CN104006914A - 用于具有两层芯片结构的压力传感器的系统和方法 - Google Patents

用于具有两层芯片结构的压力传感器的系统和方法 Download PDF

Info

Publication number
CN104006914A
CN104006914A CN201410066173.3A CN201410066173A CN104006914A CN 104006914 A CN104006914 A CN 104006914A CN 201410066173 A CN201410066173 A CN 201410066173A CN 104006914 A CN104006914 A CN 104006914A
Authority
CN
China
Prior art keywords
pressure
sensor chip
isolation member
diaphragm
stress isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410066173.3A
Other languages
English (en)
Inventor
G.C.布朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Honeywell International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc filed Critical Honeywell International Inc
Publication of CN104006914A publication Critical patent/CN104006914A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/145Housings with stress relieving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • G01L13/026Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms involving double diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0654Protection against aggressive medium in general against moisture or humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/145Housings with stress relieving means
    • G01L19/146Housings with stress relieving means using flexible element between the transducer and the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/147Details about the mounting of the sensor to support or covering means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

提供用于具有两层芯片结构的压力传感器的系统和方法,其中,压力传感器包括:壳体,该壳体具有高侧输入端口和低侧输入端口,当把壳体置于含有高压和低压介质的环境中时,高侧输入端口允许高压介质进入壳体的高侧并且低侧输入端口允许低压介质进入壳体的低侧;安装在壳体内的基底;安装到基底的应力隔离构件;具有感测电路的芯片堆,该芯片堆结合到应力隔离构件;涂覆到基底、应力隔离构件和芯片堆的暴露于低侧输入端口的表面的低侧原子层沉积物(ALD);以及涂覆到应力隔离构件和芯片堆的暴露于高侧输入端口的表面的高侧原子层沉积物(ALD)。

