法,但它们通常不适于应用于高温和高压的气体分离处理中。
现有技术中公开了设计用于高温气体分离用途和具有由安装在多孔基体表面上的选择性气体可滲透金属膜组成的结构的某些种类的气体分离组件。例如,美国专利公布文本US2004/0237780和2009/0120287公开了用于选择性分离气体的气体分离系统。这两篇专利均教导了气体分离系统通过首先在多孔基体上通过化学镀覆而沉积气体选择性金属(其通常为钯)、然后研磨所得的经涂覆的基体、和随后在经涂覆抛光的多孔基体上沉积第二层气体选择性金属(其也通常为钯)而制得。在US2004/0237780中,使用了研磨或抛光经涂覆的基体的中间步骤来从经涂覆的基体的表面除去不利的形态。在US2009/0120287中,使用中间研磨步骤的目的在于除去大部分的第一沉积材料以提供更薄的致密气体选择性膜。这些公布文本并未解决尝试将一层银沉积到一层钯上相关的问题。
银团聚的问题是公知的。“The Inhibition of SilverAgglomeration by Gold Activation in Silver Electroless Plating,”Cha等人,Journal of the Electrochemcial Society(2005),C388-C391,描述了银团聚作为获得银薄膜的一个阻碍。使用金层作为基体的活化材料,其后将银膜化学镀覆沉积于经金活化的基体上。银所具有的晶体结构与钯不同,并且如果尝试将银镀覆于钯上,银将镀覆于其本身上并且在钯表面上形成岛状物。
克服银团聚问题的另一途径为在沉积银之前对待镀覆的表面进行化学活化。一种所述化学活化方法公开于US7,175,694中,其中在顺序施用钯层和银层之前,对经氧化的不锈钢管通过将该管浸入SnCl2和PdCl2的含水浴液中进行表面活化。该活化方法消耗大量水,并产生大量体积的水性废物,所述水性废物需要在排出之前进行处理,并且也留下锡离子和氯离子的残余物,所述残余物需要除去。
活化钯表面的另一种方法利用乙酸钯的氯仿溶液,并且包括对所述乙酸盐的蒸发、干燥和分解,随后将其还原为钯金属晶种。
因为化学活化方法(例如以上所述的那些)包括多个步骤,所以它们除了产生需要进行处理的废产物之外,往往成本高并且费时。
用于活化金属表面的非化学方法公开于US2011/0232821中。然而,所公开的方法使用的表面粗糙度和形态与本发明方法中所使用的表面粗糙度和形态不同。
因此,本领域中需要一种制造钯-银合金气体分离膜系统的有效的和节省成本的方法,其中所述银可均一地沉积于钯层上,而不需要化学活化或不需要包含金层作为活化材料。
发明内容
本发明提供了一种用以活化钯表面的便宜的且高效的方法以促进银覆盖层和/或另外的钯层的施用,而不需要昂贵且费时的化学活化。
本发明部分是基于以下发现:通过以下步骤可将银施用于钯表面而不需费时的化学活化技术,或者不需要包含金层:通过用研磨介质研磨钯层的表面以实现下文中所述的特定表面粗糙度和研磨图案而活化所述钯层的表面;在所述经活化的钯层上沉积包含银的覆盖层,所述钯层不经化学活化,并且所述包含银的覆盖层镀覆在所述钯层上;以及退火所述钯层和银覆盖层以提供钯-银合金气体分离膜系统。本发明的方法可用以将银镀覆于钯层上,将银镀覆于银层上,或者将钯镀覆于银层上。
虽然对钯表面的抛光或研磨是本领域中已知的,但是通常实施所述抛光或研磨以产生更光滑的钯表面,其中可于化学活化后在所述钯表面上沉积后续的钯层。主要实施本发明方法中的研磨步骤以活化所述表面,例如通过刻划或以其它方式在所述表面上施加表面图案和受控的表面粗糙度,其将允许对所述表面进行另外的镀覆而不进行化学活化。因此,在描述本发明方法中所用的术语“研磨”或“抛光”是指将研磨介质施用于金属膜表面以活化所述金属膜的表面,从而便于另外的镀覆而无需化学活化。
本发明还提供了钯-银合金气体分离膜系统,其包含:其上负载有已通过使用研磨介质活化至特定表面粗糙度的钯层的多孔载体,其中所述经活化的钯层覆盖有包含银的覆盖层,所述包含银的覆盖层镀覆在所述钯层上,并且对结合的钯和银层进行退火以形成钯-银合金气体分离膜系统。在一种优选的实施方式中,将所述多孔载体用金属间扩散阻挡层进行涂覆,其中在所述金属间扩散阻挡层上沉积钯和/或银层。
