CN104009692A - Motor control device and air conditioner using the motor control device - Google Patents

Motor control device and air conditioner using the motor control device Download PDF

Info

Publication number
CN104009692A
CN104009692A CN201310368130.6A CN201310368130A CN104009692A CN 104009692 A CN104009692 A CN 104009692A CN 201310368130 A CN201310368130 A CN 201310368130A CN 104009692 A CN104009692 A CN 104009692A
Authority
CN
China
Prior art keywords
order component
motor
voltage
phase
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310368130.6A
Other languages
Chinese (zh)
Inventor
奥山敦
田村建司
小仓洋寿
B·斯瓦潘
蓝原央尭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Publication of CN104009692A publication Critical patent/CN104009692A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Abstract

提供一种降低了风扇与转子的共振引起的声音的高效率的马达控制装置。具备:逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,驱动控制3相马达;矢量控制部,运算向对负荷进行旋转驱动的3相马达施加的电压;高次分量生成部,运算矢量控制部的施加电压的基波的高次分量;电压相加部,向矢量控制部运算出的施加电压相加高次分量生成部运算出的高次分量;以及PWM脉冲生成部,根据该电压相加部的信号对逆变器进行脉宽控制,针对由3相马达与其负荷的共振所产生的共振声音,高次分量生成部运算以共振声音的共振频率与马达频率之比表示的次数的高次分量,电压相加部将高次分量加到施加电压,由此降低共振声音。

Provided is a high-efficiency motor control device that reduces noise caused by resonance between a fan and a rotor. Equipped with: an inverter connected to a DC power supply, converting the DC power of the DC power supply into AC power with variable voltage and variable frequency, driving and controlling a 3-phase motor; The voltage applied by the motor; the higher-order component generation unit calculates the higher-order component of the fundamental wave of the voltage applied by the vector control unit; the voltage addition unit adds the applied voltage calculated by the vector control unit to the higher-order component generation unit. high-order component; and a PWM pulse generating part, which performs pulse width control on the inverter based on the signal of the voltage adding part, and for the resonance sound generated by the resonance of the 3-phase motor and its load, the high-order component generating part calculates to resonate The high-order component of the order represented by the ratio of the resonant frequency of the sound to the motor frequency, the voltage adding unit adds the high-order component to the applied voltage, thereby reducing the resonant sound.

Description

马达控制装置以及使用了该马达控制装置的空调机Motor control device and air conditioner using the motor control device

技术领域technical field

本发明涉及一种马达控制装置的控制方法以及使用了该马达控制装置的控制方法的空调机。特别是涉及一种降低风扇用的马达引起的声音的技术。The present invention relates to a control method of a motor control device and an air conditioner using the control method of the motor control device. In particular, it relates to a technique for reducing the sound caused by a motor for a fan.

背景技术Background technique

以往,用于空调机中的小型风扇马达,以转子与风扇的共振为原因的特定转速下产生的噪音成为问题。为了解决该共振引起的噪音的问题,在转子部设置防振橡胶,或在风扇的轴承部设置防振橡胶而降低了声音。Conventionally, in small fan motors used in air conditioners, noise generated at a specific rotational speed due to resonance between the rotor and the fan has been a problem. In order to solve the problem of noise caused by this resonance, anti-vibration rubber is provided on the rotor portion, or anti-vibration rubber is provided on the bearing portion of the fan to reduce the sound.

作为其原因之一,可举出马达的感应电压的失真与施加电压之差引起的电流波形的失真,提出了用于消除该电流波形失真的各种方法。One of the causes is the distortion of the current waveform caused by the difference between the distortion of the induced voltage of the motor and the applied voltage, and various methods for eliminating the distortion of the current waveform have been proposed.

例如,在专利文献1中公开了如下技术:将抵消以感应电压的失真为起因而产生的转矩脉动的电压事先制作为感应电压脉动表,并相加到指令电压。For example, Patent Document 1 discloses a technique in which a voltage for canceling torque ripple caused by distortion of an induced voltage is created in advance as an induced voltage ripple table and added to a command voltage.

另外,在专利文献2中公开了如下控制方法:为了实现高效率运行,按照转矩和转速的映射图或者id电流(d轴)、iq电流(q轴)的二维坐标来切换调制方式。In addition, Patent Document 2 discloses a control method that switches the modulation method according to a map of torque and rotation speed or two-dimensional coordinates of id current (d axis) and iq current (q axis) in order to realize high-efficiency operation.

专利文献1:日本特开2008-219966号公报Patent Document 1: Japanese Patent Laid-Open No. 2008-219966

专利文献2:日本特开2005-229676号公报Patent Document 2: Japanese Patent Laid-Open No. 2005-229676

发明内容Contents of the invention

然而,为了降低风扇与转子的共振声音而设置防振橡胶的方法存在如下问题:马达、风扇的结构变得复杂、成本变高。However, the method of providing anti-vibration rubber in order to reduce the resonance sound between the fan and the rotor has the following problems: the structure of the motor and the fan becomes complicated and the cost becomes high.

另外,本发明人通过实验确认了在专利文献1公开的电流正弦波化的技术中不能消除风扇与转子的共振声音。In addition, the present inventors have confirmed through experiments that the resonance sound between the fan and the rotor cannot be eliminated by the technique of sinusoidalizing the current disclosed in Patent Document 1.

另外,本发明人通过实验确认了在专利文献2公开的切换调制方式的方法中,存在能够消除风扇与转子的共振声音的情况和不能消除风扇与转子的共振声音的情况。In addition, the present inventors have confirmed through experiments that in the method of switching the modulation method disclosed in Patent Document 2, there are cases where the resonance sound between the fan and the rotor can be eliminated and cases where the resonance sound between the fan and the rotor cannot be eliminated.

因此,本发明的课题在于,提供一种降低了风扇与转子的共振引起的声音的高效率的马达控制装置。Therefore, an object of the present invention is to provide a highly efficient motor control device that reduces noise caused by resonance between a fan and a rotor.

本发明的马达控制装置,具备:逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,驱动控制3相马达;矢量控制部,运算向对负荷进行旋转驱动的3相马达施加的电压;高次分量生成部,运算矢量控制部的施加电压的基波的高次分量;电压相加部,向矢量控制部运算出的施加电压相加高次分量生成部运算出的高次分量;以及PWM脉冲生成部,根据该电压相加部的信号对逆变器进行脉宽控制,其中,针对由3相马达与其负荷的共振产生的共振声音,高次分量生成部运算以共振声音的共振频率与马达频率之比表示的次数的高次分量,电压相加部将高次分量加到施加电压,由此降低共振声音。The motor control device of the present invention includes: an inverter connected to a DC power supply for converting the DC power of the DC power supply into AC power of variable voltage and variable frequency to drive and control the three-phase motor; The voltage applied to the 3-phase motor that rotates the load; the higher-order component generation unit calculates the higher-order component of the fundamental wave of the applied voltage of the vector control unit; the voltage addition unit adds the higher-order component to the applied voltage calculated by the vector control unit The high-order component calculated by the sub-component generating unit; and the PWM pulse generating unit, which controls the pulse width of the inverter based on the signal of the voltage adding unit, wherein, for the resonance sound generated by the resonance of the 3-phase motor and its load, The higher-order component generation unit calculates a higher-order component of an order represented by the ratio of the resonance frequency of the resonance sound to the motor frequency, and the voltage addition unit adds the higher-order component to the applied voltage, thereby reducing the resonance sound.

根据本发明,能够提供一种降低了风扇与转子的共振引起的声音的高效率的马达控制装置。According to the present invention, it is possible to provide a high-efficiency motor control device in which noise caused by resonance between a fan and a rotor is reduced.

附图说明Description of drawings

图1是表示本发明的第1实施方式的马达控制装置的内部结构、以及该直流马达控制装置、电源、3相交流同步电动机及负荷之间的关联的图。1 is a diagram showing the internal configuration of a motor control device according to a first embodiment of the present invention, and the relationship among the DC motor control device, a power supply, a three-phase AC synchronous motor, and a load.

图2是表示在本发明的第1实施方式中在电压相加部中使用旋转坐标系将高次分量生成部的高次分量向矢量控制部的基波相加的方法的图。2 is a diagram illustrating a method of adding a higher-order component of a higher-order component generation unit to a fundamental wave of a vector control unit using a rotating coordinate system in a voltage adding unit in the first embodiment of the present invention.

图3是表示在本发明的第1实施方式中在电压相加部中使用固定坐标系将高次分量生成部的高次分量向矢量控制部的基波相加的方法的图。3 is a diagram showing a method of adding a higher-order component of a higher-order component generation unit to a fundamental wave of a vector control unit using a fixed coordinate system in a voltage adding unit in the first embodiment of the present invention.

图4是表示对转速和声音频率的风扇噪音的特性的图。FIG. 4 is a graph showing the characteristics of fan noise versus rotational speed and sound frequency.

图5是表示在施加了130min-1的36次的高次分量的情况下的噪音变化的图。FIG. 5 is a graph showing noise changes when 36-order higher-order components are applied for 130 min −1 .

图6是表示对转速施加了多个次数的高次分量的控制的一个例子的图。FIG. 6 is a diagram showing an example of control in which high-order components of a plurality of orders are applied to the rotational speed.

图7是表示本发明的第2实施方式的马达控制装置的内部结构、以及该直流马达控制装置、电源、3相交流同步电动机及负荷之间的关联的图。7 is a diagram showing the internal configuration of a motor control device according to a second embodiment of the present invention, and the relationship among the DC motor control device, a power supply, a three-phase AC synchronous motor, and a load.

图8是表示在本发明的第2实施方式中在电流相加部中使用旋转坐标系将高次分量生成部的高次分量向矢量控制部的基波相加的方法的图。8 is a diagram showing a method of adding a higher-order component of a higher-order component generation unit to a fundamental wave of a vector control unit using a rotating coordinate system in a current addition unit in the second embodiment of the present invention.

图9是表示在本发明的第2实施方式中在电流相加部中使用固定坐标系将高次分量生成部的高次分量向矢量控制部的基波相加的方法的图。9 is a diagram illustrating a method of adding a higher-order component of a higher-order component generation unit to a fundamental wave of a vector control unit using a fixed coordinate system in a current addition unit in the second embodiment of the present invention.

图10是表示一般的3相调制中的U相、V相、W相的电压波形的图。FIG. 10 is a diagram showing voltage waveforms of U-phase, V-phase, and W-phase in general three-phase modulation.

图11是表示作为2相调制方式的固定相60度切换方式中的U相、V相、W相的电压波形的图。11 is a diagram showing voltage waveforms of U-phase, V-phase, and W-phase in a fixed-phase 60-degree switching method which is a two-phase modulation method.

图12是表示作为2相调制方式的上固定相120度切换方式中的U相、V相、W相的电压波形的图。12 is a diagram showing voltage waveforms of U-phase, V-phase, and W-phase in an upper stationary phase 120-degree switching method as a two-phase modulation method.

图13是表示作为2相调制方式的下固定相120度切换方式中的U相、V相、W相的电压波形的图。FIG. 13 is a diagram showing voltage waveforms of U-phase, V-phase, and W-phase in a lower stationary phase 120-degree switching method which is a two-phase modulation method.

图14是表示本发明的第3实施方式的马达控制装置的内部结构、以及该直流马达控制装置、电源、3相交流同步电动机及负荷之间的关联的图。14 is a diagram showing the internal configuration of a motor control device according to a third embodiment of the present invention, and the relationship among the DC motor control device, a power supply, a three-phase AC synchronous motor, and a load.

图15是表示本发明的第4实施方式的空调机的结构的图。Fig. 15 is a diagram showing the configuration of an air conditioner according to a fourth embodiment of the present invention.

附图标记说明Explanation of reference signs

11、108:马达控制装置;12:直流电源;13:马达、3相马达、3相交流同步电动机;14:负荷、风扇;15:逆变器、电力变换电路;16:直流母线电流检测电路;17、18、20:控制装置;21:矢量控制部;22:高次分量生成部;23:电压相加部;24:PWM脉冲生成部;25:指令电流生成部;26:电流相加部;27:电压指令运算部;28:高次分量校正部;29:调制方式选择部;51:电力变换主电路;52:栅极驱动器;100:空调机;101:室外机;102:室内机;103:配管;104:压缩机;105:热交换器(室外的热交换器);106:室外风扇;107:室外风扇马达;109:热交换器(室内的热交换器);110:送风机。11, 108: Motor control device; 12: DC power supply; 13: Motor, 3-phase motor, 3-phase AC synchronous motor; 14: Load, fan; 15: Inverter, power conversion circuit; 16: DC bus current detection circuit ; 17, 18, 20: control device; 21: vector control unit; 22: high-order component generation unit; 23: voltage addition unit; 24: PWM pulse generation unit; 25: command current generation unit; 26: current addition unit 27: Voltage command operation section; 28: High-order component correction section; 29: Modulation mode selection section; 51: Power conversion main circuit; 52: Grid driver; 100: Air conditioner; 101: Outdoor unit; 102: Indoor 103: piping; 104: compressor; 105: heat exchanger (outdoor heat exchanger); 106: outdoor fan; 107: outdoor fan motor; 109: heat exchanger (indoor heat exchanger); 110: Blower.