Description

用于具有两层芯片结构的压力传感器的系统和方法
背景技术
硅压力传感器提供多个益处,包括小的尺寸、良好的质量和稳定的性能。此外,因为可以将多个相同的传感器同时制造在单个晶片上,所以硅压力传感器的制造具有高性能价格比。然而,在某些环境中,压力介质会腐蚀感测芯片上的部件或者腐蚀硅感测芯片自身。为了防止压力介质腐蚀感测芯片,可将感测芯片与压力介质相隔离。为了隔离压力介质,通常将感测芯片置于填充油的膜片系统内,其中,金属隔离膜片的一侧暴露于压力介质而另一侧暴露于填充油的室。硅压力传感器的压力感测部分被该油包围,使得油压的变化导致硅压力传感器的感测元件上的变化。然而,与由硅压力感测芯片所造成的尺寸限制相比,填充油的隔离系统显著地增加压力传感器结构的尺寸。
此外,在某些实施例中,在压力介质是空气的情况下,硅会直接地暴露于空气。在一种类型的压力传感器中,压阻硅结构感测压力感测膜片中的应变。含有这些压阻元件的表面还含有金属化迹线和引线结合焊盘(wire bond pad)。当空气是压力介质时,硅的含有用于连接压阻元件的金属化区域的那侧会暴露于空气所含的湿气。该湿气会导致金属化区域之间的电流泄漏,该电流泄漏会产生压力测量的误差。
发明内容
提供了用于具有两层芯片结构的压力传感器的系统和方法。在某些实施例中,一种压力传感器包括:壳体,该壳体包括高侧输入端口和低侧输入端口,当把壳体置于含有高压介质和低压介质的环境中时,高侧输入端口构造成允许高压介质进入壳体的内部的高侧并且低侧输入端口构造成允许低压介质进入壳体的内部的低侧;以及被牢固地安装在壳体内的基底。而且,该压力传感器包括:安装到基底的应力隔离构件,其中,通道从低侧输入端口的端部延伸穿过基底和应力隔离构件;以及结合到应力隔离构件的两层芯片堆,该两层芯片堆包括被隔离的感测电路。此外,该压力传感器包括:低侧原子层沉积物,该低侧原子层沉积物涂覆到基底、应力隔离构件和两层芯片堆的暴露于低侧输入端口的表面;以及高侧原子层沉积物,该高侧原子层沉积物涂覆到应力隔离构件和两层芯片堆的暴露于高侧输入端口的表面。
附图说明
应理解的是附图仅仅描绘示例性实施例,因此不应被认为限制本发明的范围,下面将利用附图来更具体且详细地描述这些示例性实施例,附图中:
图1是本公开所描述的一个实施例中的压力传感器的剖视图;
图2A是在本公开所描述的一个实施例中的两层芯片堆的剖视图;
图2B是本公开所描述的一个实施例中的两层芯片堆内的感测电路的剖视图;并且
图3是本公开所描述的一个实施例中的用于制造压力传感器的方法的流程图。
根据惯例,所描述的各种特征并非按比例绘制而是被绘制成强调与示例性实施例有关的特定特征。
具体实施方式
在下面的详细说明中,参照构成其一部分的附图来说明特定的说明性实施例。然而,应该理解的是可采用其它实施例并且可作出逻辑的、机械的和电的变化。此外,附图和说明书所给出的方法不应被理解成限制用来执行单独步骤的顺序。因此,下面的详细说明不应被认为具有限制的意义。
本公开中描述的实施例保护硅芯片和形成于该硅芯片上的感测电路免受压力介质的损害作用,诸如由腐蚀和湿气所导致的电流泄漏。为了保护硅压力传感器,在两个硅压力感测芯片之间形成压力感测电路以形成两层芯片堆。两层芯片堆被安装在与硅匹配的低温共烧陶瓷(SM-LTCC)应力隔离构件(诸如基座)上。两层芯片堆结构提供两个压力感测膜片:高压感测膜片和低压感测膜片。两层芯片堆包括在高压感测膜片和低压感测膜片之间的内腔。该内腔将感测电路与压力介质隔离,该感测电路包括连接垫、金属化迹线和压阻元件。两层芯片结构还包括将高压感测膜片连接到低压感测膜片的中心柱,其中,中心柱在高压感测膜片和低压感测膜片之间传递彼此的偏离所产生的力。这样,施加到高压感测膜片或者低压感测膜片的压力差被暴露于内腔的膜片表面之一上的压阻元件感测。经由利用贯通芯片的过孔(via)的连接实现与压阻元件的电连接。通过将感测电路定位在内腔中,而使感测电路与压力介质的有害效应相隔离。
在另一个实施例中,利用形成于两层芯片堆的表面上的原子层沉积物来保护两层芯片堆免受低压和高压介质两者的影响,否则的化,两层芯片堆不与低压和高压介质隔离。例如,将金属氧化物涂层(如氧化铝或氧化钛)沉积在压力感测装置内的暴露面上,以使传感器性能的退化最小化。此构造可用于量具或压力差应用。当把端口中的一个端口密封以包含真空时,其也可以构造成绝对压力传感器。此外,通过取消作为隔离介质的油,可以减小压力传感器的尺寸。
图1是压力感测装置100的剖视图。压力感测装置100能够测量单独介质之间的压力差,或者测量介质中的压力。当压力感测装置100感测不同压力介质中的压力时,不同的压力介质可由空气组成、由液体组成或者由空气和液体二者组成。为了感测不同压力介质的压力,压力感测装置100包括高侧输入端口102和低侧输入端口104,其中,高侧输入端口102允许高压介质进入高侧壳体106并且低侧输入端口104允许低压介质进入低侧壳体108。如本文所使用的,“高压介质”是指具有高于低侧压力介质的压力的介质。然而,在某些示例性实施例中,低压介质可具有比高压介质更高的压力。另外,在一个具体的示例性实施例中,将高侧或者低侧之一密封以包含参考真空,使得压力感测装置100起到绝对压力计的作用。在某些其它实施例中,压力感测装置100感测高压介质和低压介质之间的压力差。替代地,压力感测装置100将高压介质或低压介质之一的压力用作参考值来测量其它介质中的压力。此外,高侧壳体106联接到低侧壳体108以包封压力感测装置100的感测部件,从而保护所述部件免受环境影响,其会损坏压力感测装置100或者影响压力感测装置100的性能。
在某些实施例中,为了测量进入高侧输入端口102的高压介质与进入低侧输入端口104的低压介质之间的压力,压力感测装置100包括感测芯片110,该感测芯片110具有形成于其中的膜片105。为了在压力感测装置100中形成膜片105,感测芯片110的一部分被去除以形成感测芯片110的凹部,其中,该凹部是感测芯片110的一部分。通过使感测芯片110的一部分形成凹陷,而形成比感测芯片110的其它部分更薄的膜片,使得膜片105能够响应于膜片105的不同侧上的压力差而移动。
在至少一个实施方式中,感测芯片110是压阻硅感测芯片,其中,包括压阻硅结构的感测电路107形成于硅膜片105的电路侧109上,并且膜片105中的应变影响感测电路107的性能。在至少一个实施例中,当高压介质经过高侧输入端口102进入高侧壳体106且低压介质经过低侧输入端口104进入低侧壳体108时,低压介质和高压介质两者都施加力于感测芯片110上。低压介质和高压介质之间的压力差导致感测芯片110上的膜片105发生偏离。例如,如果高压介质的压力与低压介质的压力相等,那么高压介质和低压介质施加相同的压力于膜片105上,但是从膜片105的相对侧施加压力。因此,当压力差为零时,膜片105不发生偏离。此外,当高压介质具有大于低压介质的压力时,高压介质向膜片105施加比低压介质所施加力更大的力。由于高压介质所施加的力,膜片105朝向低侧输入端口104偏离,膜片105的偏离使形成于膜片105上的感测电路107产生应变。
在某些环境中,高侧壳体106和低侧壳体108会经受应力,所述应力可影响压力感测装置100的位于高侧壳体106与低侧壳体108的组合内的那些部件。虽然在壳体内的一些部件会最低限度地受到应力的影响,但位于传感器芯片110的电路侧109上的感测电路107中的压阻硅结构上的应变(该应变由压力感测装置100上的应力引起)会对压力感测装置100的压力测量的精度产生负面影响。例如,压力感测装置100上的外部应变会经过压力感测装置100的各种部件而传播,并且以类似于由高压介质或低压介质施加到传感器芯片110的膜片105的应变的方式使传感器芯片110产生应变。膜片105上的应变引起传感器芯片110所得到的压力测量中的偏差。在某些实施例中,为了将传感器芯片110与压力感测装置100的或者感测装置100中的其它部件上的应力相隔离,而将传感器芯片110安装在应力隔离构件114上。应力隔离构件114将传感器芯片110与施加到压力感测装置100的应变或者由压力感测装置100内的其它部件引起的应变相隔离。在一个具体实例中,应力隔离构件114可包括基座,该基座具有安装在其上的传感器芯片110,其中,该基座在结构上将压力感测装置100内的传感器芯片110与影响压力感测装置100或者压力感测装置100的其它部件的物理力相隔离。
在某些实施例中,为了进一步防止应变影响到传感器芯片110的压力测量精度,应力隔离构件114由具有与传感器芯片110相似的热膨胀系数(CTE)的材料制成。例如,当传感器芯片110由硅制成时,应力隔离构件114由具有与硅基本相同的热膨胀系数(CTE)的材料制成。因此,当应力隔离构件114和/或传感器芯片110的尺寸由于热能变化而变化时,应力隔离构件114和传感器芯片110以大致相同的速率膨胀,以防止热膨胀施加应力到形成于传感器芯片110上的压阻元件。在至少一个示例性实施例中,传感器芯片106由硅匹配的低温共烧陶瓷(SM-LTCC)制成。在其它实施例中,当制造应力隔离构件114时,利用热电结合过程或者用于使传感器芯片110结合到应力隔离构件114的其它过程使传感器芯片110结合到应力隔离构件114。
在某些实施例中,应力隔离构件114形成于基底126上。基底126可由氧化铝支撑材料或者其它可铜焊的材料制成。在至少一个示例性实施例中,将基底126和应力隔离构件114牢固地安装在低侧壳体108内。为了将基底126和任何附接的部件牢固地安装在低侧壳体108内,利用铜焊128将基底126附接到低侧壳体108。当把基底126牢固地附接到低侧壳体108时,进入低侧端口104的压力介质可与基底126的与应力隔离构件114相对的一侧接触。为了允许压力介质通过基底126和应力隔离构件114以便压力介质可以与传感器芯片110的膜片105接触,形成穿过基底126和应力隔离构件114的通道138。当应力隔离构件114包括基座时,通道138延伸穿过基座。将传感器芯片110安装到应力隔离构件114使得膜片105的一侧面对应力隔离构件110中的通道138的开口并且传感器芯片110的电路侧109不暴露于通道138。