本发明的钯-银合金气体分离膜系统尤其可用于在高温和高压的条件下从含氢气的气体流中分离氢气的方法中。
具体实施方式
本发明涉及用于制造具有至少一层钯和于其上沉积的至少一层银的气体分离膜系统的经济上有利的方法。本发明还涉及通过所述方法制造的气体分离膜系统,以及其用于分离气体的用途。
本发明方法的一个重要特征为研磨步骤,其中通过研磨或磨削(grinding)钯层的表面以施加合适的研磨图案和受控的表面粗糙度而活化所述钯层的表面。已发现如果对钯表面进行如下所述的活化,可能用均一的银层或银涂层涂覆所述钯表面而不需要昂贵且费时的化学活化或不需要包含金层作为活化材料,尽管可将一层或多层金施用于钯-银合金膜以改善其抗硫性。
根据本发明,为了用均一的银覆盖层涂覆相对光滑的钯表面(其被定义为具有0.8μm以下的平均表面粗糙度(Sa)的钯表面),将所述钯表面通过研磨至实现0.8μm以上至最高达2.5μm的平均表面粗糙度(Sa)以及合适的研磨图案而进行活化。优选地,所述平均表面粗糙度(Sa)被控制在0.85μm到1.5μm范围内,更优选在0.9μm到1.2μm范围内。
合适的研磨图案可为铺设图案(lay pattern)的形式,其是重复压印在钯表面上。表面抛光铺设图案的实例包括竖向图案、水平图案、放射状图案、交叉线图案、圆形图案、正弦曲线形图案、卵形图案、椭圆形图案、盘绕图案(coil pattern)、花生形图案和其它图案。合适的和优选的铺设图案以及用于在钯表面上压印或施加所述铺设图案的一些方法和装置在已公开的美国专利申请2011-0232821中更详细地论述,该专利申请通过引用并入本文。对于根据本发明方法的表面活化而言,优选交叉线研磨图案。
平均表面粗糙度或算术平均高度(Sa)是用于量度表面粗糙性的已知测量,并且其可采用光学轮廓测量仪(optical profilometer)容易地确定。可以使用任何市售的光学轮廓测量仪。所述市售的光学轮廓测量仪的一个实例为ST4003D轮廓测量仪,其由Nanovea上市并销售。
适合用于所述研磨步骤中以产生所需表面粗糙度的研磨料可选自任何类型的研磨料,例如经粘合的研磨料、经涂覆的研磨料和散研磨料,包括悬浮于液体中的研磨料颗粒或糊状物中所含的研磨料。研磨颗粒的尺寸应为它们可发挥作用以产生合适的研磨图案并将表面粗糙度控制在限定的范围中。已发现平均粒径在1到10μm的研磨介质可用以制备合适的表面粗糙度。然而,可使用具有在该范围以上或以下的平均粒径的其它研磨介质,只要它们产生0.8μm以上至最高达2.5μm的最终平均表面粗糙度(Sa)即可。
研磨料颗粒的组成并不关键,并且研磨料颗粒可选自以下物质:天然研磨料,例如金刚石、刚玉、金刚砂和二氧化硅;或者人造研磨料,例如碳化硅、氧化铝(熔融的、烧结的、溶胶-凝胶烧结的)、碳化硼和立方氮化硼。
在通过研磨至所需表面粗糙度和研磨图案而活化钯表面之后,可通过任何已知的手段将一层或多层银沉积在钯表面上,包括例如通过化学镀覆、热沉积、化学气相沉积、电镀、喷射沉积、溅射涂层、电子束蒸发、离子束蒸发和喷雾热解。优选的沉积方法是化学镀覆。
可对银进行铺设,即将银以多层进行沉积,或以一层进行沉积。也可将银沉积于金属间扩散阻挡层上并将其用于将所述金属间扩散阻挡层固定于多孔载体上,之后进行另外的银镀覆步骤。在本发明的另一实施方案中,可将银层夹在钯层之间。优选最后铺设钯层,即在最终银层之后铺设钯层。
所沉积的银的量可构成总钯层的1重量%至35重量%。优选地,所述银将构成总钯层的5重量%至30重量%,更优选总钯层的10重量%至25重量%。
可将上述银百分数应用于一个或多个镀覆操作中。通常,所述银覆盖层的厚度将小于10μm,优选小于8μm,最优选小于5μm。所述覆盖层厚度的下限为约0.01μm。因此,所述银覆盖层的厚度可在0.01μm到10μm的范围内,优选在0.1μm到5μm的范围内,更优选在1μm到2μm的范围内。
结合的钯和银层的总厚度应小于10μm,优选小于8μm,最优选小于6μm。
