CN103996858A - 锂离子电池负极集流体材料及制备方法 - Google Patents

锂离子电池负极集流体材料及制备方法 Download PDF

Info

Publication number
CN103996858A
CN103996858A CN201410235964.4A CN201410235964A CN103996858A CN 103996858 A CN103996858 A CN 103996858A CN 201410235964 A CN201410235964 A CN 201410235964A CN 103996858 A CN103996858 A CN 103996858A
Authority
CN
China
Prior art keywords
copper foil
lithium ion
ion battery
current collector
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410235964.4A
Other languages
English (en)
Other versions
CN103996858B (zh
Inventor
关成善
宗继月
李涛
贾传龙
刘艳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Goldencell Electronics Technology Co Ltd
Original Assignee
SHANDONG SHENGONG HAITE ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANDONG SHENGONG HAITE ELECTRONIC TECHNOLOGY Co Ltd filed Critical SHANDONG SHENGONG HAITE ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN201410235964.4A priority Critical patent/CN103996858B/zh
Publication of CN103996858A publication Critical patent/CN103996858A/zh
Application granted granted Critical
Publication of CN103996858B publication Critical patent/CN103996858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种锂离子电池负极集流体材料以及该材料的制备方法。这种锂离子电池负极集流体材料铜箔表面覆着有掺杂厚度是2~4μm的La和Mn的BiTiO3层,其制作工艺条件为:先将铜箔在100℃的蒸馏水中清洗表面的油污等杂质,30~60min后取出,在105℃真空条件下干燥2~3h,然后在真空中冷却到室温,以掺杂La和Mn的BiTiO3为溅射靶,金属铜箔为溅射基材,预抽真空腔体至5×10-3Pa,然后向腔体内通入氩气,控制腔内压强为1.5Pa后将基材铜箔加热到500~800℃,所使用的设备参数为:射频功率为100~140W,加速电压为200~300V,电流密度为30~50mA/cm,溅射靶与基材之间的距离为60~90mm,基材的速度为2~6m/min,溅射完成后在氩气中冷却到室温。采用本发明的锂离子电池负极集流体铜箔材料可以有效提高锂离子电池的安全性能。