在至少一个实施例中,为了便于传感器芯片110的膜片105上的感测电路107与外部电路之间的电连接,形成穿过传感器芯片110的金属化过孔111。此外,在应力隔离构件114的制造期间,将应力隔离嵌入迹线116形成于应力隔离构件114内并且将基底嵌入迹线124形成于基底126内。形成于传感器芯片110上的感测电路107电连接到金属化过孔111。传感器芯片110被安装到应力隔离构件114使得金属化过孔111与应力隔离构件110中的应力隔离嵌入迹线116接触。此外,应力隔离嵌入迹线116与基底嵌入迹线124接触。基底嵌入迹线124延伸穿过基底并且与互连件132电接触,互连件132延伸穿过低侧壳体108或高侧壳体106的侧壁。互连件132延伸穿过侧壁并且与安装在电路晶片上的前端电路134接触。前端电路134电连接到外部连接器,该外部连接器将压力感测装置100连接到外部系统。前端电路134包括电子器件,这些电子器件部分地控制对传感器芯片110上的电元件的输入。例如,前端电路134包括模拟数字转换器、数字模拟转换器、多芯片模块等。在至少一个实施方式中,前端电路134执行诸如压力输出表征、输出信号调节等的功能。
在某些实施例中,存在多个应力隔离嵌入迹线116和基底嵌入迹线124,其中,每个应力隔离嵌入迹线116与基底嵌入迹线124相关联并且,每对相关联的应力隔离嵌入迹线116和基底嵌入迹线124类似地与形成于传感器芯片110中的单独的金属化过孔111相关联。应力隔离嵌入迹线116、基底嵌入迹线124和金属化过孔111的每个组合形成了前端电路134和形成于传感器芯片110上的感测电路107之间的不同的电连接。因此,当传感器芯片110上的感测电路107的性能响应于膜片105上的应变而变化时,感测电路107经过前端电路134被驱动,使得感测电路107的性能变化经过外部连接器136而被传送至外部系统。
在至少一个实施例中,感测芯片110和附带的膜片105可由硅或者其它类似材料制成。另外,感测芯片110、压阻元件和形成于感测芯片110上的附带电路易受来自压力介质的损伤的影响。例如,如果使感测芯片与压力介质接触达相当长的时间段,压力介质将会腐蚀感测芯片110并且影响形成于感测芯片110上的感测电路107的运行。腐蚀和运行影响甚至会导致压力感测装置100失效或者不正确地工作。在一个具体实例中,在压力介质是空气的情况下,空气会含有湿气,该湿气会导致压力感测装置100中的吸湿部件膨胀并向感测芯片110施加应变。此外,湿气也会导致形成于感测芯片110上的金属化路径之间的电流泄漏。为了防止可由压力介质所导致的对感测芯片110的损坏,将感测芯片110上的感测电路与低压介质或者高压介质隔离。
在某些实施例中,为了将感测电路与高压介质和低压介质两者隔离,而将感测电路置于高压感测芯片112和感测芯片110之间的内腔118内,其中,感测芯片110起到低压感测芯片110的作用。将高压感测芯片112与低压感测芯片110气密地结合在一起,使得高压介质或者低压介质中的湿气不能进入容纳感测电路的内腔118中。当高压感测芯片112与低压感测芯片110结合到一起时,高压感测芯片112和低压感测芯片110形成两层芯片堆113。在至少一个示例性实施例中,通过扩散结合过程使高压感测芯片112与低压感测芯片110彼此结合。
如图1中所示,传感器芯片110(在某些实施例中具有形成于其上面的感测电路107)起到低压感测芯片110的作用。在一个替代实施例中,感测电路107可形成于高压感测芯片112上。低压感测芯片110包括低压膜片105。低压膜片105对于经过低压输入端口104进入压力感测装置100的低压介质所施加的力直接地作出反应。类似地,高压感测芯片112包括高压膜片140。高压膜片140以类似于低压膜片105的方式形成。高压膜片140对于经过高压输入端口102进入压力感测装置100的高压介质所施加的力直接地作出反应。在至少另一个实施方式中,低压膜片105和高压膜片140通过中心柱120彼此物理连接。中心柱120是高压膜片140和低压膜片105之间的力换向构件。当低压介质施加力于低压膜片105上时,低压膜片105响应于所施加的力而移动。因为低压膜片105与中心柱120接触,所以低压膜片105的移动将力施加于中心柱120上。因为中心柱120与高压膜片140接触,所以由低压膜片105施加于中心柱120上的力经过中心柱120传递并且施加到高压膜片140。类似地,当高压介质施加力于高压膜片140上时,高压膜片140响应于所施加的力而移动。因为中心柱120与低压膜片105和高压膜片140两者接触,所以高压膜片140施加于中心柱120上的力经过中心柱120传递并且施加到低压膜片105。因为由高压介质或者低压介质施加于高压膜片140或者低压膜片105上的力影响了包含低压膜片105的感测电路的移动,所以低压膜片105根据高压介质和低压介质之间的差异而移动。因此,内腔118中的感测电路能够提供压力测量值,该测量值代表高压介质和低压介质之间的压力差。
在某些实施例中,应力隔离构件114可由吸湿材料(诸如硅、SM-LTCC等)制成。如果应力隔离构件114由吸湿材料制成,当应力隔离构件114吸收经过高侧端口102进入压力感测芯片100的高压介质中的或者经过低侧端口104进入压力感测芯片100的低压介质中的湿气时,应力隔离构件114发生膨胀。如果应力隔离构件114暴露于低压介质或者高压介质中的湿气,那么应力隔离构件114的膨胀会使得低压传感器芯片110上的感测电路中的压阻元件产生应变,从而导致压阻元件所产生的测量中的偏差。此外,某些压力介质对两层芯片堆113会具有腐蚀性,因而当低压感测芯片110和高压感测芯片112暴露于压力介质时压力介质会损伤低压感测芯片110和高压感测芯片112。
在某些实施例中,保护应力隔离构件114免受压力介质中的湿气的影响,并且利用原子层沉积物(ALD)涂层126和139保护低压感测芯片110和高压感测芯片112免受压力介质中的可能的损伤性物质的影响。例如,用高压ALD涂层139涂覆两层芯片堆113和应力隔离构件114的可能暴露于高压介质的表面。类似地,用低压ALD涂层130涂覆两层芯片堆113、应力隔离构件114和基底126的可能暴露于低压介质的表面。在某些实施方式中,高压ALD涂层139和低压ALD涂层130两者都是金属氧化物的原子层沉积物。例如,金属氧化物可以是氧化铝、氧化钛等。在至少一个实施例中,在把压力感测装置100内的部件安装在低侧壳体108内之前,将低压ALD涂层130和高压ALD涂层139两者沉积在所述部件的表面上。替代地,在把压力感测装置100内的部件安装在低侧壳体108内之后但在把低侧壳体108连接到高侧壳体106之前,将低压ALD涂层130和高压ALD涂层139两者涂覆到所述部件。例如,当把基底126、应力隔离构件114和两层芯片堆113固定在低侧壳体108内时,将高压ALD涂层139和低压ALD涂层130两者涂覆到低侧壳体108的全部的暴露的内表面上。当把高压ALD涂层139和低压ALD涂层130两者涂覆到低侧壳体108内的表面时,将低侧壳体108与高侧壳体106连接到一起。另外,通过用低压ALD涂层130涂覆经过低侧输入端口104而暴露的低侧壳体108的内表面,而将低压ALD涂层130涂覆在铜焊128上。将低压ALD涂层130涂覆于铜焊128上可排除对于压力感测装置100内的O形环密封件的需要,该O形环密封件在高温操作期间可能会失效。
如上所述,高压ALD涂层139和低压ALD涂层130保护压力感测装置100的部件免受会影响压力感测装置100的性能的压力介质中的物质的影响。另外,将感测电路置于由高压感测芯片112和低压感测芯片110所形成的内腔118中,其中,高压感测芯片112和低压感测芯片110具有各自的低压膜片105和高压膜片140,低压膜片105和高压膜片140通过中心柱120彼此连接,这会将感测电路与压力介质隔离而不必将感测电路包封在油中。因为感测电路不被隔离在油中,所以可以以小于其它压力传感器(其中,感测电路被隔离在油中)的尺寸来制造感测芯片。
图2A是相互结合的低压感测芯片210和高压感测芯片212的详细剖视图200a,其中,低压感测芯片210被安装到应力隔离构件214。在某些实施例中,低压感测芯片210、高压感测芯片212和应力隔离构件214起到图1中所示的低压感测芯片110、高压感测芯片112和应力隔离构件114的作用。此外,低压感测芯片210具有形成于低压感测芯片的电路侧209上的感测电路。例如,低压感测芯片210具有压力感测元件207和温度感测元件203。在至少一个示例性实施方式中,压力感测元件207是置于膜片205的顶上的压阻元件,该膜片205形成为低压感测芯片210的一部分。当膜片205响应于高压介质和低压介质之间的压力差而移动时,压力感测元件207的电阻相应地变化。随着压力感测元件207的电阻变化,当使电流传导经过压力感测元件207时,压力感测元件207上的电压降也发生变化。因为压力感测元件207上的电压降随着高压介质和低压介质之间压力差的变化而变化,所以可以利用该电压降来确定不同介质之间的压力差。替代地,高压介质或者低压介质可充当提供参考压力(如真空,或者1 atm)的介质。当高压介质或低压介质之一起到参考压力的作用时,可利用压力感测元件207上的电压降来确定所测量的压力介质的绝对压力。