在本发明的一个优选实施方式中,将钯-银合金气体分离膜系统负载于覆盖有金属间扩散阻挡层的多孔基体上。在该实施方式中,将金属间扩散阻挡层施加至多孔基体;将一层或多层钯或钯合金沉积在所述金属间扩散阻挡层上;将钯层的表面通过使用研磨介质研磨以产生所期望的研磨图案并将表面粗糙度控制在限定的范围内而进行活化;然后通过将经活化的钯层与包含银盐(例如硝酸银)的溶液接触,将一层或多层银沉积于不经化学活化的经研磨活化的钯层上。对一个或多个银层和一个或多个钯层进行加热处理(即退火)以产生钯-银合金气体分离膜系统。
在本发明的另一个优选实施方式中,首先将银层沉积在金属间扩散阻挡层上。然后将所述银层的表面通过研磨而活化,并随后将一层或多层钯沉积在所述银层上,且对结合的层进行退火。
可用于本发明方法的各种实施方案中的多孔载体包括适合于用作金属间扩散阻挡层和一个或多个钯和/或钯-银合金的载体的任何多孔金属材料。多孔载体可以是任何形状或几何形态;只要其具有允许向其施加或在其上沉积金属间扩散阻挡层和一层或多层钯、钯合金和银的表面。这种形状可包括具有共同限定片层厚度的底面和顶面的多孔金属材料的平面或曲线片层,或者所述形状可以是管状的,例如长方形、正方形和圆形的管形状,其具有共同限定壁厚的内表面和外表面,管形的内表面限定了管状导管。
多孔金属材料可选自本领域技术人员已知的任何材料,包括但不限于:不锈钢,例如,301、304、305、316、317和321系列不锈钢;合金,例如,B-2、C-4、C-22、C-276、G-30、X和其它;和合金,例如合金600、625、690、和718。所述多孔金属材料因此可能包含氢气可渗透的并包含铁和铬的合金。所述多孔金属材料还可包含选自镍、锰、钼和其任意组合的其它合金金属。
一种特别理想的适合用作多孔金属材料的合金可包含量的上限范围为合金总重量的约70重量%的镍和量的范围为合金总重量的10-30重量%的铬。另一种适合用作多孔金属材料的合金包含30-70重量%范围内的镍、12-35重量%范围内的铬和5-30重量%范围内的钼,这些重量百分数是基于合金的总重量。铬镍铁合金优于其它合金。
多孔金属基体的厚度(例如,如上所述的壁厚或片层厚度)、孔隙率和孔的孔径分布是为了提供具有期望性质的本发明的气体分离膜系统而选择的多孔载体的性质,其也是制造本发明的气体分离膜系统所要求的。应该理解,随着多孔载体的厚度增大,当多孔载体用于氢气分离应用时,氢气通量将趋于降低。操作条件,如压力、温度和流体流组成,也可能影响氢气通量。但在任何情况下,理想的是使用具有适当小厚度的多孔载体以提供通过其的高气体通量。用于下面设计的典型应用的多孔基体的厚度范围可为约0.1mm到约25mm,但优选地,所述厚度范围为1mm到15mm,且更优选2mm到12.5mm、且最优选2mm到10mm。
多孔金属基体的孔隙率可在0.01到约1的范围内。术语孔隙率定义为多孔金属基体材料中非实心体积占总体积(即非实心和实心)的分数。更为典型的孔隙率在0.05到0.8、且甚至从0.1到0.6的范围内。
多孔金属基体的孔的孔径分布可随着典型在约0.1μm到约50μm范围内的所述多孔金属基体材料的孔的中值孔径而变化。更典型地,多孔金属基体材料的孔的中值孔径的范围为0.1μm到25μm、且最典型地为0.1μm到7μm。
如上所述,本发明的改善方法也包括,在多孔基体的表面上形成钯、银或钯合金层之前,将金属间扩散阻挡层施用至所述多孔基体的表面。合适的金属间扩散阻挡层包括选自以下物质的材料的颗粒:无机氧化物、难熔金属和贵金属蛋壳型催化剂。这些颗粒的尺寸应使得它们或所述颗粒中的至少一部分可至少部分适合处于用于负载钯-银膜的多孔基体的某些孔中。因此,它们通常应具有小于约50微米(μm)的最大尺寸。
所述颗粒的粒径(即颗粒的最大尺寸)也通常取决于本发明方法中所用的多孔基体的孔的孔径分布。通常,无机氧化物、难熔金属或贵金属蛋壳型催化剂颗粒的中值粒径在0.1μm到50μm的范围内。更特别地,所述中值粒径在0.1μm到15μm的范围内。所述颗粒的中值粒径优选在0.2μm到3μm的范围内。