Description

锂离子电池负极集流体材料及制备方法
技术领域
本发明提供一种锂离子电池负极集流体材料及制备方法。
背景技术
在科技飞速发展的今天,随着移动电话、数码相机、笔记本电脑等电子设备在人类生活中大量应用,锂离子电池也随之迅速发展成为二次电池领域中重要的一个产业。锂离子电池在比容量、无记忆效应、长循环寿命、环保等综合性能远远超过其他二次电电池,锂离子电池被成为“终极电池”,但是为什么大容量电池领域没有见到锂离子电池的身影呢?关键问题是受到锂离子电池的安全问题的制约,锂离子电池最大的安全隐患是爆炸、起火等。
    锂离子电池的负极片的制作过程为:将一定比例的负极活性物质、导电剂、粘结剂、分散剂和溶剂混合均匀后涂布在负极集流体上,然后在经过干燥、制片工艺制作锂离子电池负极片。铜箔作为锂离子电池负极集流体,其性能直接影响锂离子电池的性能。   
发明内容
本发明提供一种锂离子电池负极集流体材料,提高锂离子电池的安全性能,以及该材料的制备方法。
为实现上述目的,本发明采用的技术方案为:
一种锂离子电池负极集流体材料,在铜箔表面覆着有掺杂La和Mn的BiTiO3层。
根据所述的锂离子电池负极集流体材料,所述的掺杂La和Mn的BiTiO3层厚度是2~4μm。
一种锂离子电池负极集流体材料的制备方法,该方法采用射频磁控溅射方法制备材料,其制作工艺条件为:
先将铜箔在100℃的蒸馏水中清洗表面的油污等杂质,30~60min后取出,在105℃真空条件下干燥2~3h,然后在真空中冷却到室温,以掺杂La和Mn的BiTiO3为溅射靶,金属铜箔为溅射基材,预抽真空腔体至5×10-3 Pa,然后向腔体内通入氩气,控制腔内压强为1.5Pa后将基材铜箔加热到500~800℃,所使用的设备参数为:射频功率为100~140W,加速电压为200~300V,电流密度为30~50mA/cm,溅射靶与基材之间的距离为60~90mm,基材的速度为2~6m/min,溅射完成后在氩气中冷却到室温。
根据所述的锂离子电池负极集流体材料的制备方法,该制备方法通过射频磁控溅射工艺后再进行清洗,清洗处理选用以下方法:首先用蒸馏水清洗,然后在105℃真空中干燥2~3h后在真空中冷却至室温。
与现状技术相比,本发明的优点体现在:
1、采用发明的表面覆着有掺杂La和Mn的BiTiO3的铜箔材料,在应用于锂离子电池负极集流体材料时,改善了铜箔在电池充放电工作时易被氧化的化学性质,提高了铜箔的耐腐蚀性能;
2、采用本发明的表面覆着有掺杂La和Mn的BiTiO3的锂离子电池负极集流体铜箔材料,在电池被滥用而使温度升高电池内阻增大,而且当温度超过一定值时,随温度的升高电池内阻呈阶跃式增大,从而减小电流,防止电池温度继续上升,提高了锂离子电池的安全性能。
附图说明
图1:实施方案1的电池的温度与内阻对比测试结果。
图2:实施方案2的电池短路时内部温度与时间之间的关系对比测试结果。
图3:实施方案3的电池的过充时内部温度与时间之间的关系对比测试结果。
具体实施方式
实施例
实施方案1
先将铜箔在100℃的蒸馏水中清洗表面的油污等杂质,30min后取出,在105℃真空条件下干燥3h,然后在真空中冷却到室温。
    以掺杂La和Mn的BiTiO3为溅射靶,金属铜箔为溅射基材,预抽真空腔体至5×10-3 Pa,然后向腔体内通入氩气,控制腔内压强为1.5Pa将基材铜箔加热到500℃。设备的参数为:射频功率为100W,加速电压:200V,电流密度:30mA/cm,溅射靶与基材之间的距离为60mm,基材的速度为2m/min。溅射完成后在氩气中冷却到室温。
    通过射频磁控溅射工艺后,首先用蒸馏水清洗,然后在105℃真空中干燥2h后在真空中冷却至室温。
    采用上述工艺制备了铜箔表面覆着掺杂La和Mn的BiTiO3层,覆着掺杂La和Mn的BiTiO3层的厚度为2μm。分别采用本实施方案制备的覆着掺杂La和Mn的BiTiO3铜箔和普通铜箔作为锂离子电池负极集流体,其他工艺一致,制作锂离子电池。在相同的条件下,分别测试两种电池的温度与内阻之间的关系,结果见附图1.
由图1可以得到,采用本实施方案之铜箔覆着掺杂La和Mn的BiTiO3层作为负极集流体的锂离子电池,其锂离子电池在高温中相同的温度内阻明显高于普遍铜箔作为负极集流体的电池的内阻,得出该种电池在高温中的内阻极高,有利于提高锂离子电池在高温时放电的安全性能。
实施方案2
先将铜箔在100℃的蒸馏水中清洗表面的油污等杂质,50min后取出,在105℃真空条件下干燥2.5h,然后在真空中冷却到室温。
    以掺杂La和Mn的BiTiO3为溅射靶,金属铜箔为溅射基材,预抽真空腔体至5×10-3 Pa,然后向腔体内通入氩气,控制腔内压强为1.5Pa将基材铜箔加热到700℃。设备的参数为:射频功率为120W,加速电压:240V,电流密度:40mA/cm,溅射靶与基材之间的距离为70mm,基材的速度为4m/min。溅射完成后在氩气中冷却到室温。
    通过射频磁控溅射工艺后,首先用蒸馏水清洗,然后在105℃真空中干燥2.5h后在真空中冷却至室温。
    采用上述工艺制备了铜箔表面覆着覆着掺杂La和Mn的BiTiO3层,覆着掺杂La和Mn的BiTiO3层的厚度为3μm。分别采用本实施方案制备的覆着掺杂La和Mn的BiTiO3铜箔和普通铜箔作为锂离子电池负极集流体,其他工艺一致,制作锂离子电池。在相同的条件下,分别测试两种电池短路时内部的温度和时间之间的关系,结果见附图2。
    由图2可以得到,采用本实施方案之铜箔覆着掺杂La和Mn的BiTiO3层作为负极集流体的锂离子电池,其锂离子电池在短路时其内部温度低于普遍铜箔作为负极集流体的电池的温度,得出该种锂离子电池在短路时的安全性能比后者电池高。
实施方案3
    先将铜箔在100℃的蒸馏水中清洗表面的油污等杂质,60min后取出,在105℃真空条件下干燥2h,然后在真空中冷却到室温。
    以掺杂La和Mn的BiTiO3为溅射靶,金属铜箔为溅射基材,预抽真空腔体至5×10-3 Pa,然后向腔体内通入氩气,控制腔内压强为1.5Pa将基材铜箔加热到800℃。设备的参数为:射频功率为140W,加速电压:300V,电流密度:50mA/cm,溅射靶与基材之间的距离为90mm,基材的速度为6m/min。溅射完成后在氩气中冷却到室温。
    通过射频磁控溅射工艺后,首先用蒸馏水清洗,然后在105℃真空中干燥3h后在真空中冷却至室温。
    采用上述工艺制备了铜箔表面覆着掺杂La和Mn的BiTiO3层,覆着掺杂La和Mn的BiTiO3层的厚度为4μm。分别采用本实施方案制备的覆着掺杂La和Mn的BiTiO3铜箔和普通铜箔作为锂离子电池负极集流体,其他工艺一致,制作锂离子电池。在相同的条件下,分别测试两种电池的过充时内部温度与时间之间的关系,结果见附图3。
    由图3可以得到,采用本实施方案之铜箔覆着掺杂La和Mn的BiTiO3层作为负极集流体的锂离子电池,其锂离子电池在过充时其内部温度低于普遍铜箔作为负极集流体的电池的温度,得出该种锂离子电池在过充时的安全性能比后者电池高。
上面所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的构思和保护范围进行限定,在不脱离本发明设计构思的前提下,本领域中普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的保护范围。