在另一个实施例中,制造过程也可在低压感测芯片210的表面上形成温度感测元件203。与压力感测元件207相反,温度感测元件203不形成在膜片205上,而是形成在低压感测芯片210的不在膜片205上的一部分上。以类似于压力感测元件207的方式,温度感测元件203响应于环境的影响而改变电阻。具体地,温度感测元件203响应于温度变化而改变电阻。因此,通过监测温度感测元件203上的电压降,可以检测压力传感器的环境中的温度变化。
在至少一个实施例中,温度感测元件203和压力感测元件207两者通过形成于低压感测芯片210的表面上的金属迹线而电连接到外部系统,其中,金属迹线将压力感测元件207和温度感测元件203电连接到金属化过孔211,金属化过孔211延伸穿过感测芯片并与应力隔离构件迹线216接触。在某些实施例中,金属化过孔211和应力隔离构件迹线216的作用类似于如上面关于图1所描述的金属化过孔111和应力隔离构件迹线116。
由于压力感测元件207和温度感测元件203对于外部因素导致的应变作出响应,所以可保护压力感测元件207和温度感测元件203免受外部环境因素的影响,这些外部环境因素会影响在压力感测元件207或者温度感测元件203上测量到的电压降的精度。例如,如果压力感测元件207、温度感测元件203或者金属迹线暴露于湿气,那么电流会从金属迹线泄漏出来,从而导致温度感测元件203和/或压力感测元件207的精度受到影响。为了防止外部环境因素影响温度感测元件203或者压力感测元件207的运行,将高压感测芯片212结合到低压感测芯片210。
如上面关于图1中的内腔118所描述的,高压感测芯片212可具有形成于其中的空腔,从而为形成于低压感测芯片210的表面上的感测电路提供空间。例如,高压感测芯片212可包括压力感测腔218和温度感测腔219。压力感测腔218还用于提供形成于高压感测芯片212中的膜片240。压力感测腔包围压力感测元件207和从压力感测元件207朝向金属化过孔211延伸的金属迹线中的一些。温度感测腔219包括温度感测元件203和连接到金属化过孔211的一部分金属迹线。在至少一个实施方式中,温度感测腔219还包括金属化过孔211的表面,该金属化过孔211连接到低压感测芯片210的表面上的金属迹线。当把高压感测芯片212气密地密封到低压感测芯片210时,湿气和其它损害性环境因素不能进入温度感测腔219或压力感测腔218。
在至少一个实施例中,压力感测腔218将高压感测芯片212中的膜片240与低压感测芯片210中的膜片205分离,中心柱220将膜片240和膜片205二者的相互面对的表面彼此物理地连接。中心柱220的作用是将施加到膜片240的压力传递至低压膜片205并且将施加到低压膜片205的压力传递至高压膜片240。通过在低压膜片205和高压膜片240之间来回传递力,当低压膜片205或者高压膜片240暴露于压力介质中的压力时,低压膜片205移动。低压膜片205的移动导致在形成于低压膜片205上的压力感测元件207上产生应变,从而允许压力感测元件207测量施加到高压膜片240或者低压膜片205的压力。在至少一个实施方式中,中心柱220减弱由一个膜片所经受的力,因为该力被传递至其它膜片。例如,当高压膜片240受到力的作用时,该力经过中心柱220被传递至低压膜片205,其中,与由高压膜片240所经受的压力相比,低压膜片205具有四分之一的对压力差的灵敏度。为了考虑安装到低压膜片205的表面的压力感测元件207的灵敏度降低,外部系统对从压力感测电路207接收的测量值进行调整。另外,如上面关于图1描述的,一旦把高压感测芯片212安装到低压感测芯片210,则用ALD涂层238和230涂覆高压感测芯片212、低压感测芯片210和应力隔离构件214的暴露面。
图2B是示出了形成于在压力感测腔218和温度感测腔219内的低压感测芯片210的表面上的感测电路的剖视图200b。如图所示,压力感测腔218和温度感测腔219形成于高压感测芯片212内。如图所示,压力感测元件207可包括多个压阻元件,这些压阻元件对低压膜片205上的应变作出反应。压力感测元件207通过形成于低压感测芯片210的表面上的金属迹线209而连接到金属化过孔211。如图所示,金属迹线209和压力感测元件207被布置在压力感测腔218内,在中心柱220的周围。此外,如上所述,温度感测腔219包括多个温度感测元件203,这些温度感测元件203对温度变化作出反应。此外,形成于低压感测芯片210的表面上的金属迹线209连接到温度感测腔219内的金属化迹线211。
在高压感测芯片212和低压感测芯片210的某些实施方式中,通过将两个不同的晶片扩散结合在一起来制造高压感测芯片212和低压感测芯片210。根据本领域技术人员已知的方法对这两个单独的晶片进行加工而形成压力感测腔218和温度感测腔219、低压膜片205和高压膜片240、压力感测元件207和温度感测元件203、金属迹线209、中心柱220和贯通芯片的金属化过孔211。采用适当的硅加工技术可以用两个晶片同时加工成大量的芯片,其中,一个晶片包含在其内形成的多个低压感测芯片210而另一个晶片包含在其内形成的多个高压感测芯片212。例如,当芯片尺寸为0.250×0.200英寸并且每个晶片是6英寸晶片时,两个晶片可产生超过450个芯片,包括从一个晶片组获得的高压感测芯片212和低压感测芯片210。在至少一个实施方式中,可利用扩散结合过程使两个单独的晶片彼此结合。例如,可利用低温扩散结合过程(其中,温度低于600℃)将包括多个高压感测芯片212的晶片结合到低压感测芯片210。在至少一个实施方式中,利用绝缘体上硅(SOI)构造将温度感测元件203和压力感测元件207安装到低压感测芯片,以提供压阻元件与用于形成低压感测芯片210的导电硅的隔离。
当已将不同的晶片彼此结合时,可将晶片分割成不同的两层芯片堆,其中,每个两层芯片堆包含单独的高压感测芯片212和低压感测芯片210。当晶片已被分割时,利用各种芯片安装技术将两层芯片堆安装到应力隔离构件214。在至少一个示例性实施例中,利用应力隔离构件214和两层芯片堆之间的热电结合将两层芯片堆安装到应力隔离构件214。
如上所述,应力隔离构件214被制造成具有电连接到金属化过孔211的应力隔离构件迹线216。此外,应力隔离构件迹线216也可电连接到各种其它类型的电路。例如,在一个实施方式中,应力隔离构件迹线216电连接到外部连接器(诸如外部连接器136),以便仅用于传感器用途。替代地,应力隔离构件迹线216也可连接到提供信号处理、错误纠正、合适的电子输出等的电子电路(诸如RF前端电路134)。
当把不同的两层芯片堆安装到应力隔离构件214时,用原子层沉积物涂覆两层芯片堆和应力隔离构件214的表面,以改善压力感测装置抵抗可由不同压力介质造成的损伤的能力。在至少一个实施方式中,原子层沉积物是金属氧化物。例如,金属氧化物可以是TaO5涂层,该涂层对于pH值在范围4-14内的介质所造成的损伤具有耐受性。
包括低压感测芯片210和高压感测芯片212的两层芯片堆的使用允许在隔离过程中不必使用油的情况下将温度感测元件203和压力感测元件207与某些类型压力介质造成的损害相隔离。因此,可以以较小的尺寸制造包括两层芯片堆的压力感测装置。另外,由于不使用油来提供隔离,因而压力感测装置在更大的温度范围内具有增加的稳定性。
图3是用于制造压力传感器的方法300的一个示例性实施例的流程图。图3中所示的示例性实施例在这里被描述成利用图1中所示的压力感测装置100而实施,但应理解的是其它实施例也可以通过其它方式实施。
方法300进行到步骤302,在步骤302中,应力隔离构件114被形成为与基底126接触。在某些实施例中,应力隔离构件114由氧化铝制成的基底126上的SM-LTCC材料形成。在至少一个实施例中,通道138延伸穿过应力隔离构件114和基底126,使得气态或液态介质可以穿过通道138。另外,应力隔离构件114可以是基座状的形状,其中,通道138纵向地延伸穿过应力隔离构件114的基座。
方法300进行到步骤304,在步骤304中制造第一传感器芯片110。第一传感器芯片110包括硅膜片105,该硅膜片105具有形成于膜片105上的传感器电路。通过使第一感测芯片110的一部分凹陷而形成膜片105。在至少一个实施方式中,传感器电路包括压阻元件,该压阻元件根据膜片的移动而改变电阻。当第一传感器芯片110已被制造时,方法300进行到步骤306,在步骤306中制造第二传感器芯片112。如同第一传感器芯片110,通过使第二传感器芯片112的一部分凹陷而形成具有膜片140的第二传感器芯片112。此外,第二传感器芯片膜片140包括在第二传感器芯片112的凹部内的中心柱120。然后方法300进行到步骤308,在步骤308中使第一传感器芯片110结合到第二传感器芯片112以形成两层芯片堆113。当使第一传感器芯片110结合到第二传感器芯片112时,相对于第一传感器芯片110来确定第二传感器芯片112的取向,使得形成于第一传感器芯片110上的传感器电路在第二传感器芯片112的凹部内。此外,位于第二传感器芯片112的凹部内的中心柱120在膜片140和膜片105之间延伸。在至少一个实施方式中,利用扩散过程使第一传感器芯片110与第二传感器芯片112结合在一起以形成两层芯片堆。
方法300进行到步骤310,在步骤310中将两层芯片堆113安装到应力隔离构件114。在至少一个实施方式中,将第一传感器芯片110安装到应力隔离构件114,使得第一传感器芯片110的膜片105暴露于通道138的开口。在至少一个实施例中,第一传感器芯片110上的传感器电路连接到金属化过孔111,该金属化过孔111延伸穿过第一传感器芯片110。当把第一传感器芯片110安装在应力隔离构件110上时,金属化过孔111与形成于应力隔离构件114中的嵌入迹线116接触,使得传感器电路电连接到嵌入迹线116。