可合适地用作金属间扩散阻挡层颗粒的层的无机氧化物的实例包括氧化铝、ニ氧化硅、氧化锆、经稳定的氧化锆(例如经三氧化二钇或二氧化铈稳定的氧化锆)、ニ氧化钛、ニ氧化铈、碳化硅、氧化铬、陶瓷材料和沸石。所述难熔金属可包括钨、钽、铼、锇、铱、铌、钌、铪、锆、钒、铬和钼。可适合地用作施用于多孔基体表面的金属间扩散阻挡层颗粒层的贵金属蛋壳型催化剂极其详细地定义并描述于美国专利7,744,675中,所述专利的全部内容通过引用并入本文中。用于本发明方法中的优选金属间扩散阻挡层为包含经三氧化二钇稳定的氧化锆——特别是经6至8重量%的三氧化二钇稳定的氧化锆——的贵金属蛋壳型催化剂。在一些情况下,也已发现可通过添加二氧化铈以提高稳定化作用。
施用于多孔基体的表面以提供经涂覆的基体的金属间扩散阻挡层颗粒的层应足以覆盖所述多孔基体的孔,并足以提供层厚大于0.01μm且通常在0.01μm至25μm的范围内的层。优选所述金属间扩散阻挡层的层厚在0.1μm至20μm的范围内,最优选在2μm至3μm的范围内。
在将所述金属间扩散阻挡层施用于多孔基体之后,可将一层或多层气体选择性材料(例如钯或银)使用本领域技术人员已知的任何合适的装置或方法沉积于经涂覆的多孔基体上,例如化学镀覆、热沉积、化学气相沉积、电镀、喷射沉积、溅射涂覆、电子束蒸发、离子束蒸发和喷雾热解。用于将钯和/或银沉积于经涂覆的多孔基体上的优选沉积方法是化学镀覆。
气体选择性材料,如此处所使用的术语,是当其处于致密的薄膜形式时,对气体具有选择性渗透的材料;因此,所述材料的致密薄层起着选择性地允许所选选择的气体通过同时阻止其它气体通过的作用。本文中所用的优选的气体选择性金属为钯和银及其合金。也可使用银以及其他金属的钯合金。
负载于多孔载体上的钯膜层的典型的膜厚度可以在1μm到50μm的范围内,然而对于许多气体分离应用,该范围上限的膜厚度可能太厚以至于不能提供适当的气体通量以允许进行所期望的气体分离。此外,现有技术中的各种制造方法经常提供具有不可接受的厚度的气体选择性材料膜层的气体分离膜系统以至于它们提供不可接受的气体分离能力。一般来说,大于20μm的膜厚太大以至于不能提供从气流中对氢气的可接受的分离,并且甚至所述膜厚超过15μm都是不希望的。
本文中所描述的本发明方法的优势之一在于其提供了在负载于多孔载体上的钯层上具有均匀分布的银层的气体分离膜系统的一致制造。特别地,可将致密的钯-银合金膜一致地制造为10μm或更薄。通常,通过本发明方法制造的致密的钯-银合金膜的厚度在0.001μm到10μm的范围内,优选在0.01μm到8μm的范围内,最优选在0.1μm到6μm的范围内。
如上所述,通常当尝试将银层沉积于未经活化的钯层上时,所述银在所述钯的表面上沉积为岛状物的形式,而非均匀分布的层。这使得需要在最后的银层上沉积许多另外的层以获得致密的气密性膜。使用非化学表面活化的本发明方法克服了这个问题并使得可形成极薄的、但高度有效的钯-银气体分离膜。
可使用本领域技术人员已知的任何合适的手段或方法以将银覆盖层沉积于钯膜层上,包括例如化学镀覆、热沉积、化学气相沉积、电镀、喷射沉积、溅射涂层、电子束蒸发、离子束蒸发和喷雾热解。用于沉积银覆盖层的优选沉积方法是化学镀覆。
以形成合金为目的而对一个或多个钯层或结合的钯-银层进行的退火或加热处理可以合适地在400℃至800℃的温度下、优选在500℃至550℃的温度下完成。上述层的退火可在氢气气氛或和惰性气体(例如氮气、氩气或氦气)中实施。在一个优选实施方式中,所述退火在100%氢气的气氛、或者包含氢气和3重量%至97重量%的选自氮气、氩气和氦气的惰性气体的混合物的气氛中完成。
在沉积和退火一个或多个钯层之后,然后研磨钯表面以产生在以上指定范围(即0.8μm以上至2.5μm、优选0.85μm至1.5μm、更优选0.9μm至1.2μm)内的平均表面粗糙度(Sa)。已发现尽管在经涂覆的多孔基体上的钯表面相对光滑(即在受控的表面粗糙度范围内)是通常想要的,但是所述表面不太光滑是重要的。如果钯层的表面为高度抛光的磨面(buffed),则所述银将不会均匀地镀覆于所述表面上。
本发明的气体分离膜可用于从气体混合物中选择性分离选定气体。所述气体分离膜可特别用于从含氢气的气体物流中分离氢气(特别是在高温应用中)。其中可以使用本发明的气体分离膜的高温应用的一个实例是在烃(例如甲烷)的蒸汽重整中,产生一氧化碳和氢气,随后在所谓的水煤气变换反应中使所产生的一氧化碳与水反应以产生ニ氧化碳和氢气。这些催化反应是平衡类型的反应,且本发明的气体分离膜可用于在实施反应时同时分离出所产生的氢气以促使平衡条件而有利于氢气产生。在其下同时实施所述反应的反应条件可以包括400-600℃范围内的反应温度和l-30bar范围内的反应压力。