具体实施方式Detailed ways

本实施例的马达控制装置,具备:逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;矢量控制部,运算向对负荷进行旋转驱动的所述马达施加的电压;高次分量生成部,运算所述矢量控制部的施加电压的基波的高次分量;电压相加部,对所述矢量控制部运算出的施加电压相加所述高次分量生成部运算出的高次分量;以及PWM脉冲生成部,根据该电压相加部的信号对所述逆变器进行脉宽控制,其中,针对通过所述马达与该负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比(所述共振声音的共振频率周波/马达频率)所表示的次数的高次分量,所述电压相加部将所述高次分量相加到施加电压。The motor control device of this embodiment includes: an inverter connected to a DC power supply, which converts the DC power of the DC power supply into AC power with variable voltage and variable frequency to drive and control the motor; A voltage applied to the motor that rotationally drives the load; a higher-order component generation unit that calculates a higher-order component of the fundamental wave of the voltage applied by the vector control unit; and a voltage adding unit that calculates the higher-order component of the voltage applied by the vector control unit adding a high-order component calculated by the high-order component generating unit to an applied voltage; and a PWM pulse generating unit that performs pulse width control on the inverter according to a signal from the voltage adding unit, wherein For the resonant sound generated by resonance with the load, the high-order component generating unit calculates the number of times expressed by the ratio of the resonant frequency of the resonant sound to the motor frequency (resonant frequency cycle of the resonant sound/motor frequency). a higher-order component, the voltage addition unit adds the higher-order component to the applied voltage.

另外,本实施例的马达控制装置,具备:逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;指令电流运算部,运算流过所述马达的电流;高次分量生成部,运算作为所述指令电流运算部的输出的指令电流的基波的高次分量;电流相加部,对所述指令电流相加所述高次分量生成部运算出的所述高次分量;矢量控制部,根据所述电流相加部的输出运算施加到所述马达的电压;以及PWM脉冲生成部,根据所述矢量控制部的信号对所述逆变器进行脉宽控制,其中,针对通过所述马达与该负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比(所述共振声音的共振频率周波/马达频率)表示的次数的高次分量,所述电流相加部将所述高次分量相加到指令电流。In addition, the motor control device of this embodiment includes: an inverter connected to a DC power supply for converting the DC power of the DC power supply into AC power with variable voltage and variable frequency to drive and control the motor; Computing the current flowing through the motor; the high-order component generation unit computing the high-order component of the fundamental wave of the command current output as the output of the command current calculation unit; the current adding unit adding the command current to the command current the higher-order component calculated by the higher-order component generating unit; the vector control unit calculating the voltage applied to the motor based on the output of the current adding unit; and the PWM pulse generating unit based on the output of the vector control unit The signal performs pulse width control on the inverter, wherein, for the resonance sound generated by the resonance between the motor and the load, the high-order component generation unit calculates the ratio between the resonance frequency of the resonance sound and the motor frequency The current addition unit adds the higher-order component to the command current.

另外,本实施例的马达控制装置,具备:逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;矢量控制部,运算向对负荷进行旋转驱动的所述马达施加的电压;高次分量生成部,运算所述矢量控制部的施加电压的基波的高次分量;PWM脉冲生成部,具有包含固定2相调制方式的多个调制方式,根据所述电压相加部的信号来对所述逆变器进行脉宽控制;以及电压相加部,具有与多个调制方式相对应而校正所述高次分量的高次分量校正部,向所述矢量控制部运算出的施加电压相加所述高次分量校正部运算出的高次分量,其中,针对通过所述马达与该负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比(所述共振声音的共振频率周波/马达频率)表示的次数的高次分量,由所述电压相加部将所述高次分量进行校正了的所述高次分量相加到施加电压。In addition, the motor control device of this embodiment includes: an inverter, connected to a DC power supply, converting the DC power of the DC power supply into AC power with variable voltage and variable frequency, and driving and controlling the motor; a vector control unit, Calculate the voltage applied to the motor that rotates and drives the load; the high-order component generation unit calculates the higher-order component of the fundamental wave of the voltage applied by the vector control unit; the PWM pulse generation unit includes a fixed two-phase modulation method. a plurality of modulation methods for controlling the pulse width of the inverter according to the signal of the voltage adding part; The secondary component correcting unit adds the higher-order component calculated by the higher-order component correcting unit to the applied voltage calculated by the vector control unit, wherein for the resonance sound generated by the resonance between the motor and the load, The higher-order component generation unit calculates a higher-order component of an order represented by the ratio of the resonance frequency of the resonance sound to the motor frequency (resonance frequency cycle of the resonance sound/motor frequency), and the voltage addition unit converts The higher-order component corrected by the higher-order component is added to the applied voltage.

另外,本实施例的马达控制装置,具备:逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;指令电流运算部,运算流过所述马达的电流;高次分量生成部,运算作为所述指令电流运算部的输出的指令电流的基波的高次分量;电流相加部,具有与多个调制方式相对应而校正所述高次分量的高次分量校正部,向所述指令电流相加所述高次分量校正部校正了的所述高次分量;矢量控制部,根据所述电流相加部的输出运算施加到所述3相马达的电压;以及PWM脉冲生成部,具有包含固定2相调制方式的多个调制方式,根据所述矢量控制部的信号对所述逆变器进行脉宽控制,其中,针对通过所述马达与该负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比(所述共振声音的共振频率周波/马达频率)所表示的次数的高次分量,根据调制方式,由所述电流相加部将所述高次分量校正部校正了的所述高次分量相加到所述指令电流。In addition, the motor control device of this embodiment includes: an inverter connected to a DC power supply for converting the DC power of the DC power supply into AC power with variable voltage and variable frequency to drive and control the motor; Computing the current flowing through the motor; the high-order component generating unit calculating the high-order component of the fundamental wave of the command current output as the output of the command current computing unit; the current adding unit having a plurality of modulation modes corresponding to And the higher-order component correcting unit that corrects the higher-order component adds the higher-order component corrected by the higher-order component correcting unit to the command current; the vector control unit, based on the output of the current adding unit computing voltages applied to the 3-phase motor; and a PWM pulse generating section having a plurality of modulation schemes including a fixed 2-phase modulation scheme, and performing pulse width control on the inverter based on a signal from the vector control section, wherein For the resonant sound generated by the resonance between the motor and the load, the high-order component generator calculates the ratio of the resonant frequency of the resonant sound to the motor frequency (resonant frequency cycle of the resonant sound/motor frequency ), the higher-order component corrected by the higher-order component correction unit is added to the command current by the current addition unit according to a modulation method.

下面参照附图说明用于实施本申请的发明的方式(下面称为“实施方式”)。参照图1~图3说明本发明的第1实施方式的马达控制装置。图1是表示本发明的第1实施方式的马达控制装置11的内部结构、以及该马达控制装置11、直流电源12、3相交流同步电动机(适当简称为“马达”或者“3相马达”)13及负荷(风扇)14之间的关联的图。Embodiments for implementing the invention of the present application (hereinafter referred to as “embodiments”) will be described below with reference to the drawings. A motor control device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3 . FIG. 1 shows the internal structure of a motor control device 11 according to the first embodiment of the present invention, the motor control device 11 , a DC power supply 12 , and a three-phase AC synchronous motor (abbreviated as "motor" or "three-phase motor" as appropriate) 13 and the graph of the correlation between the load (fan) 14.

在图1中,马达控制装置11构成为具备作为DC-AC电力变换器的逆变器15和控制逆变器15的控制装置17。In FIG. 1 , a motor control device 11 is configured to include an inverter 15 as a DC-AC power converter and a control device 17 that controls the inverter 15 .

另外,控制装置17具备PWM(Pulse Width Modulation:脉宽调制)脉冲生成部24、矢量控制部21、高次分量生成部22以及电压相加部23而构成。In addition, the control device 17 includes a PWM (Pulse Width Modulation: Pulse Width Modulation) pulse generation unit 24 , a vector control unit 21 , a higher-order component generation unit 22 , and a voltage addition unit 23 .

第1实施方式的马达控制装置11的特征在于,控制装置17具备高次分量生成部22,在控制装置17对逆变器15进行PWM控制时,从高次分量生成部22向电压相加部23相加电压的高次分量。通过该方法,消除马达13与作为负荷的风扇14的共振引起的噪音。The motor control device 11 of the first embodiment is characterized in that the control device 17 includes a high-order component generation unit 22, and when the control device 17 performs PWM control on the inverter 15, the voltage from the high-order component generation unit 22 to the voltage addition unit 23 The high-order component of the added voltage. By this method, the noise caused by the resonance of the motor 13 and the fan 14 as a load is eliminated.

在详细说明以消除该共振引起的噪音的方法为特征的第1实施方式的马达控制装置11之前,先说明马达与风扇的共振引起的噪音,之后再详细地说明图1的第1实施方式的马达控制装置11。Before describing in detail the motor control device 11 of the first embodiment characterized by a method for eliminating noise caused by resonance, the noise caused by the resonance between the motor and the fan will be described first, and then the details of the first embodiment shown in FIG. 1 will be described in detail. Motor control device 11.

说明由马达13(图1)来驱动风扇14(图1)时风扇3所产生的噪音。The noise generated by the fan 3 when the fan 14 ( FIG. 1 ) is driven by the motor 13 ( FIG. 1 ) will be described.

图4是表示风扇14的噪音对转速的特性的一个例子的图。此外,在后面对图2、图3进行说明。FIG. 4 is a graph showing an example of the noise versus rotational speed characteristics of the fan 14 . In addition, FIG. 2 and FIG. 3 will be described later.

在图4中,横轴是转速[min-1],纵轴是声音频率,颜色的浓度表示噪音[dB]。此外,转速[min-1]是转速/分钟。另外,与rpm(rotationper minute:每分钟转速)相当。另外,以下例如将520转速/分钟如520min-1那样简化表述。数据是以每10min-1分派转速而获取数据的。颜色浓的位置出现在声音频率为280Hz、310Hz附近,但是可知有声音大的转速和小的转速。这里声音大的转速在780min-1、520min-1、390min-1、270min-1、130min-1附近。这是因为与高旋转相比低旋转时风扇所产生的声音的合计小,因此即使310Hz的频率的噪音的绝对值小,也有听感变差这样的特征。In FIG. 4 , the horizontal axis is the rotational speed [min −1 ], the vertical axis is the sound frequency, and the density of the color represents the noise [dB]. In addition, rotation speed [min −1 ] is rotation speed/minute. In addition, it is equivalent to rpm (rotation per minute: revolutions per minute). In addition, in the following, for example, 520 revolutions per minute is simplified as 520 min −1 . The data is obtained by distributing the rotational speed every 10min -1 . The place where the color is thick appears near the sound frequency of 280Hz and 310Hz, but it can be seen that there are loud and small rotation speeds. The rotational speeds with the loudest sound here are around 780min -1 , 520min -1 , 390min -1 , 270min -1 , and 130min -1 . This is because the total amount of sound generated by the fan at low rotation is smaller than that at high rotation, so even if the absolute value of the noise at a frequency of 310 Hz is small, there is a feature that the sense of hearing deteriorates.

如果将转速780min-1设为基准,则马达是3相交流同步电动机,因此如果马达的极数为8极,则马达的电频率是52Hz[780/{60×(2/8)}]。可知以该52Hz为基本频率而由6次分量的312Hz附近的加振转矩而产生了声音。如果展开这种想法,则520、390、310、260、190、160、130、110min-1依次成为9次、12次、15次、18次、24次、30次、36次、42次。曲线中将各个次数的频率与风扇转速的关系以虚直线来表示,该直线与声音的共振频率(曲线中的实线)交叉的点表示产生共振声音的转速和此时的频率。If the rotation speed is 780min -1 as a reference, the motor is a 3-phase AC synchronous motor, so if the number of poles of the motor is 8 poles, the electrical frequency of the motor is 52Hz [780/{60×(2/8)}]. It can be seen that the sound is generated by the excitation torque around 312 Hz of the sixth-order component with the fundamental frequency of 52 Hz. If we expand this idea, 520, 390, 310, 260, 190, 160, 130, 110 min -1 becomes 9 times, 12 times, 15 times, 18 times, 24 times, 30 times, 36 times, 42 times in turn. In the curve, the relationship between the frequency of each order and the fan speed is represented by a dotted straight line, and the point where the straight line intersects with the resonance frequency of the sound (solid line in the curve) represents the speed at which the resonant sound is generated and the frequency at this time.

因而,为了消除风扇14与马达(马达的转子)13的共振声音,采取对这些高次分量的对策。Therefore, in order to eliminate the resonance sound of the fan 14 and the motor (rotor of the motor) 13 , countermeasures against these higher-order components are taken.

(马达控制装置的结构:其二)(Structure of the motor control unit: Part 2)

再次详细地说明图1的本发明的第1实施方式的马达控制装置11的结构。The configuration of the motor control device 11 according to the first embodiment of the present invention shown in FIG. 1 will be described again in detail.