在某些实施例中,方法300进行到步骤312,在步骤312中将应力隔离构件114、基底126和两层芯片堆113固定在壳体中。例如,将组装好的部件置于壳体内,该壳体包括两个部分:低侧壳体108和高侧壳体106。低侧壳体108具有低侧输入端口104并且高侧壳体106具有高侧输入端口102,使得进入高侧输入端口102的高压介质能够施加压力于第二传感器芯片112中的膜片140上并且进入低侧输入端口104的低压介质能够施加压力于第一传感器芯片110中的膜片105上。此外,在至少一个示例性实施例中,利用铜焊128将组装好的部件固定在壳体内。替代地,当把部件组装在一起时,将应力隔离构件114、基底126和两层芯片堆113单独地固定在壳体内。
在某些实施例中,应力隔离构件114和基底126可以由吸湿材料制成。另外,两层芯片堆113中的材料易受到压力介质中的损害性材料的影响。当应力隔离构件114和/或基底126是吸湿的并且暴露于压力介质中的湿气时,应力隔离构件114和/或基底126会膨胀并导致两层芯片堆113中的应变,该应变导致测量误差。此外,湿气会导致感测电路中的电流泄漏,并且压力介质中的腐蚀性材料会腐蚀壳体内的元件。为了防止湿气的吸收和损伤,可以用原子层沉积物126来涂覆壳体内的部件的暴露于高压介质或者低压介质的表面。
在至少一个实施方式中,方法300进行到步骤314,在步骤314中将第一传感器芯片110上的感测电路电连接到外部系统。如上所述,感测电路连接到传感器芯片110中的过孔,这些过孔联接到应力隔离构件114中的嵌入迹线116。为了将感测电路电连接到外部系统,嵌入迹线116可连接到基底126中的嵌入迹线124,嵌入迹线124连接到具有前端电路134的互连件132,前端电路134通过外部连接器136连接到外部系统。
示例性实施例
实例1包括一种用于制造压力传感器的方法,所述方法包括:形成与基底接触的应力隔离构件,其中,所述应力隔离构件和所述基底具有被形成为穿过所述基底和所述应力隔离构件的通道;制造第一传感器芯片,所述第一传感器芯片具有第一凹部以形成第一膜片,所述第一膜片具有感测电路,所述感测电路形成于所述第一传感器芯片的与所述凹部相对的电路侧上;制造第二传感器芯片,所述第二传感器芯片具有第二凹部以形成第二膜片,其中,中心柱从所述第二膜片延伸到所述凹部中;使所述第一传感器芯片结合到所述第二传感器芯片以形成两层芯片堆,使得所述感测电路在所述第二凹部内并且所述中心柱与所述第一传感器芯片的所述电路侧接触;将所述两层芯片堆安装到所述应力隔离构件,其中,所述第一凹部暴露于所述通道;将所述应力隔离构件、所述基底和所述两层芯片堆固定在具有高侧输入端口和低侧输入端口的壳体中,其中,所述通道位于所述壳体中使得进入所述低侧输入端口的低压介质也进入所述通道并且进入所述高侧输入端口的高压介质施加直接力于所述第二膜片上;以及将所述感测电路电连接到外部系统。
实例2包括实例1的方法,其中,所述应力隔离构件包括基座,所述基座从所述基底的表面延伸开来,其中,所述通道纵向地延伸穿过所述基座,所述传感器芯片被安装到所述基座,其中,所述通道的暴露于第一膜片的第一侧的开口是在所述基座的最远离基底的一侧中。
实例3包括实例1-2中任一实例的压力传感器,其中,使第一传感器芯片结合到第二传感器芯片包括采用扩散结合过程。
实施例4包括实例1-3中任一实例的方法,其中,在基底上形成应力隔离构件包括在所述应力隔离构件内形成至少一个嵌入导电迹线,其中,所述至少一个嵌入导电迹线电连接到所述感测电路。
实例5包括实例4的方法,其中,制造第一传感器芯片包括:形成穿过所述第一传感器芯片的至少一个过孔,其中,当把所述两层芯片堆安装到所述应力隔离构件时,所述至少一个过孔将所述至少一个嵌入导电迹线电连接到所述感测电路。
实例6包括实例1-5中任一实例的方法,其中,所述应力隔离构件由与硅的热膨胀系数匹配的低温共烧陶瓷制成。
实例7包括实例1-6中任一实例的方法,还包括:将低侧原子层沉积物涂覆于所述基底、所述应力隔离构件和所述两层芯片堆的低侧表面,其中,所述低侧表面暴露于所述低侧输入端口;以及将高侧原子层沉积物涂覆于所述应力隔离构件和所述两层芯片堆的高侧表面,其中,所述高侧表面暴露于所述高侧输入端口。
实例8包括实例7的方法,其中,所述原子层沉积物包括金属氧化物。
实例9包括实例7-8中任一实例的方法,其中,将所述应力隔离构件、所述基底和所述两层芯片堆固定在所述壳体中包括:将所述应力隔离构件、所述基底和所述两层芯片堆安装在低侧壳体内,所述低侧壳体包括低侧输入端口;涂覆所述低侧原子层沉积物;涂覆所述高侧原子层沉积物;以及将高侧壳体连接到所述低侧壳体以形成所述壳体,所述高侧壳体包括高侧输入端口。
实施例10包括实施例1-9中任一实例的方法,其中,将所述感测电路电连接到所述外部系统包括:将所述感测电路电连接到位于电路壳体内的前端电路,其中,所述电路壳体安装到所述壳体的外表面;将所述前端电路经过外部连接器电连接到所述外部系统。
实例11包括实施例1-10中任一实例的方法,其中,利用铜焊和软焊接头中的至少一种将所述基底和所述应力隔离构件固定在所述壳体内。
实例12包括一种压力传感器,所述传感器包括:壳体,所述壳体包括高侧输入端口和低侧输入端口,当把所述壳体置于含有高压介质和低压介质的环境中时,所述高侧输入端口构造成允许所述高压介质进入所述壳体的内部的高侧并且所述低侧输入端口构造成允许所述低压介质进入所述壳体的内部的低侧;被牢固地安装在所述壳体内的基底;安装到所述基底的应力隔离构件,其中,通道从所述低侧输入端口的端部延伸穿过所述基底和所述应力隔离构件,其中,至少一个迹线被嵌入在所述应力隔离构件内;结合到所述应力隔离构件的两层芯片堆,所述两层芯片堆包括:第一传感器芯片,所述第一传感器芯片具有第一凹部以形成第一膜片,所述第一膜片具有感测电路,所述感测电路形成于所述第一传感器芯片的与所述凹部相对的电路侧上;第二传感器芯片,所述第二传感器芯片具有第二凹部以形成第二膜片,其中,中心柱从所述第二膜片延伸到所述凹部中;以及延伸穿过所述第一传感器芯片的至少一个过孔,所述至少一个过孔将所述感测电路电连接到所述至少一个迹线;低侧原子层沉积物,所述低侧原子层沉积物涂覆到所述基底、所述应力隔离构件和所述两层芯片堆的暴露于所述低侧输入端口的表面;以及高侧原子层沉积物,所述高侧原子层沉积物涂覆到所述应力隔离构件和所述两层芯片堆的暴露于所述高侧输入端口的表面。
实例13包括实例12的压力传感器,其中,所述感测电路包括至少一个温度感测元件和至少一个压力感测元件。
实例14包括实例13的压力传感器,其中,所述至少一个压力感测元件位于所述第一膜片的电路侧上的第二凹部内,并且所述至少一个温度感测元件位于所述第二传感器芯片中的温度感测腔内,在所述第一传感器芯片的电路侧的不与所述第一凹部相对的一部分上。
实例15包括实例14的压力传感器,其中,所述至少一个过孔连接到所述温度感测腔内的金属迹线,其中,所述金属迹线连接到至少一个压力感测元件和至少一个温度感测元件。
实例16包括实例12-15中任一实例的压力传感器,其中,利用扩散结合过程使所述第一传感器芯片结合到所述第二传感器芯片。
实例17包括实例12-16中任一实例的压力传感器,其中,所述壳体包括:低侧壳体,所述低侧壳体包括所述低侧输入端口,其中,所述应力隔离构件和所述基底被牢固地安装在所述低侧壳体内;以及高侧壳体,所述高侧壳体包括所述高侧输入端口,其中,所述高侧壳体气密地连接到所述低侧壳体。
实例18包括一种压力传感器,所述传感器包括:壳体,所述壳体包括高侧输入端口和低侧输入端口,当把所述壳体置于含有高压介质和低压介质的环境中时,所述高侧输入端口构造成允许所述高压介质进入所述壳体的内部的高侧并且所述低侧输入端口构造成允许所述低压介质进入所述壳体的内部的低侧;被牢固地安装在所述壳体内的基底;安装到所述基底的应力隔离构件,其中,通道从低侧输入端口的端部延伸穿过所述基底和所述应力隔离构件;结合到所述应力隔离构件的两层芯片堆,所述两层芯片堆包括被隔离的感测电路;低侧原子层沉积物,所述低侧原子层沉积物涂覆到所述基底、所述应力隔离构件和所述两层芯片堆的暴露于所述低侧输入端口的表面;以及高侧原子层沉积物,所述高侧原子层沉积物涂覆到所述应力隔离构件和所述两层芯片堆的暴露于所述高侧输入端口的表面。
实例19包括实例18的压力传感器,其中,所述两层芯片堆包括:第一传感器芯片,所述第一传感器芯片具有第一凹部以形成第一膜片,所述第一膜片具有感测电路,所述感测电路形成于所述第一传感器芯片的与所述凹部相对的电路侧上;第二传感器芯片,所述第二传感器芯片具有第二凹部以形成第二膜片,其中,中心柱从所述第二膜片延伸到所述凹部中;以及延伸穿过所述第一传感器芯片的至少一个过孔,所述至少一个过孔将所述感测电路电连接到形成于所述应力隔离构件中的至少一个迹线。
实例20包括实例18-19中任一实例的压力传感器,其中,将所述两层芯片堆以热电方式结合到所述应力隔离构件。
尽管在本文中已说明并描述了具体实施例,但本领域技术人员将理解的是旨在达到相同目的任何布置均可替代图示的具体实施例。因此,明确的意图是本发明仅由权利要求及其等同物限定。
本申请中使用的相对位置术语是基于平行于晶片或基底的常规平面或工作表面的平面而限定的,无论晶片或基底的取向如何。本申请中使用的术语“水平”或“侧向”被定义为平行于晶片或基底的常规平面或工作表面的平面,无论晶片或基底的取向如何。术语“竖直”指的是垂直于水平方向的方向。诸如“在……上”、“侧”(如“侧壁”中的“侧”)、“较高”、“较低”、“在……上方”、“顶部”和“在……下面”之类的术语是相对于常规平面或工作表面位于晶片或基底的的顶表面上而限定的,无论晶片或基底的取向如何。