如前所述,本发明的气体分离膜可用于多种应用中,所述应用包括从包含其它气体(例如选自ニ氧化碳、水、甲烷或它们的混合物的气体的那些)的气体物流中分离氢气。在这些应用中,温度条件可以为至多600℃,例如在100-600℃范围内,且压力条件可以为至多60bar,例如在l-60bar的范围内。
提供以下实施例以进一歩示例说明本发明,但它们不应被解释为限制本发明的范围。
实施例1
该实施例示例说明了使用本发明方法而进行的含钯和银的气体分离膜系统的制造,其包括将一层或多层银沉积于一层或多层钯上,所述一层或多层钯沉积在已用金属间扩散阻挡层涂覆的多孔基体上。
将包含钯和经三氧化二钇稳定的氧化锆的贵金属蛋壳型催化剂的浆料沉积于1"OD x15"铬镍铁合金多孔金属管的表面上以形成厚度为2-3μm的金属间扩散阻挡层,并将其在5-8"Hg下通过镀覆5分钟而附着。其后,通过在经金属间扩散阻挡层涂覆的多孔管的表面上循环含水、氢氧化铵、四氨合氯化钯(II)、EDTA二钠和肼的钯浴溶液直到获得厚度为1-2μm的第一钯层,从而将第一钯膜沉积于所述经金属间扩散阻挡层涂覆的多孔管上。将所述钯层进行洗涤、干燥并退火。然后,用5μm的砂纸研磨(即划交叉线)所述经退火的钯层的表面以提供0.85μm至2.5μm的平均表面粗糙度(Sa)。之后,将具有经退火、研磨的钯表面层的经涂覆的多孔管用包含651ml28-30%氢氧化铵溶液/升、4.86g硝酸银(AgNO3)/升、0.54g四氨合氯化钯(II)(Pd(NH3)4Cl2)、33.6g乙二胺四乙酸二钠盐(Na2EDTA-2H2O)/升、2.9ml的1M肼溶液和足量的去离子水(DI)以制备总体积为1升的溶液在经研磨的钯表面的表面上镀覆第一银膜直到沉积了第一银层。此外,将所述复合膜每15分钟旋转1/4转。所述溶液的温度为50℃并且镀覆时间为120分钟。重复镀覆、洗涤、干燥、退火和抛光步骤以制备另外的银层或钯层直到所述膜为气密性的。所用的退火温度为约500-550℃。
具有涂覆有银或钯的经退火、研磨的表面的多孔管在本文中称为“复合膜”。
实施例2
将来自Mott公司的6英寸多孔铬镍铁合金625载体用经三氧化二钇稳定的氧化锆金属间扩散阻挡层涂覆,并将其在50℃下在5-7英寸Hg下牵引钯镀覆溶液通过所述载体从而被附着。在将该含金属间扩散阻挡层的多孔管在用第一镀覆步骤镀覆之前,将所述多孔管洗涤并干燥。银和钯膜分7个镀覆步骤进行制备。将所述金属以以下顺序镀覆:
1)钯
2)银
3)钯
4)银
5)钯
6)钯
7)钯
钯镀覆步骤通过在经涂覆的多孔管的表面上循环含水、氢氧化铵、四氨合氯化钯(II)、EDTA二钠和肼的钯浴溶液直到获得厚度为1-2μm的第一钯层而进行。将所述钯层洗涤、干燥并退火。然后,用砂纸研磨(即划交叉线)所述经退火的钯层的表面以将所述钯层的表面粗糙度提高至0.85μm至2.5μm的平均表面粗糙度(Sa)。之后,将具有经退火、研磨的钯表面层的经涂覆的多孔管用包含氢氧化铵溶液、硝酸银(AgNO3)、四氨合氯化钯(II)(Pd(NH3)4Cl2)、和乙二胺四乙酸二钠盐(Na2EDTA-2H2O)、以及1M肼溶液的银浴溶液在经研磨的钯表面的表面上镀覆第一银层膜直到沉积了第一银层。此外,将所述复合膜每15分钟旋转1/4转。将具有经银涂覆的钯层的经涂覆的多孔管洗涤、干燥、退火并用砂纸研磨(即划交叉线)以提供0.85μm至2.5μm的平均表面粗糙度(Sa)。所述镀覆操作按以上给出的顺序重复。
所述膜组合物的组成用XRF(x-射线荧光)进行监测,其表面粗糙度Sa通过光学轮廓测量法进行监测。下表示出了各操作的值。最终密封的钯/银膜含有22重量%的银。
尽管使用硝酸银溶液进行的银的化学镀覆通常采用镀覆溶液的循环完成,但是已发现当以上述实施例1中所用的镀覆溶液中所采用的浓度使用硝酸银时,用银镀覆溶液进行的沉积并不是扩散受控的。因此,不需要银镀覆溶液的循环,即银镀覆可在化学镀覆浴中在相对静态的条件下有效完成。