如上所述,图1是表示本发明的第1实施方式的马达控制装置11的结构、以及直流电源12、马达13及风扇(负荷)14之间的关联的图。As described above, FIG. 1 is a diagram showing the configuration of the motor control device 11 according to the first embodiment of the present invention, and the relationship among the DC power supply 12 , the motor 13 , and the fan (load) 14 .

在图1中,马达控制装置11从直流电源12接受直流电力并变换为3相交流电力。另外,马达(3相交流同步电动机)13被从马达控制装置11提供3相交流电力,从而被驱动控制而旋转,由此使风扇14进行旋转驱动。In FIG. 1 , a motor control device 11 receives DC power from a DC power supply 12 and converts it into three-phase AC power. In addition, the motor (3-phase AC synchronous motor) 13 is supplied with 3-phase AC power from the motor control device 11 , is driven and controlled to rotate, and thereby drives the fan 14 to rotate.

接着,详细说明马达控制装置11。Next, the motor control device 11 will be described in detail.

在图1中,如上所述地马达控制装置11构成为具备将直流电力变换为可变电压可变频率的3相交流电力的逆变器15(电力变换器)和控制逆变器15的控制装置17。另外,直流母线电流检测电路16设置在逆变器15的直流电源中。In FIG. 1 , as described above, the motor control device 11 is configured to include an inverter 15 (power converter) that converts DC power into three-phase AC power with variable voltage and variable frequency, and a controller that controls the inverter 15. device 17. In addition, the DC bus current detection circuit 16 is provided in the DC power supply of the inverter 15 .

另外,逆变器15构成为具备由与IGBT(Insulated Gate BipolarTransistor:绝缘栅双极型晶体管)等的半导体开关元件反向并联连接的二极管元件构成的电力变换主电路51、以及根据来自后述的PWM脉冲生成部24的PWM脉冲信号17A来产生向电力变换主电路51的IGBT(Sup、Sun、Svp、Svn、Swp、Swn)的栅极信号的栅极驱动器52。In addition, the inverter 15 is configured to include a power conversion main circuit 51 composed of a diode element connected in antiparallel to a semiconductor switching element such as an IGBT (Insulated Gate Bipolar Transistor: Insulated Gate Bipolar Transistor), and a The PWM pulse signal 17A of the PWM pulse generator 24 generates a gate driver 52 that generates gate signals to the IGBTs (Sup, Sun, Svp, Svn, Swp, Swn) of the power conversion main circuit 51 .

IGBT串联连接而构成一个相的IGBT(Sup、Sun)连接在直流电源12之间,各自的上臂(Sup)与下臂(Sup)的连接点成为U相的交流输出端子。IGBTs are connected in series to form one phase. IGBTs (Sup, Sun) are connected between DC power supplies 12 , and the connection point between the upper arm (Sup) and the lower arm (Sup) of each becomes an AC output terminal of the U-phase.

同样地串联连接而构成一个相的IGBT(Svp、Svn)连接在直流电源12之间,各自的上臂(Svp)与下臂(Svn)的连接点成为V相的交流输出端子。Similarly, the IGBTs (Svp, Svn) that are connected in series to form one phase are connected between the DC power supplies 12 , and the connection points of the respective upper arms (Svp) and lower arms (Svn) serve as V-phase AC output terminals.

另外,串联连接而构成一个相的IGBT(Swp、Swn)连接在直流电源12之间,各自的上臂(Swp)与下臂(Swn)的连接点成为W相的交流输出端子。In addition, the IGBTs (Swp, Swn) connected in series to form one phase are connected between the DC power sources 12 , and the connection points of the respective upper arms (Swp) and lower arms (Swn) serve as W-phase AC output terminals.

控制装置17经由栅极驱动器52对以上的IGBT(Sup、Sun、Svp、Svn、Swp、Swn)恰当地进行控制,由此直流电源12的直流电力从所述的U相、V相、W相的交流输出端子输出可变电压可变频率的3相交流电力。The control device 17 appropriately controls the above IGBTs (Sup, Sun, Svp, Svn, Swp, Swn) via the gate driver 52, so that the DC power of the DC power supply 12 is changed from the U phase, V phase, and W phase The AC output terminal outputs 3-phase AC power with variable voltage and variable frequency.

另外,控制装置17构成为具备PWM脉冲生成部24、矢量控制部21、高次分量生成部22以及电压相加部23。In addition, the control device 17 is configured to include a PWM pulse generation unit 24 , a vector control unit 21 , a higher-order component generation unit 22 , and a voltage addition unit 23 .

矢量控制部21以由直流母线电流检测电路16检测出的直流母线电流信息(适当表述为“相电流的信息”)16A为基础计算出向永久磁铁同步马达13的基波施加电压指令21B和永久磁铁同步马达13的马达转速/相位信息21A。The vector control unit 21 calculates the fundamental wave applied voltage command 21B to the permanent magnet synchronous motor 13 and the permanent magnet synchronous motor 13 based on the DC bus current information (appropriately expressed as “phase current information”) 16A detected by the DC bus current detection circuit 16 . Motor rotational speed/phase information 21A of the synchronous motor 13 .

另外,高次分量生成部22以马达转速/相位信息21A为基础向电压相加部23输出永久磁铁同步马达13的电压的高次分量22A。In addition, the higher-order component generating unit 22 outputs the higher-order component 22A of the voltage of the permanent magnet synchronous motor 13 to the voltage adding unit 23 based on the motor rotational speed/phase information 21A.

另外,电压相加部23对基波施加电压指令21B相加电压的高次分量22A而输出施加电压指令23A。Further, voltage adding unit 23 adds higher-order component 22A of voltage to fundamental wave applied voltage command 21B, and outputs applied voltage command 23A.

另外,PWM脉冲生成部24以施加电压指令23A和内部具有的载波信号为基础向PWM脉冲信号17A进行变换。In addition, PWM pulse generator 24 converts PWM pulse signal 17A based on applied voltage command 23A and a carrier signal contained inside.

此外,矢量控制部21的矢量控制例如能够通过使用““高速用永久磁石同期モータの新ベクトル制御方式の検討(高速用永久磁铁同步马达的新矢量控制方式的探讨)”电学论D、Vol.129(2009)No.1pp.36-45”、““家電機器向け位置センサレス永久磁石同期モータの簡易ベクトル制御(面向家电设备的无位置传感器永久磁铁同步马达的简单矢量控制)”电学论D、Vol.124(2004)No.11pp.1133-1140”所示的方式来实现。In addition, the vector control of the vector control unit 21 can be performed by using, for example, "Discussion on New Vector Control Method of Permanent Magnet Synchronous Motor for High Speed (Discussion on New Vector Control Method of Permanent Magnet Synchronous Motor for High Speed)" Theory of Electricity D, Vol. 129 (2009) No.1pp.36-45", "Simple vector control of permanent magnet synchronous motor to the position sensor of home appliances (simple vector control of permanent magnet synchronous motors without position sensor for home appliances)" Theory of Electricity D, Vol.124 (2004) No.11pp.1133-1140 "shown in the way to achieve.

直流母线电流检测电路16连接于直流电源12的负侧的直流母线,获取U相、V相、W相的脉动电流混载的相电流信息。获取到的相电流信息作为直流母线电流信息(相电流的信息)16A而向矢量控制部21输出。The DC bus current detection circuit 16 is connected to the DC bus on the negative side of the DC power supply 12 to obtain phase current information of mixed pulsating currents of U phase, V phase, and W phase. The acquired phase current information is output to the vector control unit 21 as DC bus current information (phase current information) 16A.

此外,获取相电流信息的方法例如能够通过日本特开2004-48886号公开的方式等来实现。In addition, the method of acquiring phase current information can be realized by, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2004-48886.

在第1实施方式中,采取如下结构:为了降低噪音,通过下面所示的电压的高次分量生成部22和电压相加部23来施加高次分量。In the first embodiment, in order to reduce noise, a higher-order component is applied by a voltage higher-order component generating unit 22 and a voltage adding unit 23 shown below.

下面,参照图2、图3说明生成电压的高次分量22A的高次分量生成部22、和将高次分量22A向基波施加电压指令21B相加的电压相加部23的动作。Next, operations of higher-order component generating unit 22 generating voltage higher-order component 22A and voltage adding unit 23 adding higher-order component 22A to fundamental wave applied voltage command 21B will be described with reference to FIGS. 2 and 3 .

在高次分量生成部22中,使用预先设定的后述的(数式2)、(数式4)中的G和φ的值而以马达转速/相位信息21A为基础生成高次分量,将高次分量22A向电压相加部23输出。In the higher-order component generation unit 22 , the higher-order components are generated based on the motor rotational speed/phase information 21A using preset values of G and φ in (Equation 2) and (Equation 4) described later, and the higher-order components are The secondary component 22A is output to the voltage addition unit 23 .

在电压相加部23中,将矢量控制部21输出的基波施加电压指令21B、和高次分量生成部22输出的电压的高次分量22A相加并向PWM脉冲生成部24进行输出。In the voltage adding unit 23 , the fundamental applied voltage command 21B output from the vector control unit 21 and the higher-order component 22A of the voltage output from the higher-order component generating unit 22 are added and output to the PWM pulse generating unit 24 .

作为具体的结构,有旋转坐标系中的相加、和固定坐标系中的相加。接着,按照顺序说明这些方法。As specific configurations, there are addition in a rotating coordinate system and addition in a fixed coordinate system. Next, these methods will be described in order.

参照图2说明旋转坐标系中的相加的方式。The method of addition in the rotating coordinate system will be described with reference to FIG. 2 .

图2是表示在本发明的第1实施方式中通过电压相加部23使用旋转坐标系将高次分量生成部22的高次分量(电压的高次分量22A)向矢量控制部21的基波(基波施加电压指令21B)相加的方法的图。2 is a diagram showing the fundamental wave of the high-order component (higher-order component 22A of voltage) of the high-order component generation unit 22 transferred to the vector control unit 21 by the voltage adding unit 23 using the rotating coordinate system in the first embodiment of the present invention. (Fundamental wave applied voltage command 21B) A diagram of a method of addition.

在图2中,矢量控制部21根据相电流的信息16A以马达转子的磁铁磁通方向(d轴)为基准,在作为基于该d轴和直角方向(q轴)的旋转坐标系的dq坐标轴上输出基波施加电压指令21B(Vd*、Vq*)、和马达转速/相位信息21A。此外,Vd*是关于d轴、Vq*是关于q轴的基波施加电压指令21B(图1)。In FIG. 2 , the vector control unit 21 uses the phase current information 16A based on the magnet flux direction (d-axis) of the motor rotor, and uses dq coordinates as a rotating coordinate system based on the d-axis and the right-angled direction (q-axis). The fundamental wave applied voltage command 21B (Vd * , Vq * ) and the motor rotational speed/phase information 21A are output on the shaft. In addition, Vd * is the fundamental wave applied voltage command 21B ( FIG. 1 ) with respect to the d axis and Vq * with respect to the q axis.

高次分量生成部22根据来自矢量控制部21的马达转速/相位信息21A来生成dq坐标轴上的高次分量22A-d(d轴)、22A-q(q轴)。此外,高次分量22A-d、22A-q在图1中与高次分量22A相当。The higher-order component generation unit 22 generates higher-order components 22A-d (d-axis) and 22A-q (q-axis) on the dq coordinate axes based on the motor rotational speed/phase information 21A from the vector control unit 21 . In addition, the higher-order components 22A-d and 22A-q correspond to the higher-order component 22A in FIG. 1 .

电压相加部23在d轴将基波施加电压指令(Vd*)和高次分量22A-d相加而输出d轴的施加电压指令23A-d。The voltage addition unit 23 adds the fundamental applied voltage command (Vd * ) and the higher-order components 22A-d on the d-axis, and outputs d-axis applied voltage commands 23A-d.

另外,电压相加部23在q轴将基波施加电压指令(Vq*)和高次分量22A-q相加而输出q轴的施加电压指令23A-q。In addition, the voltage adding unit 23 adds the fundamental wave applied voltage command (Vq * ) and the high-order component 22A-q on the q-axis, and outputs the applied voltage command 23A-q on the q-axis.

此外,施加电压指令23A-d、23A-q通过没有图示的变换部变换为U相、V相、W相的分量并输入到PWM脉冲生成部24(图1)。Also, applied voltage commands 23A-d, 23A-q are converted into U-phase, V-phase, and W-phase components by a conversion unit not shown, and input to PWM pulse generation unit 24 ( FIG. 1 ).

另外,参照图3说明固定坐标系中的相加的方式。In addition, the method of addition in the fixed coordinate system will be described with reference to FIG. 3 .

图3是表示在本发明的第1实施方式中通过电压相加部23使用固定坐标系将高次分量生成部22的高次分量(电压的高次分量22A)向矢量控制部21的基波(基波施加电压指令21B)相加的方法的图。3 is a diagram showing the fundamental wave of the high-order component (higher-order component 22A of voltage) of the high-order component generation unit 22 transferred to the vector control unit 21 by the voltage adding unit 23 using a fixed coordinate system in the first embodiment of the present invention. (Fundamental wave applied voltage command 21B) A diagram of a method of addition.