Claims (3)

1.一种用于制造压力传感器(100)的方法,所述方法包括:
形成与基底(126)接触的应力隔离构件(114),其中,所述应力隔离构件(114)和所述基底(126)具有被形成为穿过所述基底(126)和所述应力隔离构件(114)的通道(138);
制造第一传感器芯片(110),所述第一传感器芯片(110)具有第一凹部以形成第一膜片(105),所述第一膜片(105)具有感测电路(107),所述感测电路(107)形成于所述第一传感器芯片(110)的与所述凹部相对的电路侧上;
制造第二传感器芯片(112),所述第二传感器芯片(112)具有第二凹部以形成第二膜片(140),其中,中心柱(120)从所述第二膜片(140)延伸到所述凹部中;
使所述第一传感器芯片(110)结合到所述第二传感器芯片(112)以形成两层芯片堆,使得所述感测电路(107)在所述第二凹部内并且所述中心柱(120)与所述第一传感器芯片(110)的所述电路侧接触;
将所述两层芯片堆(113)安装到所述应力隔离构件(114),其中,所述第一凹部暴露于所述通道(138);
将所述应力隔离构件(114)、所述基底(126)和所述两层芯片堆(113)固定在具有高侧输入端口(102)和低侧输入端口(104)的壳体中,其中,所述通道(138)位于所述壳体中使得进入所述低侧输入端口(104)的低压介质也进入所述通道(138)并且进入所述高侧输入端口(102)的高压介质施加直接力于所述第二膜片(140)上;以及
将所述感测电路(107)电连接到外部系统。
2.一种压力传感器,所述传感器包括:
壳体,所述壳体包括高侧输入端口(102)和低侧输入端口(104),当把所述壳体置于含有高压介质和低压介质的环境中时,所述高侧输入端口(102)构造成允许所述高压介质进入所述壳体的内部的高侧并且所述低侧输入端口(104)构造成允许所述低压介质进入所述壳体的内部的低侧;
基底(126),所述基底(126)被牢固地安装在所述壳体内;
安装到所述基底(126)的应力隔离构件(114),其中,通道(138)从所述低侧输入端口(104)的端部延伸穿过所述基底(126)和所述应力隔离构件(114),其中,至少一个迹线(116)被嵌入所述应力隔离构件(114)内;
结合到所述应力隔离构件(114)的两层芯片堆(113),所述两层芯片堆(113)包括:
       第一传感器芯片(110),所述第一传感器芯片(110)具有第一凹部以形成第一膜片(105),所述第一膜片(105)具有感测电路(107),所述感测电路(107)形成于所述第一传感器芯片(110)的与所述凹部相对的电路侧上;
       第二传感器芯片(112),所述第二传感器芯片(112)具有第二凹部以形成第二膜片(140),其中,中心柱(120)从所述第二膜片(140)延伸到所述凹部中;以及
       延伸穿过所述第一传感器芯片(110)的至少一个过孔(111),所述至少一个过孔(111)将所述感测电路(107)电连接到所述至少一个迹线(116);
低侧原子层沉积物(130),所述低侧原子层沉积物(130)涂覆到所述基底(126)、所述应力隔离构件(114)和所述两层芯片堆(113)的暴露于所述低侧输入端口(104)的表面;以及
高侧原子层沉积物(139),所述高侧原子层沉积物(139)涂覆到所述应力隔离构件(114)和所述两层芯片堆(113)的暴露于所述高侧输入端口(102)的表面。
3.如权利要求2所述的压力传感器,其中,所述感测电路(107)包括:
至少一个温度感测元件(207);和
至少一个压力感测元件(203),
其中,所述至少一个压力感测元件(207)位于所述第一膜片(105)的电路侧上的第二凹部(218)内,并且所述至少一个温度感测元件(203)位于所述第二传感器芯片(112)中的温度感测腔(219)内,在所述第一传感器芯片(110)的电路侧的不与所述第一凹部相对的一部分上。
CN201410066173.3A 2013-02-27 2014-02-26 用于具有两层芯片结构的压力传感器的系统和方法 Pending CN104006914A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/778465 2013-02-27
US13/778,465 US8701496B1 (en) 2013-02-27 2013-02-27 Systems and methods for a pressure sensor having a two layer die structure