Claims (4)

1.一种锂离子电池负极集流体材料,其特征在于:在铜箔表面覆着有掺杂La和Mn的BiTiO3层。
2.根据权利要求1所述的锂离子电池负极集流体材料,其特征在于:所述的掺杂La和Mn的BiTiO3层厚度是2~4μm。
3.一种锂离子电池负极集流体材料的制备方法,其特征在于:该方法采用射频磁控溅射方法制备材料,其制作工艺条件为:
先将铜箔在100℃的蒸馏水中清洗表面的油污等杂质,30~60min后取出,在105℃真空条件下干燥2~3h,然后在真空中冷却到室温,以掺杂La和Mn的BiTiO3为溅射靶,金属铜箔为溅射基材,预抽真空腔体至5×10-3 Pa,然后向腔体内通入氩气,控制腔内压强为1.5Pa后将基材铜箔加热到500~800℃,所使用的设备参数为:射频功率为100~140W,加速电压为200~300V,电流密度为30~50mA/cm,溅射靶与基材之间的距离为60~90mm,基材的速度为2~6m/min,溅射完成后在氩气中冷却到室温。
4.根据权利要求3所述的锂离子电池负极集流体材料的制备方法,其特征在于:该制备方法通过射频磁控溅射工艺后再进行清洗,清洗处理选用以下方法:首先用蒸馏水清洗,然后在105℃真空中干燥2~3h后在真空中冷却至室温。
CN201410235964.4A 2014-05-29 2014-05-29 锂离子电池负极集流体材料及制备方法 Active CN103996858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410235964.4A CN103996858B (zh) 2014-05-29 2014-05-29 锂离子电池负极集流体材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410235964.4A CN103996858B (zh) 2014-05-29 2014-05-29 锂离子电池负极集流体材料及制备方法

Publications (2)

Publication Number Publication Date
CN103996858A true CN103996858A (zh) 2014-08-20
CN103996858B CN103996858B (zh) 2016-06-29

Family

ID=51310943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410235964.4A Active CN103996858B (zh) 2014-05-29 2014-05-29 锂离子电池负极集流体材料及制备方法