尽管已对本发明结合其优选实施方案进行了描述,但是本领域技术人员将理解在不背离所附权利要求中所述本发明的范围的情况下可在本文中作出形式和细节上的各种改变。

Claims (15)

1.制备钯-银合金气体分离膜系统的方法,其中所述方法包括:
提供其上负载有含钯的层的多孔载体;
通过用研磨介质研磨所述钯层以施加研磨图案以及0.8μm以上至最高达2.5μm的平均表面粗糙度(Sa)来活化所述钯层的表面;
在所述经活化的钯层表面上沉积包含银的覆盖层,所述钯层表面不经化学活化,所述包含银的覆盖层在所述经活化的钯层的表面上镀覆;以及
在400℃至800℃的温度下退火所述钯层和银覆盖层。
2.如权利要求1所述的方法,其中在沉积所述银覆盖层之前,将所述钯层研磨至在0.85μm到1.5μm范围内的平均表面粗糙度(Sa)。
3.如权利要求1或权利要求2所述的方法,其中金属间扩散阻挡层被施加至多孔基体并被置于所述多孔基体和所述钯层之间。
4.如权利要求1至权利要求3中任一项所述的方法,其中所沉积的银的量为总钯层的1重量%至35重量%。
5.如权利要求1至权利要求4中任一项所述的方法,其中将所述钯层用粒径在1到10μm的研磨介质研磨。
6.如权利要求1至权利要求5中任一项所述的方法,其中在经活化的钯层上沉积的银覆盖层的厚度为0.01μm到10μm。
7.如权利要求1至权利要求6中任一项所述的方法,其中在对所述银覆盖层通过研磨至0.8μm以上至2.5μm的表面粗糙度(Sa)而进行活化之后,在所述银覆盖层上沉积另外的钯层。
8.如权利要求1至权利要求7中任一项所述的方法,其中在镀覆所述银覆盖层之前,将所述钯层研磨至0.9μm至1.2μm范围内的平均表面粗糙度(Sa)。
9.如权利要求1至权利要求8中任一项所述的方法,其中钯-银合金膜的厚度为0.001μm到10μm。
10.如权利要求1至权利要求9中任一项所述的方法,其中在沉积所述钯层之前,将银层沉积在金属间扩散阻挡层上。
11.如权利要求1至权利要求10中任一项所述的方法,其中在所述银层上沉积钯层之前,将沉积于金属间扩散阻挡层上的银层通过研磨至0.85μm至1.5μm的平均表面粗糙度(Sa)而活化。
12.如权利要求1至权利要求11中任一项所述的方法,其中沉积于经活化的钯层上的银覆盖层的厚度在1μm与2μm之间。
13.如权利要求1至权利要求12中任一项所述的方法,其中通过化学镀覆不循环镀覆溶液来沉积所述银覆盖层。
14.通过权利要求1至权利要求13中任一项所述的方法制备的钯-银合金气体分离膜系统。
15.用于从含氢气的气体混合物中分离氢气的方法,其通过将所述气体混合物通过由权利要求1至权利要求14中任一项所述的方法制备的钯-银合金气体分离膜系统而实施。
CN201280062472.9A 2011-12-20 2012-12-17 使用机械表面活化制备钯-银合金气体分离膜的方法 Expired - Fee Related CN104010719B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161577761P 2011-12-20 2011-12-20
US61/577,761 2011-12-20
PCT/US2012/070065 WO2013096184A1 (en) 2011-12-20 2012-12-17 A method of preparing a palladium- silver alloy gas separation membrane using mechanical surface activation

Publications (2)

Publication Number Publication Date
CN104010719A true CN104010719A (zh) 2014-08-27
CN104010719B CN104010719B (zh) 2016-06-01

Family

ID=47501489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280062472.9A Expired - Fee Related CN104010719B (zh) 2011-12-20 2012-12-17 使用机械表面活化制备钯-银合金气体分离膜的方法