在图3中,矢量控制部21根据相电流的信息16A来输出固定坐标系的三相交流的基波施加电压指令21B(Vu*、Vv*、Vw*)、和马达转速/相位信息21A。In FIG. 3 , vector control unit 21 outputs three-phase AC fundamental wave applied voltage commands 21B (Vu * , Vv * , Vw * ) in a fixed coordinate system and motor rotational speed/phase information 21A based on phase current information 16A.

高次分量生成部22根据来自矢量控制部21的马达转速/相位信息21A来生成各相的高次分量22A-U、22A-V、22A-W。Higher-order component generation unit 22 generates higher-order components 22A-U, 22A-V, and 22A-W of each phase based on motor rotational speed/phase information 21A from vector control unit 21 .

电压相加部23针对各相(U、V、W)的每一个相加固定坐标系的三相交流的基波施加电压指令21B(Vu*、Vv*、Vw*)和高次分量22A-U、22A-V、22A-W,分别输出施加电压指令23A-U、23A-V、23A-W。The voltage adding unit 23 adds the three-phase AC fundamental wave application voltage command 21B (Vu * , Vv * , Vw * ) and the higher-order component 22A- U, 22A-V, 22A-W output applied voltage commands 23A-U, 23A-V, 23A-W, respectively.

接着,说明马达转速的n倍下产生的风扇14与转子(马达13的转子)的共振声音的降低方法。Next, a method for reducing the resonance sound between the fan 14 and the rotor (rotor of the motor 13 ) generated at n times the motor speed will be described.

风扇14与转子(13)的共振以旋转方向的振动为起因,马达的各相的电压或者电流和坐标轴不同。风扇与转子的共振与通过马达的每120度(2π/3)相位不同的3相的合成产生的旋转磁场的坐标轴的分量有关系。因而,不是3相马达(马达)的各相的电压,而是采取变换为旋转坐标系的dq坐标系来降低共振声音的对策是妥当的。The resonance between the fan 14 and the rotor ( 13 ) is caused by vibration in the rotational direction, and the voltage or current of each phase of the motor is different from the coordinate axis. The resonance between the fan and the rotor is related to the component of the coordinate axis of the rotating magnetic field generated by the synthesis of the three phases of the motor whose phases are different every 120 degrees (2π/3). Therefore, instead of the voltage of each phase of the three-phase motor (motor), it is appropriate to take measures to reduce the resonance sound by converting the dq coordinate system into the rotating coordinate system.

一般,在矢量控制中,如(数式1)那样提供dq坐标下的电压指令。Generally, in vector control, voltage commands in dq coordinates are given as in (Expression 1).

[数式1][Formula 1]

VV dd ** VV qq ** == rr ·· II dd ** -- ωω 11 ** ·· LL qq ·· II qq ** rr ·· II qq ** ++ ωω 11 ** ·&Center Dot; LL dd ·· II dd ** ++ ωω 11 ** ·· KK EE.

这里,r为马达相电阻、ω1 *为指令角速度、Ld、Lq为d轴和q轴的电感、Id *、Iq *为d轴和q轴的指令电流、KE为感应电压常数。Here, r is the phase resistance of the motor, ω 1 * is the command angular velocity, L d , L q are the inductances of the d-axis and q-axis, I d * , I q * are the command currents of the d-axis and q-axis, K E is the induction voltage constant.

与此相对,如(数式2)那样运算高次分量,如(数式3)那样相加而设为新的电压指令Vd **、Vq **On the other hand, high-order components are calculated as in (Equation 2), and added as in (Equation 3) to obtain new voltage commands V d ** , V q ** .

[数式2][Formula 2]

VV dndn ** VV qnqn ** == ωω 11 ** ·· KK EE. -- GG nno sinsin (( nno θθ dd ++ φφ nno )) -- GG nno coscos (( nno θθ dd ++ φφ nno ))

[数式3][Formula 3]

VV dd ** ** VV qq ** ** == VV dd ** VV qq ** ++ VV dndn ** VV qnqn **

这里Vdn *、Vqn *为d轴和q轴的电压高次分量、Gn为n次高次分量的振幅系数、n为高次次数、θd为d轴相位、φn为n次高次分量的初始相位。Here, V dn * and V qn * are the high-order components of voltage on the d-axis and q-axis, G n is the amplitude coefficient of the n-order high-order component, n is the high-order order, θ d is the phase of the d-axis, and φ n is the n-order Initial phase of higher order components.

本发明人通过实验确认了通过(数式2)最优地选择Gn和φn而降低马达频率的n倍的声音的情况。通过施加n次分量电压能够抑制成为声音的产生源的转矩变动,降低声音。The inventors of the present invention confirmed through experiments that the sound that is n times the motor frequency is reduced by optimally selecting G n and φ n in (Expression 2). By applying the component voltage n times, it is possible to suppress the torque variation which becomes the source of the sound and reduce the sound.

如图3所示,在固定坐标系中施加电压的情况下的高次分量的算式成为(数式4)。As shown in FIG. 3 , the calculation formula of the higher-order component in the case of applying a voltage in the fixed coordinate system is (Expression 4).

[数式4][Formula 4]

VV UnUn ** VV Vnvn ** VV WnW ** == ωω 11 ** ·· KK EE. -- GG nno sinsin (( nθnθ dd ++ φφ nno )) -- GG nno sinsin (( nθnθ dd ++ φφ nno -- 22 33 ππ )) -- GG nno sinsin (( nθnθ dd ++ φφ nno ++ 22 33 ππ ))

这里VUn *、VVn *、VWn *为U、V、W相的n次电压高次分量。Here, V Un * , V Vn * , and V Wn * are n-order voltage high-order components of U, V, and W phases.

另外,(数式2)以针对电压的振幅的比率Gn和针对电压分量的相位差φn来表现,但是通过变更Gn和φn能够自由地施加高次分量。In addition, (Expression 2) is expressed by the ratio Gn to the amplitude of the voltage and the phase difference φn to the voltage component, but higher-order components can be freely added by changing Gn and φn .

接着示出130min-1时的噪音的降低例子。在不施加高次电压的情况下,在312Hz产生了35dB的噪音。图5中表示如下:将横轴设为36次的初始相位φ36、将纵轴设为噪音变化值,作为36次的高次分量的振幅系数G36=0.5%使φ36从-180[deg]变化到180[deg]的情况下的噪音变化值和φ36=-134[deg]时改变了G36的情况下的噪音变化值。这样,通过设为φ36=-134deg、G36=0.4%,能够将噪音降低19dB。Next, an example of noise reduction at 130 min −1 is shown. Noise of 35dB was generated at 312Hz without applying high-order voltage. In Fig. 5, it is shown as follows: the horizontal axis is the initial phase φ 36 of the 36th order, the vertical axis is the noise change value, and the amplitude coefficient G 36 =0.5% of the high-order component of the 36th order makes φ 36 from -180[ deg] to 180 [deg] and the noise change when G 36 is changed when φ 36 = -134 [deg]. In this way, by setting φ 36 =−134deg and G 36 =0.4%, the noise can be reduced by 19dB.

说明施加高次分量的情况下的最初(启动)和最后(结束)时施加的方法。The method of applying the first (start) and last (end) when applying the high-order component will be described.

在高次分量生成部22中,在成为了施加高次分量的转速时将高次分量的振幅值从0逐渐增加到规定的振幅(软启动)。例如,在施加6次分量(数式2)中,与逐渐地增加G6(针对电压基波振幅的比例)的系数相当。In the higher-order component generation unit 22 , the amplitude value of the higher-order component is gradually increased from 0 to a predetermined amplitude when the rotational speed at which the higher-order component is applied is reached (soft start). For example, applying the sixth-order component (Expression 2) corresponds to gradually increasing the coefficient of G 6 (ratio to voltage fundamental wave amplitude).

另外,当从施加高次分量的状态成为不施加高次分量的转速时将高次分量的振幅值从规定的振幅逐渐减小到0(软结束)。In addition, when the high-order component is changed from the state where the high-order component is applied to the rotational speed at which the high-order component is not applied, the amplitude value of the high-order component is gradually reduced from a predetermined amplitude to 0 (soft end).

通过采用施加该高次分量时的软启动、软结束,没有开始施加高次分量时和结束时的冲击,成为稳定的控制。By adopting the soft start and soft end when applying the high-order component, there is no shock at the start and end of application of the high-order component, and stable control is achieved.

使用图6说明将多个高次分量进行组合的情况。图6的纵轴设为各次数的振幅的系数的大小、横轴设为风扇转速。如果按照风扇转速如图6那样实施各次数的振幅的系数,则对某个共振声音能够在全部转速下降低声音。另外,在图6的例子中,某个次数在某个转速附近出现的情况下,虽然在其它转速下不出现,但是在有多个共振点的情况下,即使是相同次数下也能够以多个转速进行设定。A case where a plurality of higher-order components are combined will be described using FIG. 6 . In FIG. 6 , the vertical axis represents the magnitude of the coefficient of the amplitude of each order, and the horizontal axis represents the fan speed. If the coefficient of the amplitude of each order is implemented according to the fan rotation speed as shown in FIG. 6 , the sound can be reduced at all rotation speeds for a certain resonance sound. In addition, in the example of FIG. 6, when a certain number of times appears near a certain rotation speed, it does not appear at other rotation speeds, but when there are multiple resonance points, even at the same number of times, it can be more set the speed.

本发明人确认了如下情况:关于高次分量的振幅的恰当值,以1次分量的振幅(Vd与Vq的平方和的平方根)为基准的情况下为5%以下,当大到其以上时导致声音变大。The inventors of the present invention have confirmed that the appropriate value of the amplitude of the high-order component is 5% or less when the amplitude of the primary component (the square root of the sum of the squares of Vd and Vq) is used as a reference, and when it is greater than that causing the sound to become louder.

根据图1所示的第1实施方式,将n次的高次分量以规定的相位、振幅进行施加,由此能够降低马达频率的n倍的频率的风扇与转子的共振声音。According to the first embodiment shown in FIG. 1 , the resonance sound of the fan and the rotor at a frequency n times higher than the motor frequency can be reduced by applying an n-order high-order component with a predetermined phase and amplitude.

使用图7~图9来说明第2实施方式。到此为止说明了能够通过施加电压的高次分量来降低声音的情况,但是施加电流的高次分量也能够实现。The second embodiment will be described using FIGS. 7 to 9 . So far, it has been described that sound can be reduced by applying a higher-order component of a voltage, but it can also be achieved by applying a higher-order component of a current.

图7是表示本发明的第2实施方式的马达控制装置11的内部结构、和该马达控制装置11、直流电源12、3相交流同步电动机(适当略为“马达”或者“3相马达”)13以及负荷(风扇)14之间的关联的图。7 shows the internal structure of a motor control device 11 according to the second embodiment of the present invention, the motor control device 11 , a DC power supply 12 , and a three-phase AC synchronous motor (abbreviated as "motor" or "three-phase motor" as appropriate) 13 and a graph of the correlation between loads (fans) 14 .

在图7中,马达控制装置11的控制装置18的结构具有作为第2实施方式的特征。In FIG. 7 , the configuration of the control device 18 of the motor control device 11 has the characteristics of the second embodiment.

此外,直流电源12、马达13、风扇14、逆变器15、直流母线电流检测电路16与图1的第1实施方式相同,因此省略重复的说明。In addition, the DC power supply 12 , the motor 13 , the fan 14 , the inverter 15 , and the DC bus current detection circuit 16 are the same as those of the first embodiment shown in FIG. 1 , and thus redundant descriptions are omitted.

控制装置18具备矢量控制部21、高次分量生成部22、以及PWM脉冲生成部24,矢量控制部21具备电流指令生成部25、电流相加部26以及电压指令运算部而构成。The control device 18 includes a vector control unit 21 , a higher-order component generation unit 22 , and a PWM pulse generation unit 24 , and the vector control unit 21 includes a current command generation unit 25 , a current addition unit 26 , and a voltage command calculation unit.

电流指令生成部25从直流母线电流检测电路16获取相电流的信息16A,运算马达转速/相位信息25A并输出给高次分量生成部22。另外,指令电流生成部25还将基波电流指令25B输出给电流相加部26。The current command generation unit 25 acquires the phase current information 16A from the DC bus current detection circuit 16 , calculates the motor rotational speed/phase information 25A, and outputs it to the higher-order component generation unit 22 . In addition, command current generation unit 25 also outputs fundamental wave current command 25B to current addition unit 26 .

高次分量生成部22以马达转速/相位信息25A为基础将永久磁铁同步马达13的电流的高次分量22A向电流相加部26进行输出。The higher-order component generating unit 22 outputs the higher-order component 22A of the current of the permanent magnet synchronous motor 13 to the current adding unit 26 based on the motor rotational speed/phase information 25A.

电流相加部26对基波施加电流指令25B相加电流的高次分量22A并输出电流指令26A。Current adding unit 26 adds current higher-order component 22A to fundamental wave application current command 25B, and outputs current command 26A.