Country Status (1)

Country Link
CN (1) CN103996858B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105406085A (zh) * 2015-11-30 2016-03-16 山东精工电子科技有限公司 锂电池铜箔极片及其制备方法
CN104701481B (zh) * 2014-12-23 2018-07-24 神工光电科技有限公司 锂离子电池极耳及其制备方法
CN113644276A (zh) * 2021-08-13 2021-11-12 湖州南木纳米科技有限公司 一种集流体及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514410A (ja) * 1991-06-28 1993-01-22 Nec Corp トラヒツク制御方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514410A (ja) * 1991-06-28 1993-01-22 Nec Corp トラヒツク制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701481B (zh) * 2014-12-23 2018-07-24 神工光电科技有限公司 锂离子电池极耳及其制备方法
CN105406085A (zh) * 2015-11-30 2016-03-16 山东精工电子科技有限公司 锂电池铜箔极片及其制备方法
CN113644276A (zh) * 2021-08-13 2021-11-12 湖州南木纳米科技有限公司 一种集流体及其应用

Also Published As

Publication number Publication date
CN103996858B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
CN108390131B (zh) 纯内阻电池加热系统
CN109449541B (zh) 锂离子电池变频变幅交流低温自加热方法
CN108777339B (zh) 一种锂离子电池脉冲放电自加热方法及装置
CN108649250B (zh) 一种全固态锂电池中极片-电解质膜一体化复合电极的烘烤工艺
CN1977418B (zh) 对具有负电极的锂离子蓄电池充电的方法
CN100561778C (zh) 一种提高锂离子电池负极安全性的表面镀膜修饰方法
Zhang et al. Poly (3-butylthiophene)-based positive-temperature-coefficient electrodes for safer lithium-ion batteries
CN107645015B (zh) 原位聚合阻燃固态电解质及其制备方法
CN108365169A (zh) 一种锂金属负极结构组合及其制备方法、锂电池电芯
CN109216809B (zh) 一种聚合物锂离子电池压力化成工艺
CN103996858A (zh) 锂离子电池负极集流体材料及制备方法
CN101162774A (zh) 一种提高锂离子电池正极安全性的表面镀膜修饰方法
CN202905856U (zh) 一种锂离子二次电池负极极片
CN110931801A (zh) 一种高安全性芳纶锂离子电池及其制备方法
CN108493483A (zh) 一种固态电解质膜电芯层结构界面处理方法、锂电芯结构
TW201539831A (zh) 能量儲存裝置
KR101823175B1 (ko) 이차 전지 제조 방법
Silva et al. Analysis of a commercial portable lithium-ion battery under low current charge-discharge cycles
CN102623702B (zh) 一种锂离子电池及其负极极片及其制备方法
CN103647085A (zh) 锂离子电池负极集流体材料及制备方法
US11342606B2 (en) Lithium ion battery with an internal heating device
CN103199240B (zh) γ-Fe2O3钠离子电池阳极材料的制备方法
CN114221049B (zh) 一种电芯析锂的判断方法
JP2011138672A (ja) 電池システム加熱方法
CN112713329B (zh) 一种用于废旧锂电池拆解的预处理方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160527

Address after: High tech Zone 277800 Shandong city of Zaozhuang province Thailand five Road Industrial Park, Fuyuan Electronics Group.

Applicant after: Shandong Seiko Electronic Technology Co.,Ltd.

Address before: High tech Zone 277800 Shandong city of Zaozhuang province Thailand five Road Industrial Park, Fuyuan Electronics Group.

Applicant before: SHANDONG SHENGONGHAITE ELECTRONIC TECHNOLOGY LTD.

C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 277800 No. x6699, Guangming Road, high tech Zone, Zaozhuang City, Shandong Province (north of the junction of Guangming Road and Huaxin Road)

Patentee after: Shandong Jinggong Electronic Technology Co.,Ltd.

Address before: 277800 Shandong Zaozhuang high tech Zone Thailand Industrial Park Fuyuan five road hight Electronics Group

Patentee before: Shandong Seiko Electronic Technology Co.,Ltd.