Publications (1)

Publication Number Publication Date
CN104006914A true CN104006914A (zh) 2014-08-27

Family

ID=50390799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410066173.3A Pending CN104006914A (zh) 2013-02-27 2014-02-26 用于具有两层芯片结构的压力传感器的系统和方法

Country Status (4)

Country Link
US (2) US8701496B1 (zh)
JP (1) JP6262017B2 (zh)
CN (1) CN104006914A (zh)
GB (1) GB2512716B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606277A (zh) * 2016-02-23 2016-05-25 成都凯天电子股份有限公司 一体式光纤f-p腔压力传感器
US10151647B2 (en) 2013-06-19 2018-12-11 Honeywell International Inc. Integrated SOI pressure sensor having silicon stress isolation member
CN109489986A (zh) * 2018-11-21 2019-03-19 中国电子科技集团公司第四十八研究所 一种发动机用双通道压力传感器
CN109870266A (zh) * 2017-12-04 2019-06-11 南京沃天科技有限公司 一种双芯片差压芯体
CN113167662A (zh) * 2018-09-17 2021-07-23 哈钦森技术股份有限公司 集成传感器和电路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140000375A1 (en) * 2012-06-29 2014-01-02 General Electric Company Pressure sensor assembly
US9316552B2 (en) * 2014-02-28 2016-04-19 Measurement Specialties, Inc. Differential pressure sensing die
US9983080B2 (en) * 2015-12-01 2018-05-29 National Chung Shan Institute Of Science And Technology High-temperature gas pressure measuring method
IT201600121210A1 (it) * 2016-11-30 2018-05-30 St Microelectronics Srl Modulo di trasduzione multi-dispositivo, apparecchiatura elettronica includente il modulo di trasduzione e metodo di fabbricazione del modulo di trasduzione
US10598559B2 (en) 2017-06-29 2020-03-24 Rosemount Inc. Pressure sensor assembly
DE102019204550A1 (de) * 2019-04-01 2020-10-01 Robert Bosch Gmbh Tankvorrichtung zur Speicherung von verdichteten Fluiden mit einer Sensorvorrichtung, Verfahren zur Herstellung einer Sensorvorrichtung der Tankvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637257A (en) * 1984-11-26 1987-01-20 Siemens Aktiengesellschaft Pressure difference measuring device with a semiconductor pressure sensor
CN1401073A (zh) * 2000-02-11 2003-03-05 罗斯蒙德公司 无油压差传感器
CN1453566A (zh) * 2002-04-24 2003-11-05 株式会社电装 具有耐蚀膜片的压力传感器
WO2004042338A1 (de) * 2002-11-05 2004-05-21 Endress + Hauser Gmbh + Co. Kg Relativdrucksensor mit atmosphärenseitiger drossel
CN102401715A (zh) * 2010-08-23 2012-04-04 霍尼韦尔国际公司 压力传感器