电压指令运算部27以电流指令26A为基础来运算电压指令27A并输出给PWM脉冲生成部24。The voltage command calculating unit 27 calculates a voltage command 27A based on the current command 26A and outputs it to the PWM pulse generating unit 24 .

除此之外,省略与1实施方式相同结构的说明。Except for this, description of the same configuration as that of the first embodiment is omitted.

在第2实施方式中,为了降低噪音而采取如下结构:通过下面所示的电流的高次分量生成部22和电流相加部26来施加高次分量。In the second embodiment, in order to reduce noise, a configuration is adopted in which a higher-order component is applied by a current higher-order component generation unit 22 and a current addition unit 26 as shown below.

下面,参照图8、图9说明生成电流的高次分量22A的高次分量生成部22、和将高次分量22A向基波电流指令25B相加的电流相加部26的动作。Next, operations of higher-order component generating unit 22 generating higher-order component 22A of current and current adding unit 26 adding higher-order component 22A to fundamental current command 25B will be described with reference to FIGS. 8 and 9 .

在高次分量生成部22中,使用预先设定的后述的(数式5)、(数式6)中的G和φ的值,以马达转速/相位信息21A为基础来生成高次分量,将高次分量22A向电压相加部23输出。In the higher-order component generation unit 22, the higher-order components are generated based on the motor rotational speed/phase information 21A using preset values of G and φ in (Equation 5) and (Equation 6) described later, and Higher-order component 22A is output to voltage addition unit 23 .

在电压相加部23中,将矢量控制部21输出的基波施加电压指令21B、与高次分量生成部22输出的电压的高次分量22A,并相加并向PWM脉冲生成部24输出。In the voltage adding unit 23 , the fundamental applied voltage command 21B output from the vector control unit 21 and the higher-order component 22A of the voltage output from the higher-order component generating unit 22 are added together and output to the PWM pulse generating unit 24 .

作为具体结构,有旋转坐标系中的相加、和固定坐标系中的相加。接着,按顺序说明这些方法。As specific configurations, there are addition in a rotating coordinate system and addition in a fixed coordinate system. Next, these methods will be described in order.

参照图8说明旋转坐标系中的相加方式。The addition method in the rotating coordinate system will be described with reference to FIG. 8 .

图8是表示在本发明的第2实施方式中通过电流相加部26使用旋转坐标系将高次分量生成部22的高次分量(电流的高次分量22A)向电流指令生成部25的基波(基波电流指令25B)相加的方法的图。8 is a diagram showing the basis for transferring the high-order component (higher-order component 22A of current) of the high-order component generation unit 22 to the current command generation unit 25 by the current addition unit 26 using the rotating coordinate system in the second embodiment of the present invention. A diagram of the method of adding waves (fundamental wave current command 25B).

在图8中,电流指令生成部25根据相电流的信息16A,以马达转子的磁铁磁通方向(d轴)为基准,在作为基于该d轴和直角方向(q轴)的旋转坐标系的dq坐标轴上,输出基波电流指令25B(Id*、Iq*)和马达转速/相位信息25A。此外,Id*是与d轴、Iq*是与q轴有关的基波电流指令25B(图7)。In FIG. 8 , the current command generation unit 25 uses the phase current information 16A as a rotating coordinate system based on the d-axis and the right-angled direction (q-axis) based on the magnet flux direction (d-axis) of the motor rotor. On the dq coordinate axes, the fundamental current command 25B (Id * , Iq * ) and the motor speed/phase information 25A are output. In addition, Id * is the fundamental wave current command 25B related to the d-axis and Iq * is related to the q-axis ( FIG. 7 ).

高次分量生成部22根据来自电流指令生成部25的马达转速/相位信息25A来生成dq坐标轴上的高次分量22A-d(d轴)、22A-q(q轴)。此外,高次分量22A-d、22A-q在图7中与高次分量22A相当。The higher-order component generation unit 22 generates higher-order components 22A-d (d axis) and 22A-q (q-axis) on the dq coordinate axes based on the motor rotational speed/phase information 25A from the current command generation unit 25 . In addition, the higher-order components 22A-d and 22A-q correspond to the higher-order component 22A in FIG. 7 .

电流相加部26在d轴将基波电流指令(Id*)与高次分量22A-d相加并输出d轴的电流指令23A-d。The current addition unit 26 adds the fundamental current command (Id * ) to the higher-order components 22A-d on the d-axis, and outputs d-axis current commands 23A-d.

另外,电流相加部23在q轴将基波电流指令(Iq*)与高次分量22A-q相加并输出q轴的施加电流指令23A-q。In addition, the current adding unit 23 adds the fundamental wave current command (Iq * ) to the high-order component 22A-q on the q-axis, and outputs the applied current command 23A-q on the q-axis.

此外,施加电流指令23A-d、23A-q通过未图示的变换部变换为U相、V相、W相的分量,并输入到PWM脉冲生成部24(图7)。Furthermore, applied current commands 23A-d, 23A-q are converted into U-phase, V-phase, and W-phase components by a conversion unit not shown, and input to PWM pulse generation unit 24 ( FIG. 7 ).

另外,参照图9说明固定坐标系中的相加方式。In addition, the addition method in the fixed coordinate system will be described with reference to FIG. 9 .

图9是表示在本发明的第2实施方式中通过电流相加部26使用固定坐标系将高次分量生成部22的高次分量(电流的高次分量22A)向电流指令生成部25的基波(基波电流指令25B)相加的方法的图。9 is a diagram showing the basis for transferring the higher-order component (current high-order component 22A) of the higher-order component generation unit 22 to the current command generation unit 25 by the current addition unit 26 using a fixed coordinate system in the second embodiment of the present invention. A diagram of the method of adding waves (fundamental wave current command 25B).

在图9中,电流指令生成部25根据相电流的信息16A来输出固定坐标系的三相交流的基波电流指令25B(Iu*、Iv*、Iw*)、和马达转速/相位信息25A。In FIG. 9 , current command generator 25 outputs three-phase AC fundamental wave current commands 25B (Iu * , Iv * , Iw * ) in a fixed coordinate system and motor rotational speed/phase information 25A based on phase current information 16A.

高次分量生成部22根据来自电流指令生成部25的马达转速/相位信息25A来生成各相的高次分量22A-U、22A-V、22A-W。Higher-order component generation unit 22 generates higher-order components 22A-U, 22A-V, and 22A-W of each phase based on motor rotational speed/phase information 25A from current command generation unit 25 .

电流相加部26针对各相(U、V、W)相加固定坐标系的三相交流的基波施加电压指令25B(Iu*、Iv*、Iw*)和高次分量22A-U、22A-V、22A-W,并分别输出施加电压指令23A-U、23A-V、23A-W。The current adding unit 26 adds the three-phase AC fundamental wave applied voltage command 25B (Iu * , Iv * , Iw * ) and higher-order components 22A-U, 22A in a fixed coordinate system for each phase (U, V, W) -V, 22A-W, and output applied voltage commands 23A-U, 23A-V, 23A-W, respectively.

接着,说明马达转速的n倍下产生的风扇14与转子(马达13的转子)的共振声音的降低方法。Next, a method for reducing the resonance sound between the fan 14 and the rotor (rotor of the motor 13 ) generated at n times the motor speed will be described.

基于风扇14与转子(13)的共振以旋转方向的振动为起因,马达的各相的电压或者电流和坐标轴不同。基于风扇与转子的共振与根据马达的每120度(2π/3)而相位不同的3相的合成而产生的旋转磁场的坐标轴的分量有关。因而,采取不是用3相马达(马达)的各相的电压而是变换为旋转坐标系的dq坐标系来降低共振声音的对策是妥当的。The vibration in the rotation direction is caused by the resonance between the fan 14 and the rotor ( 13 ), and the voltage or current of each phase of the motor is different from the coordinate axis. The resonance between the fan and the rotor is related to the component of the coordinate axis of the rotating magnetic field generated by the combination of three phases of the motor whose phases are different every 120 degrees (2π/3). Therefore, it is appropriate to take measures to reduce the resonance sound by converting the voltage of each phase of the three-phase motor (motor) into the dq coordinate system converted into the rotating coordinate system.

一般,在矢量控制中dq坐标的电压指令如(数式1)那样地提供。Generally, in vector control, the voltage command of the dq coordinates is given as (Expression 1).

对于共振声音的降低,能够通过以(数式5)定义电流的高次分量并相加到(数式1)的dq轴的Id *、Iq *来实现。Reduction of resonance sound can be achieved by defining the higher-order components of the current in (Expression 5) and adding them to I d * and I q * of the dq axes in (Expression 1).

[数式5][Formula 5]

II dndn ** II dndn ** == II Mm GG nno sinsin (( nθnθ dd ++ φφ nno )) GG nno coscos (( nθnθ dd ++ φφ nno ))

另外,也可以以Iu*、Iv*、Iw*进行相加。这种情况下的高次电流如(数式6)所示。Alternatively, addition may be performed by Iu * , Iv * , and Iw * . The higher-order current in this case is shown in (Expression 6).

[数式6][Formula 6]

II UnUn ** II Vnvn ** II WnW ** == II Mm GG nno sinsin (( nθnθ dd ++ φφ nno )) GG nno sinsin (( nθnθ dd ++ φφ nno -- 22 33 ππ )) GG nno sinsin (( nθnθ dd ++ φφ nno ++ 22 33 ππ ))

根据图7所示的第1实施方式,通过以规定的相位、振幅施加n次的高次分量,能够降低马达频率的n倍的频率的风扇与转子的共振声音。According to the first embodiment shown in FIG. 7 , by applying an n-order high-order component with a predetermined phase and amplitude, it is possible to reduce the resonance sound of the fan and the rotor at a frequency n times the motor frequency.

参照图10~图14说明本发明的第3实施方式的马达控制装置。第3实施方式具备第1实施方式的高次分量生成部22以及电压相加部23、以及切换后述的3相交流马达的PWM控制的调制方式的控制这两者。A motor control device according to a third embodiment of the present invention will be described with reference to FIGS. 10 to 14 . The third embodiment includes both the high-order component generating unit 22 and the voltage adding unit 23 of the first embodiment, and the control for switching the modulation method of the PWM control of the three-phase AC motor described later.

已知一般为了高效率化、降低声音、降低电噪声而切换调制方式。It is known that the modulation method is generally switched for the purpose of increasing efficiency, reducing sound, and reducing electrical noise.

此外,包含后述的固定相60度切换方式、和固定相120度切换方式,将在规定的电角度,固定1相的电位而调制其它的2相的方式称为固定2相调制。In addition, including the 60-degree fixed phase switching method and the 120-degree fixed phase switching method described later, a method in which the potential of one phase is fixed and the other two phases are modulated at a predetermined electrical angle is called fixed two-phase modulation.

首先,先说明作为马达控制装置的控制方法的固定相60度切换方式、和固定相120度切换方式。并且,之后说明该控制方式对声音的影响,说明与高次电压施加控制进行组合的控制。First, the stationary phase 60-degree switching method and the stationary phase 120-degree switching method as control methods of the motor control device will be described. In addition, the influence of this control method on sound will be described later, and the control combined with the high-order voltage application control will be described.

这里说明马达控制装置中的PWM控制的调制方式。Here, the modulation method of the PWM control in the motor control device will be described.

一般的3相交流马达的PWM控制是3相调制(3相调制方式),但是有如下方法:在3相交流马达为Y接线的情况下,利用相电压与相间电压不同而以2相调制(2相调制方式)进行。The PWM control of a general 3-phase AC motor is 3-phase modulation (3-phase modulation method), but there is a method as follows: In the case of a 3-phase AC motor with Y wiring, use 2-phase modulation ( 2-phase modulation method) is performed.

即,该方法如下:利用马达电流不是由相电压而是由相间电压决定的情况,确保相间电压,且将各相电压针对每个规定期间始终接通逆变器的开关元件,由此针对每1相以电角度π/3(60度、60°)依次固定为高位电源电平或者低位电源电平来降低逆变器的开关损耗。That is, this method is as follows: taking advantage of the fact that the motor current is not determined by the phase voltage but by the phase-to-phase voltage, the phase-to-phase voltage is secured, and each phase voltage is always turned on for each predetermined period. Phase 1 is fixed to a high power supply level or a low power supply level sequentially at an electrical angle of π/3 (60°, 60°) to reduce the switching loss of the inverter.

此外,在该方法中,如上所述地在规定的区间内1相被电位地固定,只有其它的2相被调制(PWM控制)。并且,该被电位地固定的相按顺序重复。因而,不论在哪个时间被调制的都只有2相,因此称为2相调制。In addition, in this method, as described above, one phase is potential-fixed within a predetermined section, and only the other two phases are modulated (PWM control). And, this potential-fixed phase repeats in sequence. Therefore, only 2 phases are modulated at any time, so it is called 2-phase modulation.

下面,将所述的2相调制方式称为固定相60度切换方式。Hereinafter, the two-phase modulation method described above will be referred to as a fixed-phase 60-degree switching method.