Country Status (8)

Country Link
US (1) US8876949B2 (zh)
EP (1) EP2794079A1 (zh)
JP (1) JP6120875B2 (zh)
KR (1) KR20140108644A (zh)
CN (1) CN104010719B (zh)
CA (1) CA2858597A1 (zh)
TW (1) TW201332631A (zh)
WO (1) WO2013096184A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251131A1 (en) * 2013-03-07 2014-09-11 James Douglas Way Palladium-alloyed membranes and methods of making and using the same
WO2015157414A1 (en) * 2014-04-10 2015-10-15 Shell Oil Company A method of making a supported gas separation membrane
US20150292090A1 (en) * 2014-04-10 2015-10-15 Shell Oil Company Method of making a supported gas separation membrane
US9987612B1 (en) 2017-04-13 2018-06-05 Caterpillar Inc. Reactor assembly
US11583810B2 (en) 2020-12-14 2023-02-21 Industrial Technology Research Institute Porous substrate structure and manufacturing method thereof
JP2024023015A (ja) * 2022-08-08 2024-02-21 トヨタ自動車株式会社 水素分離フィルター

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090120293A1 (en) * 2007-02-20 2009-05-14 John Charles Saukaitis Method of making a leak stable gas separation membrane system
CN101557867A (zh) * 2006-11-08 2009-10-14 国际壳牌研究有限公司 使用纳米级金属材料的气体分离膜系统及其制备方法
CN101568373A (zh) * 2006-11-08 2009-10-28 国际壳牌研究有限公司 包括带有涂覆的无机氧化物颗粒层和气体选择性材料覆盖层的基质的气体分离膜及其制备和用途
US20110232821A1 (en) * 2010-03-26 2011-09-29 John Charles Saukaitis Supported gas separation membrane and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152987A (en) * 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
AU2004224370C1 (en) * 2003-03-21 2008-03-13 Worcester Polytechnic Institute Composite gas separations modules having intermediate metal layers
JP2006520687A (ja) 2003-03-21 2006-09-14 ウスター ポリテクニック インスティチュート 複合ガス分離モジュールを製造する方法