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4773269A (en) * 1986-07-28 1988-09-27 Rosemount Inc. Media isolated differential pressure sensors
US4790192A (en) 1987-09-24 1988-12-13 Rosemount Inc. Silicon side by side coplanar pressure sensors
US4846191A (en) 1988-05-27 1989-07-11 Data Sciences, Inc. Device for chronic measurement of internal body pressure
US4949581A (en) * 1989-06-15 1990-08-21 Rosemount Inc. Extended measurement capability transmitter having shared overpressure protection means
DE69210041T2 (de) * 1991-12-13 1996-10-31 Honeywell Inc Entwurf von piezoresistivem drucksensor aus silizium
JP3149544B2 (ja) * 1992-06-22 2001-03-26 株式会社デンソー 半導体圧力検出装置
IL106790A (en) * 1992-09-01 1996-08-04 Rosemount Inc A capacitive pressure sensation consisting of the bracket and the process of creating it
US6148673A (en) * 1994-10-07 2000-11-21 Motorola, Inc. Differential pressure sensor and method thereof
US6229190B1 (en) * 1998-12-18 2001-05-08 Maxim Integrated Products, Inc. Compensated semiconductor pressure sensor
US6255728B1 (en) * 1999-01-15 2001-07-03 Maxim Integrated Products, Inc. Rigid encapsulation package for semiconductor devices
US6431003B1 (en) 2000-03-22 2002-08-13 Rosemount Aerospace Inc. Capacitive differential pressure sensor with coupled diaphragms
US6647794B1 (en) * 2002-05-06 2003-11-18 Rosemount Inc. Absolute pressure sensor
US7073380B2 (en) * 2004-02-17 2006-07-11 Honeywell International, Inc. Pyramid socket suspension
US7475597B2 (en) * 2006-02-27 2009-01-13 Auxitrol S.A. Stress isolated pressure sensing die
US7661318B2 (en) * 2006-02-27 2010-02-16 Auxitrol S.A. Stress isolated pressure sensing die, sensor assembly inluding said die and methods for manufacturing said die and said assembly
WO2008058406A1 (de) * 2006-11-13 2008-05-22 Inficon Gmbh Vakuummembranmesszelle und verfahren zur herstellung einer derartigen messzelle
DE112008000258B4 (de) * 2007-01-30 2013-08-01 Komatsu Ltd. Differenzdrucksensor
JP5142742B2 (ja) * 2007-02-16 2013-02-13 株式会社デンソー 圧力センサおよびその製造方法
US7939932B2 (en) 2007-06-20 2011-05-10 Analog Devices, Inc. Packaged chip devices with atomic layer deposition protective films
US8017451B2 (en) * 2008-04-04 2011-09-13 The Charles Stark Draper Laboratory, Inc. Electronic modules and methods for forming the same
US8253230B2 (en) * 2008-05-15 2012-08-28 Micron Technology, Inc. Disabling electrical connections using pass-through 3D interconnects and associated systems and methods
US8037770B2 (en) * 2008-05-21 2011-10-18 Honeywell International Inc. Pressure-sensor apparatus
US7775117B2 (en) * 2008-12-11 2010-08-17 Kulite Semiconductor Products, Inc. Combined wet-wet differential and gage transducer employing a common housing
US7775119B1 (en) 2009-03-03 2010-08-17 S3C, Inc. Media-compatible electrically isolated pressure sensor for high temperature applications
US7861595B2 (en) * 2009-05-11 2011-01-04 Honeywell International Inc. Pressure sensing device for harsh environments
US8215176B2 (en) 2009-05-27 2012-07-10 Continental Automotive Systems, Inc. Pressure sensor for harsh media sensing and flexible packaging
US8065917B1 (en) * 2010-05-18 2011-11-29 Honeywell International Inc. Modular pressure sensor
US8216882B2 (en) * 2010-08-23 2012-07-10 Freescale Semiconductor, Inc. Method of producing a microelectromechanical (MEMS) sensor device
US8536626B2 (en) * 2011-04-28 2013-09-17 Honeywell International Inc. Electronic pH sensor die packaging
US20130098160A1 (en) * 2011-10-25 2013-04-25 Honeywell International Inc. Sensor with fail-safe media seal
US9010190B2 (en) * 2012-04-20 2015-04-21 Rosemount Aerospace Inc. Stress isolated MEMS structures and methods of manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4637257A (en) * 1984-11-26 1987-01-20 Siemens Aktiengesellschaft Pressure difference measuring device with a semiconductor pressure sensor
CN1401073A (zh) * 2000-02-11 2003-03-05 罗斯蒙德公司 无油压差传感器
CN1453566A (zh) * 2002-04-24 2003-11-05 株式会社电装 具有耐蚀膜片的压力传感器
WO2004042338A1 (de) * 2002-11-05 2004-05-21 Endress + Hauser Gmbh + Co. Kg Relativdrucksensor mit atmosphärenseitiger drossel
CN102401715A (zh) * 2010-08-23 2012-04-04 霍尼韦尔国际公司 压力传感器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10151647B2 (en) 2013-06-19 2018-12-11 Honeywell International Inc. Integrated SOI pressure sensor having silicon stress isolation member
CN105606277A (zh) * 2016-02-23 2016-05-25 成都凯天电子股份有限公司 一体式光纤f-p腔压力传感器
CN109870266A (zh) * 2017-12-04 2019-06-11 南京沃天科技有限公司 一种双芯片差压芯体
CN113167662A (zh) * 2018-09-17 2021-07-23 哈钦森技术股份有限公司 集成传感器和电路
US11638353B2 (en) 2018-09-17 2023-04-25 Hutchinson Technology Incorporated Apparatus and method for forming sensors with integrated electrical circuits on a substrate
CN109489986A (zh) * 2018-11-21 2019-03-19 中国电子科技集团公司第四十八研究所 一种发动机用双通道压力传感器

Also Published As

Publication number Publication date
JP2014163935A (ja) 2014-09-08
US8701496B1 (en) 2014-04-22
GB2512716A (en) 2014-10-08
GB2512716B (en) 2015-04-08
US8883536B2 (en) 2014-11-11
GB201402345D0 (en) 2014-03-26
US20140242739A1 (en) 2014-08-28
JP6262017B2 (ja) 2018-01-17

Similar Documents

Publication Publication Date Title
CN104006914A (zh) 用于具有两层芯片结构的压力传感器的系统和方法
US11226251B2 (en) Method of making a dual-cavity pressure sensor die
JP6762896B2 (ja) 圧力センサチップ、圧力発信器、および圧力センサチップの製造方法
CN101389940B (zh) 带有硅玻璃料结合帽的压力传感器
EP2189773B1 (en) Design of wet/wet differential pressure sensor based on microelectronic packaging process
US11255740B2 (en) Pressure gauge chip and manufacturing process thereof
CN104006913B (zh) 带有涂覆有原子层沉积的输入端口的集成参考真空压力传感器
US20090288492A1 (en) Media isolated differential pressure sensor with cap
US7698951B2 (en) Pressure-sensor apparatus
US11079298B2 (en) MEMS pressure sensor with multiple sensitivity and small dimensions
US11366031B2 (en) Semiconductor device and method for forming a semiconductor device
JP6807486B2 (ja) 圧力センサ構成およびその製造方法
US10151647B2 (en) Integrated SOI pressure sensor having silicon stress isolation member
EP2894450A1 (en) A sensor for measuring fluid variables in a corrosive environment

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140827

WD01 Invention patent application deemed withdrawn after publication