接着,图11示于固定相60度切换方式的电压波形(电压指令),说明该方式。Next, FIG. 11 shows the voltage waveform (voltage command) in the fixed phase 60-degree switching method, and this method will be described.

图11是表示作为2相调制方式的固定相60度切换方式中的U相、V相、W相的电压波形(电压指令)的图。11 is a diagram showing voltage waveforms (voltage commands) of U-phase, V-phase, and W-phase in a fixed-phase 60-degree switching method as a two-phase modulation method.

另外,图10是作为参考而示出一般的3相调制方式中的U相、V相、W相的电压波形(电压指令)的图。In addition, FIG. 10 is a diagram showing voltage waveforms (voltage commands) of U-phase, V-phase, and W-phase in a general three-phase modulation system for reference.

在图11和图10中,横轴表示电角度的角度[°],纵轴表示各电角度的电压对最大电压之比、即占空比[%]。In FIGS. 11 and 10 , the horizontal axis represents the angle [°] of the electrical angle, and the vertical axis represents the ratio of the voltage to the maximum voltage for each electrical angle, that is, the duty ratio [%].

在图11中,W相在电角度为0度(与[°]相当)~60度中固定为占空比0%的下限的电压。In FIG. 11 , the W-phase is fixed at the lower limit voltage of the duty ratio 0% when the electrical angle is 0 degrees (equivalent to [°]) to 60 degrees.

在作为该W相为占空比0%的电压区间的0度~60度中,U相和V相形成为如下电压波形:将与W相的电压差、相位保持与图10所示的3相调制方式的情况相同的关系。即,在0度~60度中,W相为占空比0%,因此U相和V层位比原来的电压值略降低的值。In the voltage range from 0°C to 60°C in which the duty ratio of the W-phase is 0%, the U-phase and the V-phase form a voltage waveform in which the voltage difference and the phase with the W-phase are kept the same as those of the three phases shown in Fig. 10 The same relationship applies to the case of the modulation scheme. That is, from 0°C to 60°C, the W-phase has a duty ratio of 0%, so the U-phase and V layers are slightly lower than the original voltage values.

另外,在60度~120度中,U相固定为占空比100%的上限的电压。在该区间中,V相和W相形成如下电压波形,即与U相的电压差、相位保持与图10所示的3相调制的情况相同的关系,因此成为比原来的电压值略升高的值。此外,在U相一下子成为占空比100%的60度,V相和W相电压急剧上升。In addition, the U-phase is fixed at the upper limit voltage of a duty ratio of 100% between 60°C and 120°C. In this interval, the voltage waveforms of the V phase and the W phase are such that the voltage difference and the phase of the U phase maintain the same relationship as in the case of the three-phase modulation shown in Fig. 10, and therefore become slightly higher than the original voltage value. value. In addition, at 60 degrees, where the duty ratio of the U-phase suddenly becomes 100%, the voltages of the V-phase and W-phase rise rapidly.

另外,在120度~180度中,V相固定为占空比0%的下限的电压。在该区间中,W相和U相形成如下电压波形:与V相的电压差、相位保持与图10所示的3相调制方式的情况相同的关系,因此成为比原来的电压值略降低的值。此外,在V相一下子成为占空比0%的120度,W相和U相的电压急剧下降。In addition, the V-phase is fixed at the lower limit voltage of the duty ratio of 0% between 120°C and 180°C. In this interval, the W-phase and U-phase form a voltage waveform in which the voltage difference and phase with the V-phase maintain the same relationship as in the case of the three-phase modulation system shown in Fig. 10, and therefore become slightly lower than the original voltage value value. In addition, at 120 degrees at which the duty ratio of the V phase suddenly becomes 0%, the voltages of the W phase and the U phase drop sharply.

重复进行控制使得成为如以上那样的U相、V相、W相的动作波形。The control is repeated so that the operation waveforms of U-phase, V-phase, and W-phase as described above are obtained.

如图11所示,U相、V相、W相的相间电压是与正弦波不同的波形,但是U相-V相的线间电压、V相-W相的线间电压、W相-U相的线间电压分别成为正弦波形,因此由3相的线间电压进行驱动的马达13(图14)、以及风扇14(图14)进行动作使得与图10所示的3相调制方式的情况相同。As shown in Figure 11, the phase-to-phase voltages of the U-phase, V-phase, and W-phase have different waveforms from the sine wave, but the U-phase-V-phase line-to-line voltage, the V-phase-W-phase line-to-line voltage, the W-phase-U Since the line-to-line voltages of the phases have sinusoidal waveforms, the motor 13 ( FIG. 14 ) and the fan 14 ( FIG. 14 ) driven by the three-phase line-to-line voltages operate in a manner similar to the case of the three-phase modulation method shown in FIG. 10 . same.

然而,W相在0度~60度、U相在60度~120度、W相在120度~180度分别为固定,因此能够降低逆变器15的PWM控制的动作次数。因而,对逆变器15的低功耗化有效果。However, since the W phase is fixed at 0° to 60°, the U phase is at 60° to 120°, and the W phase is at 120° to 180°, it is possible to reduce the number of operations of the PWM control of the inverter 15 . Therefore, it is effective in reducing the power consumption of the inverter 15 .

此外,在0度~360度、以及它重复的全部区间中,固定了U相、V相、W相中的某一相,调制的是剩余的2相。因而,如上所述地是2相调制。In addition, in 0° to 360° and all the overlapping intervals, one of the U-phase, V-phase, and W-phase is fixed, and the remaining two phases are modulated. Therefore, it is 2-phase modulation as described above.

另外,在“半導体電力変換回路(半导体电力变换电路)”1987年3月社团法人电气学会发行的第110、111、125页等中公开了与以上相同或者类似的技术。In addition, "Semiconductor power conversion circuit (semiconductor power conversion circuit)" published in March 1987 by the Institute of Electrical Engineering, pages 110, 111, 125, etc. disclose the same or similar techniques as above.

接着,说明每1相的固定区间比所述的固定相60度切换方式长的、固定相120度切换方式。Next, the stationary phase 120-degree switching method in which the fixed interval per phase is longer than the above-mentioned stationary phase 60-degree switching method will be described.

此外,在固定相120度切换方式中有将固定相固定为直流电压的高电位的上固定相120度切换方式、和将固定相固定为直流电压的低电位的下固定相120度切换方式这两种。接着,按顺序说明上固定相120度切换方式和下固定相120度切换方式。In addition, the 120-degree switching method of the stationary phase includes an upper stationary phase 120-degree switching method in which the stationary phase is fixed at a high potential of DC voltage, and a lower stationary phase 120-degree switching method in which the stationary phase is fixed at a low potential of DC voltage. two kinds. Next, the 120-degree switching method of the upper stationary phase and the 120-degree switching method of the lower stationary phase will be described in order.

图12是表示作为2相调制方式的上固定相120度切换方式中的U相、V相、W相的电压波形(电压指令)的图。此外,横轴表示电角度的角度[°],纵轴表示电压的占空比[%]。12 is a diagram showing voltage waveforms (voltage commands) of U-phase, V-phase, and W-phase in an upper stationary phase 120-degree switching method as a two-phase modulation method. In addition, the horizontal axis represents the angle [°] of the electrical angle, and the vertical axis represents the duty ratio [%] of the voltage.

在图12中,U相在30度(与[°]相当)~150度固定为占空比100%的上限的电压。In FIG. 12 , the U-phase is fixed at the upper limit voltage of a duty ratio of 100% between 30 degrees (corresponding to [°]) and 150 degrees.

另外,W相在150度~270度固定为占空比100%的上限的电压。In addition, the W-phase is fixed at the upper limit voltage of a duty ratio of 100% between 150°C and 270°C.

另外,V相在270度~(390)度固定为占空比100%的上限的电压。In addition, the V-phase is fixed at the upper limit voltage of a duty ratio of 100% between 270 degrees and (390) degrees.

如以上那样,U相、V相、W相都分别针对每1相在电角度2π/3(120度)之间固定为高位电源电平。As described above, each of the U phase, the V phase, and the W phase is fixed to a high power supply level within an electrical angle of 2π/3 (120 degrees) for each phase.

另外,U相、V相、W相的各自的1相被固定的区间控制为形成如下电压波形:其它相与所述相的电压差、相位保持与图10所示的3相调制方式的情况相同的关系。In addition, each of the U-phase, V-phase, and W-phase is controlled in a fixed interval to form a voltage waveform such that the voltage difference between the other phase and the above-mentioned phase and the phase are maintained as in the case of the three-phase modulation method shown in FIG. 10 same relationship.

因而,能够将U相、V相、W相设为Y接线而以各自的线间电压来驱动3相交流马达。Therefore, the U-phase, V-phase, and W-phase can be Y-connected, and the three-phase AC motor can be driven with respective line-to-line voltages.

图13是表示作为2相调制方式的下固定相120度切换方式中的U相、V相、W相的电压波形(电压指令)的图。此外,横轴表示电角度的角度[°],纵轴表示电压的占空比[%]。FIG. 13 is a diagram showing voltage waveforms (voltage commands) of U-phase, V-phase, and W-phase in a 120-degree lower fixed-phase switching method as a two-phase modulation method. In addition, the horizontal axis represents the angle [°] of the electrical angle, and the vertical axis represents the duty ratio [%] of the voltage.

在图13中,V相在90度(与[°]相当)~210度固定为占空比0%的下限的电压。In FIG. 13 , the V-phase is fixed at the lower limit voltage of duty ratio 0% between 90 degrees (corresponding to [°]) and 210 degrees.

另外,U相在210度~330度固定为占空比0%的下限的电压。In addition, the U-phase is fixed at the lower limit voltage of the duty ratio 0% between 210°C and 330°C.

另外,W相在330度~(450)度,另外在(-30)度~90度固定为占空比0%的下限的电压。In addition, the W-phase is fixed at the lower limit voltage of duty ratio 0% between 330°C and (450°C) and between (−30)°C and 90°C.

如以上那样,U相、V相、W相都分别针对每1相在电角度2π/3(120度)之间固定为低电位电源电平。As described above, each of the U-phase, V-phase, and W-phase is fixed to a low-potential power supply level within an electrical angle of 2π/3 (120 degrees) for each phase.

另外,U相、V相、W相的各自1相被固定的区间成为如下电压波形:其它相与所述相的电压差、相位保持与图10所示的3相调制方式的情况相同的关系。In addition, the section in which each of the U-phase, V-phase, and W-phase is fixed has a voltage waveform in which the voltage difference and phase between the other phases and the above-mentioned phase maintain the same relationship as in the case of the three-phase modulation method shown in FIG. 10 .

因而,能够将U相、V相、W相设为Y接线,以各自的线间电压来驱动3相马达。Therefore, the U-phase, V-phase, and W-phase can be Y-connected, and the three-phase motor can be driven with respective line-to-line voltages.

如以上那样,上固定相120度切换方式以及下固定相120度切换方式都针对每1相以电角度2π/3(120度、120°)依次固定为高位电源电平或者低位电源电平,因此能够降低逆变器的开关损耗。As above, the 120-degree switching method of the upper stationary phase and the 120-degree switching method of the lower stationary phase are sequentially fixed to a high power supply level or a low power supply level for each phase at an electrical angle of 2π/3 (120 degrees, 120 degrees). Therefore, the switching loss of the inverter can be reduced.

此外,当相电压的振幅变得比规定的电压值低时产生图12、图13所示的控制不恰当的状况的情况下,还有停止2相调制方式而通过3相调制方式来向马达施加3相电压的方法。In addition, when the amplitude of the phase voltage becomes lower than the predetermined voltage value, when the control inappropriate situation shown in FIG. 12 and FIG. Method for applying 3-phase voltage.

另外,在专利文献2中公开了与以上相同或者类似的技术。In addition, Patent Document 2 discloses the same or similar technology as above.

电压变动由于调制方式的变更而变化。例如在2相调制方式的固定相60°切换方式中电压的不连续点在1次旋转中出现6次,因此对6的倍数次有影响。例如在设为下固定相120°切换方式的情况下不连续点在图13中出现90、210、330°这3次,因此对3的倍数次有影响。这些说明与调制方式的变更不会影响到线间电压的上述说明好像是矛盾,但是调制方式的误差是相对施加电压1次振幅为几%以下的误差,因此几乎不可能测量,导致对声音有影响。The voltage fluctuation changes due to the change of the modulation method. For example, in the fixed-phase 60° switching method of the two-phase modulation method, the voltage discontinuity point appears six times in one rotation, so it affects multiples of six. For example, in the case where the lower stationary phase is switched at 120°, discontinuous points appear three times at 90, 210, and 330° in FIG. These explanations seem to be contradictory to the above explanation that the change of the modulation method does not affect the voltage between the lines, but the error of the modulation method is an error of a few percent or less relative to the primary amplitude of the applied voltage, so it is almost impossible to measure it, resulting in a negative effect on the sound. Influence.

因而在调制方式改变的情况下,通过对相位φn和振幅Gn相加校正值,即使调制方式改变也能够获得相同的声音降低效果。Therefore, when the modulation method is changed, by adding the correction value to the phase φn and the amplitude Gn, the same sound reduction effect can be obtained even if the modulation method is changed.