CN101631605B (zh) 2007-02-20 2012-10-03 国际壳牌研究有限公司 气体分离膜系统及其制备或修复方法和用途
US8721773B2 (en) * 2011-10-26 2014-05-13 Shell Oil Company Method for preparing a palladium-gold alloy gas separation membrane system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101557867A (zh) * 2006-11-08 2009-10-14 国际壳牌研究有限公司 使用纳米级金属材料的气体分离膜系统及其制备方法
CN101568373A (zh) * 2006-11-08 2009-10-28 国际壳牌研究有限公司 包括带有涂覆的无机氧化物颗粒层和气体选择性材料覆盖层的基质的气体分离膜及其制备和用途
US20090120293A1 (en) * 2007-02-20 2009-05-14 John Charles Saukaitis Method of making a leak stable gas separation membrane system
US20110232821A1 (en) * 2010-03-26 2011-09-29 John Charles Saukaitis Supported gas separation membrane and method

Also Published As

Publication number Publication date
JP6120875B2 (ja) 2017-04-26
EP2794079A1 (en) 2014-10-29
JP2015509040A (ja) 2015-03-26
CA2858597A1 (en) 2013-06-27
TW201332631A (zh) 2013-08-16
WO2013096184A1 (en) 2013-06-27
KR20140108644A (ko) 2014-09-12
CN104010719B (zh) 2016-06-01
US8876949B2 (en) 2014-11-04
US20130152785A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
CN103889549B (zh) 钯-金合金气体分离膜体系的制备方法
CN104010719A (zh) 使用机械表面活化制备钯-银合金气体分离膜的方法
CN101631605B (zh) 气体分离膜系统及其制备或修复方法和用途
JP5882295B2 (ja) 担持ガス分離膜を形成する方法および装置
Braun et al. Optimization and characterization of electroless co-deposited PdRu membranes: Effect of the plating variables on morphology
CN103998119B (zh) 制造复合金属气体分离膜的方法
EP2794066B1 (en) A method of making a hydrogen separation composite membrane
JP6208067B2 (ja) 多孔質基材の内部に薄膜化した金属充填層を有する複合体の製造方法および複合体
JP2003135943A (ja) 水素分離膜及び水素分離膜の製造方法
Li et al. Preparation of composite palladium-silver alloy membranes by photocatalytic deposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601

Termination date: 20211217

CF01 Termination of patent right due to non-payment of annual fee