接着,说明在调制方式切换控制中降低声音的马达控制装置的结构。Next, the configuration of the motor control device for reducing sound during modulation system switching control will be described.

图14是表示本发明的第3实施方式的马达控制装置11的内部结构、和该马达控制装置11、直流电源12、马达(3相马达)13以及风扇14之间的关联的图。14 is a diagram showing an internal configuration of a motor control device 11 according to a third embodiment of the present invention, and relationships among the motor control device 11 , a DC power supply 12 , a motor (three-phase motor) 13 , and a fan 14 .

在图14中,马达控制装置11的控制装置20的结构具有作为第3实施方式的特征。In FIG. 14 , the configuration of the control device 20 of the motor control device 11 has the characteristics of the third embodiment.

此外,关于直流电源12、马达13、风扇14、逆变器15、直流母线电流检测电路16与图1的第1实施方式相同,因此省略重复的说明。In addition, the DC power supply 12 , the motor 13 , the fan 14 , the inverter 15 , and the DC bus current detection circuit 16 are the same as those of the first embodiment shown in FIG. 1 , and thus redundant descriptions are omitted.

控制装置20构成为具备矢量控制部21、PWM脉冲生成部24、高次分量生成部22、电压相加部23、高次分量校正部28、以及调制方式选择部29。The control device 20 is configured to include a vector control unit 21 , a PWM pulse generation unit 24 , a higher-order component generation unit 22 , a voltage addition unit 23 , a higher-order component correction unit 28 , and a modulation method selection unit 29 .

矢量控制部21从直流母线电流检测电路16获取相电流的信息16A,运算马达转速/相位信息21A并输出给高次分量生成部22和调制方式选择部29。另外,矢量控制部21还向电压相加部23输出基波施加电压指令21B。Vector control unit 21 acquires phase current information 16A from DC bus current detection circuit 16 , calculates motor speed/phase information 21A, and outputs it to higher-order component generation unit 22 and modulation method selection unit 29 . Also, the vector control unit 21 outputs a fundamental wave applied voltage command 21B to the voltage addition unit 23 .

高次分量生成部22根据马达转速/相位信息21A来生成高次分量22A,并输出给高次电压校正部28。The higher-order component generating unit 22 generates a higher-order component 22A based on the motor rotational speed/phase information 21A, and outputs the higher-order component 22A to the higher-order voltage correcting unit 28 .

调制方式选择部29根据马达转速/相位信息21A来选择2相调制方式的固定相60度(或者120度)切换方式、还是3相调制方式,将调制方式选择信号25A输出给PWM脉冲生成部24和高次分量校正部28。The modulation method selection part 29 selects the fixed-phase 60-degree (or 120-degree) switching method of the 2-phase modulation method or the 3-phase modulation method according to the motor speed/phase information 21A, and outputs the modulation method selection signal 25A to the PWM pulse generation part 24 and a high-order component correction unit 28 .

高次电压校正部28根据调制方式信息25A和高次分量22A校正高次分量并作为校正后高次分量26A而输出给电压相加部23。The higher-order voltage correction unit 28 corrects the higher-order component based on the modulation method information 25A and the higher-order component 22A, and outputs the corrected higher-order component 26A to the voltage addition unit 23 .

电压相加部23将基波施加电压指令21B与高次分量22A相加而输出施加电压指令23A。PWM脉冲生成部24根据施加电压指令23A和调制方式选择信号25A来生成PWM脉冲信息20A。Voltage addition unit 23 adds fundamental wave applied voltage command 21B to higher-order component 22A, and outputs applied voltage command 23A. PWM pulse generator 24 generates PWM pulse information 20A based on applied voltage command 23A and modulation method selection signal 25A.

通过以上的结构,在2相调制方式的固定相60度切换方式、固定相120度切换方式中,通过施加电压高次分量来降低风扇与转子的共振声音。With the above configuration, in the stationary phase 60-degree switching method and the stationary phase 120-degree switching method of the two-phase modulation method, the resonance sound of the fan and the rotor is reduced by applying a high-order component of the voltage.

因而,第3实施方式具有由调制方式的变更带来的高效率化、声音的降低、电噪声的降低的效果,并且还具有降低风扇与转子的共振声音的效果。Therefore, the third embodiment has the effects of high efficiency, sound reduction, and electrical noise reduction by changing the modulation method, and also has the effect of reducing the resonance sound between the fan and the rotor.

以上第3实施方式说明了相加电压高次分量的情况,但是在相加电流高次分量的方式中也能够期待与相加电压高次分量的方式同样的效果。The third embodiment described above described the case of adding higher-order components of voltage, but the same effect as that of the method of adding higher-order components of voltage can be expected also in the method of adding higher-order components of current.

说明本发明的第4实施方式的马达控制装置。第4实施方式具备第2实施方式的高次分量生成部22以及电流相加部26、第3实施方式的高次分量校正部28和调制方式选择部29。实施方法是将第3实施方式的高次电压置换为高次电流。A motor control device according to a fourth embodiment of the present invention will be described. The fourth embodiment includes the higher-order component generation unit 22 and the current addition unit 26 of the second embodiment, and the higher-order component correction unit 28 and modulation method selection unit 29 of the third embodiment. The implementation method is to replace the high-order voltage of the third embodiment with a high-order current.

接着,说明第5实施方式。在本实施方式中,将第1实施方式~第3实施方式中说明过的马达控制装置11应用于空调机100的室外机101的风扇的马达控制装置108。Next, a fifth embodiment will be described. In this embodiment, the motor control device 11 described in the first to third embodiments is applied to the motor control device 108 of the fan of the outdoor unit 101 of the air conditioner 100 .

图15是表示本发明的第5实施方式的空调机100的结构例的图。在图15中,空调机100构成为具备与户外空气进行热交换的室外机101、与室内进行热交换的室内机102、以及将两者连接起来的配管103。Fig. 15 is a diagram showing a configuration example of an air conditioner 100 according to a fifth embodiment of the present invention. In FIG. 15, the air conditioner 100 is comprised including the outdoor unit 101 which exchanges heat with outdoor air, the indoor unit 102 which exchanges heat with indoors, and the piping 103 which connects both.

室外机101构成为具备压缩制冷剂的压缩机104、与户外空气进行热交换的热交换机105、向该热交换机105送风的室外风扇106、使该室外风扇106进行旋转的室外风扇马达107、以及驱动该室外风扇马达107的马达控制装置108。此外,在马达控制装置108中应用所述的第1实施方式~第4实施方式的马达控制装置11,室外风扇马达107与3相马达13相当,室外风扇106与负荷14相当。The outdoor unit 101 is configured to include a compressor 104 for compressing refrigerant, a heat exchanger 105 for exchanging heat with outdoor air, an outdoor fan 106 for blowing air to the heat exchanger 105, an outdoor fan motor 107 for rotating the outdoor fan 106, And a motor control device 108 that drives the outdoor fan motor 107 . In addition, the motor control device 11 of the first to fourth embodiments described above is applied to the motor control device 108 , the outdoor fan motor 107 corresponds to the three-phase motor 13 , and the outdoor fan 106 corresponds to the load 14 .

另外,室内机102构成为具备与室内进行热交换的热交换机109、以及向室内送风的送风机110。In addition, the indoor unit 102 is configured to include a heat exchanger 109 for exchanging heat with the room, and an air blower 110 for blowing air into the room.

在第5实施方式中,如上所述地将第1实施方式~第4实施方式的马达控制装置11应用于空调机100。即,在控制逆变器15的控制装置(17、18、20)中,通过施加高次分量或选择调制方式来降低马达转速的高次频率的风扇14与转子(马达13)的共振声音。In the fifth embodiment, the motor control device 11 of the first to fourth embodiments is applied to the air conditioner 100 as described above. That is, in the control device ( 17 , 18 , 20 ) that controls the inverter 15 , the resonance sound of the fan 14 and the rotor (motor 13 ) at the high-order frequency of the motor speed is reduced by applying a high-order component or selecting a modulation method.

根据第4实施方式,不使用室外风扇马达107的转子部的防振橡胶、风扇部的防振橡胶也能降低声音,因此能够廉价地制作安静的空调机100。According to the fourth embodiment, the noise can be reduced without using the anti-vibration rubber of the rotor portion of the outdoor fan motor 107 and the anti-vibration rubber of the fan portion, so that the quiet air conditioner 100 can be manufactured at low cost.

以上参照附图详述了本发明的实施方式,但是本发明不限于这些实施方式及其变形,也可以在不超出本发明精神的范围内进行设计变更等,下面举出其例子。The embodiments of the present invention have been described above with reference to the drawings. However, the present invention is not limited to these embodiments and modifications thereof, and design changes and the like can be made within the scope not departing from the spirit of the present invention. Examples thereof are given below.

所述的本实施方式的各结构、功能、处理部、处理单元等也可以将它们的一部分或者全部通过例如以集成电路进行设计等而由硬件实现。另外,也可以通过能够程序变更的软件来实现。另外,也可以将硬件和软件进行混装。The configurations, functions, processing units, processing means, and the like of the above-described embodiments may be realized by hardware, for example, by designing a part or all of them with an integrated circuit. In addition, it can also be realized by software that can change the program. In addition, hardware and software can also be mixed.

另外,控制线、信息线表示说明上认为需要的,产品上不一定必须示出全部的控制线、信息线。也可以认为实际上几乎全部的结构被相互连接。In addition, the control lines and information lines indicate what is considered necessary in the description, and not all of the control lines and information lines are necessarily shown on the product. It can also be considered that virtually all structures are interconnected.

能够将一个实施方式的结构的一部分替换为其它实施方式的结构,另外也能够在一个实施方式的结构中加入其它实施方式的结构。另外,能够对各实施方式的结构的一部分进行其它结构的追加/删除/替换。A part of the structure of one embodiment can be replaced with the structure of another embodiment, and the structure of another embodiment can also be added to the structure of one embodiment. In addition, addition/deletion/replacement of other configurations can be performed on a part of the configurations of each embodiment.

另外,为了明确地进行说明,主要说明了作为负荷而驱动风扇的情况,但是本发明对以结构性的共振频率为起因的声音的降低有效,作为负荷不限于风扇。In order to clarify the description, the case where a fan is driven as a load is mainly described, but the present invention is effective for reducing sound caused by a structural resonance frequency, and the load is not limited to a fan.

基于直流母线电流检测电路16的相电流信息的获取能够使用日本特开2004-48886号所公开的方式等一般的方式,并非限定检测方式。The acquisition of the phase current information by the DC bus current detection circuit 16 can use a general method such as the method disclosed in Japanese Patent Application Laid-Open No. 2004-48886, and the detection method is not limited.

矢量控制部21能够使用所述的“高速用永久磁石同期モータの新ベクトル制御方式の検討(高速用永久磁铁同步马达的新矢量控制方式的探讨)”电学论D、Vol.129(2009)No.1pp.36-45”、““家電機器向け位置センサレス永久磁石同期モータの簡易ベクトル制御(面向家电设备的无位置传感器永久磁铁同步马达的简单矢量控制)”电学论D、Vol.124(2004)No.11pp.1133-1140”中提出的方式等一般的矢量控制来实现,并非限定控制方式。The vector control unit 21 can use the above-mentioned "Research on New Vector Control Method of Permanent Magnet Synchronous Motor for High Speed (Discussion of New Vector Control Method for High-speed Permanent Magnet Synchronous Motor)" Theory of Electricity D, Vol.129 (2009) No. .1pp.36-45", ""Simple vector control of permanent magnet synchronous motor to the position sensales of home appliances (simple vector control of position sensorless permanent magnet synchronous motors for home appliances)" Theory of Electricity D, Vol.124 (2004 ) No.11pp.1133-1140" and other general vector control methods, not limited to the control method.

另外,作为电力变换主电路51的开关元件而使用了IGBT,但是既可以使用其它的半导体元件的开关元件,例如也可以是MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属氧化物半导体场效应晶体管)。另外,作为元件的组成,也可以是使用了SiC(Silicon Carbide,碳化硅)、GaN(Gallium Nitride,氮化镓)的半导体元件。In addition, although an IGBT is used as a switching element of the power conversion main circuit 51, it is possible to use a switching element of another semiconductor element, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor: Metal-Oxide-Semiconductor Field-Effect Transistor: Metal-Oxide-Semiconductor Field-Effect Transistor: transistor). In addition, as the composition of the element, a semiconductor element using SiC (Silicon Carbide, silicon carbide) or GaN (Gallium Nitride, gallium nitride) may be used.

说明了对高次分量的施加公式中的G(针对电压基波振幅的高次波振幅的比例)和φ(基波分量与高次分量的相位差)使用当初设定的值的情况,但是还有如下方法:以直流母线电流检测电路16的信息基础,在矢量控制部21中根据状况适当变更G和φ来进行最优的控制。It was explained that G (ratio of high-order wave amplitude to voltage fundamental wave amplitude) and φ (phase difference between fundamental wave component and high-order component) in the application formula of high-order components use the initially set values, but There is also a method of performing optimal control by appropriately changing G and φ in the vector control unit 21 according to the situation based on the information of the DC bus current detection circuit 16 .

图1中的栅极驱动器52的主要功能是提高PWM脉冲生成部24的信号的驱动能力,因此如果PWM脉冲生成部24的输出部有充分的驱动能力、或者栅极驱动器52的功能内置于PWM脉冲生成部24,则逆变器15也可以不具备栅极驱动器52。The main function of the gate driver 52 in FIG. 1 is to improve the driving capability of the signal of the PWM pulse generating part 24, so if the output part of the PWM pulse generating part 24 has sufficient driving capability, or the function of the gate driver 52 is built into the PWM If the pulse generator 24 is used, the inverter 15 does not need to include the gate driver 52 .

Claims (8)

1.一种马达控制装置,其特征在于,具备:1. A motor control device, characterized in that it has: 逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;The inverter is connected to the DC power supply, converts the DC power of the DC power supply into AC power with variable voltage and variable frequency, and drives and controls the motor; 矢量控制部,运算向对负荷进行旋转驱动的所述马达施加的电压;a vector control unit calculating a voltage applied to the motor that rotationally drives a load; 高次分量生成部,运算所述矢量控制部的施加电压的基波的高次分量;a higher-order component generation unit that calculates a higher-order component of a fundamental wave of the voltage applied by the vector control unit; 电压相加部,向所述矢量控制部运算出的施加电压相加所述高次分量生成部运算出的高次分量;以及a voltage adding unit that adds the higher-order component calculated by the higher-order component generation unit to the applied voltage calculated by the vector control unit; and PWM脉冲生成部,根据该电压相加部的信号对所述逆变器进行脉宽控制,The PWM pulse generation part controls the pulse width of the inverter according to the signal of the voltage addition part, 针对由所述马达与其负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比表示的次数的高次分量,所述电压相加部将所述高次分量相加到施加电压。The high-order component generation unit calculates a high-order component of an order represented by a ratio of a resonance frequency of the resonance sound to a motor frequency for a resonance sound generated by resonance between the motor and its load, and the voltage addition unit The higher order components are added to the applied voltage. 2.一种马达控制装置,其特征在于,具备:2. A motor control device, characterized in that it has: 逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;The inverter is connected to the DC power supply, converts the DC power of the DC power supply into AC power with variable voltage and variable frequency, and drives and controls the motor; 指令电流运算部,运算流过所述马达的电流;a command current computing unit that computes the current flowing through the motor; 高次分量生成部,运算作为所述指令电流运算部的输出的指令电流的基波的高次分量;a higher-order component generation unit that calculates a higher-order component of a fundamental wave of the command current output from the command current calculation unit; 电流相加部,向所述指令电流相加所述高次分量生成部运算出的所述高次分量;a current adding unit that adds the higher-order component calculated by the higher-order component generation unit to the command current; 矢量控制部,根据所述电流相加部的输出运算施加到所述马达的电压;以及a vector control section calculating a voltage applied to the motor based on an output of the current adding section; and PWM脉冲生成部,根据所述矢量控制部的信号对所述逆变器进行脉宽控制,a PWM pulse generation unit that performs pulse width control on the inverter according to a signal from the vector control unit, 针对由所述马达与其负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比表示的次数的高次分量,所述电流相加部将所述高次分量相加到指令电流。The higher-order component generation unit calculates a higher-order component of an order represented by a ratio of a resonance frequency of the resonance sound to a motor frequency for a resonance sound generated by resonance between the motor and its load, and the current addition unit The higher-order components are added to the command current. 3.一种马达控制装置,其特征在于,具备:3. A motor control device, characterized in that it has: 逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;The inverter is connected to the DC power supply, converts the DC power of the DC power supply into AC power with variable voltage and variable frequency, and drives and controls the motor; 矢量控制部,运算向对负荷进行旋转驱动的所述马达施加的电压;a vector control unit calculating a voltage applied to the motor that rotationally drives a load; 高次分量生成部,运算所述矢量控制部的施加电压的基波的高次分量;a higher-order component generation unit that calculates a higher-order component of a fundamental wave of the voltage applied by the vector control unit; PWM脉冲生成部,具有包含固定2相调制方式的多个调制方式,根据所述电压相加部的信号对所述逆变器进行脉宽控制;a PWM pulse generation unit having a plurality of modulation methods including a fixed 2-phase modulation method, and controlling the pulse width of the inverter according to the signal from the voltage addition unit; 高次分量校正部,与多个调制方式相对应而校正所述高次分量;以及a higher-order component correcting unit that corrects the higher-order component corresponding to a plurality of modulation schemes; and 电压相加部,向所述矢量控制部运算出的施加电压相加所述高次分量校正部运算出的高次分量,a voltage adding unit that adds the higher-order component calculated by the higher-order component correcting unit to the applied voltage calculated by the vector control unit, 针对由所述马达与其负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比表示的次数的高次分量,所述电压相加部将对所述高次分量进行了校正的所述高次分量相加到施加电压。The high-order component generation unit calculates a high-order component of an order represented by a ratio of a resonance frequency of the resonance sound to a motor frequency for a resonance sound generated by resonance between the motor and its load, and the voltage addition unit The higher-order component corrected for the higher-order component is added to an applied voltage. 4.一种马达控制装置,其特征在于,具备:4. A motor control device, characterized in that it has: 逆变器,连接于直流电源,将该直流电源的直流电力变换为可变电压可变频率的交流电力,对马达进行驱动控制;The inverter is connected to the DC power supply, converts the DC power of the DC power supply into AC power with variable voltage and variable frequency, and drives and controls the motor; 指令电流运算部,运算流过所述马达的电流;a command current computing unit that computes the current flowing through the motor; 高次分量生成部,运算作为所述指令电流运算部的输出的指令电流的基波的高次分量;a higher-order component generation unit that calculates a higher-order component of a fundamental wave of the command current output from the command current calculation unit; 高次分量校正部,与多个调制方式相对应而校正所述高次分量;a higher-order component correcting unit that corrects the higher-order component corresponding to a plurality of modulation schemes; 电流相加部,向所述指令电流相加所述高次分量校正部进行了校正的所述高次分量;a current adding unit that adds the higher-order component corrected by the higher-order component correcting unit to the command current; 矢量控制部,根据所述电流相加部的输出运算施加到所述马达的电压;以及a vector control section calculating a voltage applied to the motor based on an output of the current adding section; and PWM脉冲生成部,具有包含固定2相调制方式的多个调制方式,根据所述矢量控制部的信号对所述逆变器进行脉宽控制,a PWM pulse generation unit having a plurality of modulation methods including a fixed 2-phase modulation method, and controlling the pulse width of the inverter based on a signal from the vector control unit, 针对由所述马达与其负荷的共振所产生的共振声音,所述高次分量生成部运算以所述共振声音的共振频率与马达频率之比表示的次数的高次分量,The higher-order component generation unit calculates a higher-order component of an order represented by a ratio of a resonance frequency of the resonance sound to a motor frequency for a resonance sound generated by resonance between the motor and its load, 所述电流相加部按照调制方式将所述高次分量校正部进行了校正的所述高次分量相加到所述指令电流。The current addition unit adds the higher-order component corrected by the higher-order component correction unit to the command current according to a modulation method. 5.根据权利要求1所述的马达控制装置,其特征在于,5. The motor control device according to claim 1, wherein: 所述高次分量的振幅是所述基波的振幅的5%以下。The amplitude of the higher-order component is 5% or less of the amplitude of the fundamental wave. 6.根据权利要求1~5中的任一项所述的马达控制装置,其特征在于,6. The motor control device according to any one of claims 1 to 5, wherein: 所述高次分量是基波的3m次,其中m=1,2,3,…。The high-order component is 3m times of the fundamental wave, where m=1, 2, 3, . . . 7.根据权利要求1所述的马达控制装置,其特征在于,7. The motor control device according to claim 1, wherein: 所述马达的负荷是风扇。The load of the motor is the fan. 8.一种空调机,其特征在于,8. An air conditioner, characterized in that, 装载了权利要求1所述的马达控制装置。The motor control device according to claim 1 is mounted.
CN201310368130.6A 2013-02-27 2013-08-22 Motor control device and air conditioner using the motor control device Pending CN104009692A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013036567A JP2014166082A (en) 2013-02-27 2013-02-27 Motor control device and air conditioner using the same
JP2013-036567 2013-02-27

Publications (1)

Publication Number Publication Date
CN104009692A true CN104009692A (en) 2014-08-27

Family

ID=51370212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310368130.6A Pending CN104009692A (en) 2013-02-27 2013-08-22 Motor control device and air conditioner using the motor control device

Country Status (3)

Country Link
JP (1) JP2014166082A (en)
KR (1) KR101422132B1 (en)
CN (1) CN104009692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091283A (en) * 2021-04-07 2021-07-09 青岛海尔空调器有限总公司 Compressor working frequency control method and device, air conditioner, storage medium and product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023005629A (en) 2021-06-29 2023-01-18 株式会社日立産機システム Power conversion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88103400A (en) * 1987-06-03 1988-12-28 株式会社日立制作所 Inverter control unit
JPH11220900A (en) * 1997-11-25 1999-08-10 Fuji Electric Co Ltd Control method of permanent magnet type synchronous motor
JP2005000510A (en) * 2003-06-13 2005-01-06 Toshiba Corp Washing machine and inverter
WO2005035333A1 (en) * 2003-10-07 2005-04-21 Jtekt Corporation Electric power steering device
CN1658486A (en) * 2004-02-10 2005-08-24 株式会社电装 A device for controlling a three-phase AC motor based on two-phase modulation technology
JP2007282311A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Motor drive controller and compressor
JP2010178586A (en) * 2009-02-02 2010-08-12 Asmo Co Ltd Motor control device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3837986B2 (en) * 1999-12-24 2006-10-25 三菱電機株式会社 Permanent magnet type motor, control method for permanent magnet type motor, control device for permanent magnet type motor, compressor, refrigeration / air conditioner.
US6777907B2 (en) * 2001-11-06 2004-08-17 International Rectifier Corporation Current ripple reduction by harmonic current regulation
ES2425481T3 (en) * 2002-12-12 2013-10-15 Panasonic Corporation Engine control device
JP2004289985A (en) * 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd Inverter controller for driving motor and air conditioner
JP5045020B2 (en) * 2006-08-07 2012-10-10 パナソニック株式会社 Inverter controller for motor drive

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88103400A (en) * 1987-06-03 1988-12-28 株式会社日立制作所 Inverter control unit
JPH11220900A (en) * 1997-11-25 1999-08-10 Fuji Electric Co Ltd Control method of permanent magnet type synchronous motor
JP2005000510A (en) * 2003-06-13 2005-01-06 Toshiba Corp Washing machine and inverter
WO2005035333A1 (en) * 2003-10-07 2005-04-21 Jtekt Corporation Electric power steering device
CN1658486A (en) * 2004-02-10 2005-08-24 株式会社电装 A device for controlling a three-phase AC motor based on two-phase modulation technology
JP2007282311A (en) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd Motor drive controller and compressor
JP2010178586A (en) * 2009-02-02 2010-08-12 Asmo Co Ltd Motor control device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091283A (en) * 2021-04-07 2021-07-09 青岛海尔空调器有限总公司 Compressor working frequency control method and device, air conditioner, storage medium and product

Also Published As

Publication number Publication date
JP2014166082A (en) 2014-09-08
KR101422132B1 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
JP4961292B2 (en) Motor control device
KR101474263B1 (en) Motor control device, and air-conditioner using the same
WO2017022084A1 (en) Inverter control device and air-conditioner
WO2020045636A1 (en) Rotating electrical machine control device
JP6046446B2 (en) Vector control device, motor control device using the same, and air conditioner
EP2523343A2 (en) Apparatus and method for controlling rotary electric machine
JP2018064313A (en) Control arrangement and control method of ac motor, and ac motor drive system
JP5813934B2 (en) Power converter
KR101393903B1 (en) Motor control device and air conditioner using the same
JP7269576B2 (en) Rotating electric machine controller
JP5511700B2 (en) Inverter device, fan drive device, compressor drive device, and air conditioner
CN110247610A (en) Control device of electric motor
JP6459878B2 (en) Control device for rotating electrical machine
CN104009692A (en) Motor control device and air conditioner using the motor control device
JP5078925B2 (en) Electric motor drive device and equipment
JP2006230049A (en) Motor control device and motor current detector
JP3551911B2 (en) Brushless DC motor control method and device
JP5862690B2 (en) Control device for motor drive device and motor drive system
JP6681266B2 (en) Electric motor control device and electric vehicle equipped with the same
JP7571648B2 (en) Rotating Electric Machine Control System
JP2020167765A (en) Rotating electric machine control system
WO2024105859A1 (en) Inverter control device, motor driving device, blower, and air conditioner
CN110326210B (en) Air conditioner
JP2023158414A (en) Motor controller, electric compressor, motor control method and motor control program
JP2010252504A (en) Turbo molecular pump and driving method of the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140827