CN103985112B - 基于改进多目标粒子群优化聚类的图像分割方法 - Google Patents

基于改进多目标粒子群优化聚类的图像分割方法 Download PDF

Info

Publication number
CN103985112B
CN103985112B CN201410079278.2A CN201410079278A CN103985112B CN 103985112 B CN103985112 B CN 103985112B CN 201410079278 A CN201410079278 A CN 201410079278A CN 103985112 B CN103985112 B CN 103985112B
Authority
CN
China
Prior art keywords
particle
value
image
function value
class
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410079278.2A
Other languages
English (en)
Other versions
CN103985112A (zh
Inventor
焦李成
刘芳
黄倩
马文萍
马晶晶
王爽
侯彪
李阳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410079278.2A priority Critical patent/CN103985112B/zh
Publication of CN103985112A publication Critical patent/CN103985112A/zh
Application granted granted Critical
Publication of CN103985112B publication Critical patent/CN103985112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了基于改进多目标粒子群优化聚类的图像分割方法,主要解决现有聚类图像分割技术评价指标单一和区域杂点多,分割不理想等问题。其实现步骤为:(1)输入原始图像,提取像素特征,并进行分水岭分割,产生聚类数据;(2)利用聚类数据初始化种群(3)升级种群中各粒子的速度和位置(4)评价各新粒子,计算聚合值并升级理想点(5)升级各粒子的最优位置,升级leader粒子库和外部粒子库(6)更新迭代次数,若达到预先设定的最大迭代次数,则输出外部粒子库,否则继续执行步骤(3)(7)在输出的外部粒子库中,根据聚合值的大小选择最优个体,根据最优个体进行标记,得到分割结果。本发明与现有技术相比,边缘保持较好,分割正确率高,可用于SAR图像的目标识别。

Description

基于改进多目标粒子群优化聚类的图像分割方法
技术领域
本发明属于图像处理领域,特别是涉及基于改进多目标粒子群优化聚类的图像分割方法,可应用于目标识别。
背景技术
图像分割作为一种重要的图像处理技术,在理论研究和实际应用中都得到了人们的广泛重视。为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割。图像分割是后续工作有效进行的关键,从图像处理到图像分析的关键步骤。目前,从分割操作策略上讲,可以分为基于边界的方法,基于区域生成的分割方法,基于聚类的分割方法等。目前,人们更多采用基于进化聚类的方法来进行图像分割。进化聚类图像分割算法主要是进化计算与聚类技术相结合应用到图像分割上的算法,主要的核心是进化聚类算法的研究。在现有的聚类方法中,通常把基于目标函数的聚类问题归结为一个优化问题,再结合进化计算对聚类问题进行智能优化。随着多目标技术的发展,出现了多目标进化聚类技术,基于多目标进化聚类方法的优点在于它可以获得在多个目标函数间权衡的聚类结果。
现有的多目标进化算法中,多目标粒子群算法是一种崭新的随机优化方法,具有程序实现简单、控制参数少的特点,所以得到了广泛应用。在现有的进化聚类图像分割算法中,单目标聚类图像分割算法存在评价单一,细节保持不好等缺点,而在现有的多目标进化聚类图像分割技术中,缺乏种群的多样性,造成分割不理想,分割正确率低,计算复杂度高等缺点。
发明内容
本发明的目的在于克服上述已有技术的不足,提出一种基于改进多目标粒子群优化聚类的图像分割方法,本发明选取了两个互补的目标函数,将分解的理论融入到多目标粒子群优化算法中,改善现有方法的目标函数单一性和边缘细节保持不理想等缺点。
基于改进多目标粒子群优化聚类的图像分割方法,包括如下步骤:
(1)输入待分割图像,提取待分割图像的特征,并计算该待分割图像的梯度,得到梯度图像,对梯度图像进行分水岭分割,得到N个互不重叠的区域,N≥1000;
(2)对每个区域中所有像素点特征取均值,获得每一个区域的特征向量,作为初始聚类数据点集合W={w1,w2…wN};
(3)利用初始聚类数据点集合,随机初始化大小为M的种群:
(3a)随机初始化各粒子的位置X={x1,x2…xM}、速度V={v1,v2…vM},每个粒子的位置xm代表一种分割结果,m=1,2,…M,M=50;
(3b)将各粒子的当前位置作为各粒子的最优位置;
(4)根据每个粒子的位置计算每个粒子的目标函数值F,F=[f1 f2],其中,f1为类内方差,f2为类间连接;
(5)根据各粒子的位置和目标函数值初始化leader粒子库和外部粒子库;
(6)根据目标函数值初始化理想点Z*,Z*=[Z1 Z2],其中Z1为第一个目标函数f1到目前为止找到的最小值,其中Z2为第二个目标函数f2到目前为止找到的最小值;
(7)根据各粒子的目标函数值标准化各粒子的目标函数值,并计算各粒子的聚合值;
(8)升级各个粒子的速度和位置;升级公式按如下进行:
其中,表示t+1代第i个粒子的速度,表示t代第i个粒子的速度,表示t代第i个粒子的位置;表示t+1代第i个粒子的位置,表示t代第i个粒子的最好位置,表示t代leader粒子库中的粒子;
(9)对每个新粒子进行评价,即对新粒子计算每个目标函数的值;
(10)根据每个目标函数的值,升级种群的理想点;
(11)根据每个粒子的目标函数值计算每个粒子的聚合函数值;
(12)根据每个粒子的聚合函数的值的大小升级每个粒子的最优位置:如果新粒子的聚合函数值比粒子最优位置的聚合值小,则用新粒子的位置代替粒子的最优位置,否则粒子最优位置不变;
(13)升级leaders粒子库和外部粒子库;
(14)更新迭代次数t,直到迭代次数达到预先设定的最大值maxgen,则输出外部种群,否则返回到步骤(6)进行下一代迭代;
(15)在输出的外部种群中选择最优解;利用分解过程中得到的聚合值来进行最优解的选取;具体实现是先选择使用者设定的类别数的非支配解作为候选解;然后分别将每个候选解在聚合函数上聚合值最小的个体作为最优个体;最后将最优个体所对应的类别标号作为像素的灰度值,得到图像分割结果。
所述步骤(1)所述的对每个区域中所有像素点特征取均值,获得每一个区域的特征向量,按照以下步骤进行:
(1a)对于任意像素点i,利用小波分解,提取图像的10维小波特征;
(1b)对于任意像素点i,计算0°,45°,90°,135°四个方向上的灰度共生矩阵,选取该四个矩阵上的三个统计量,分别为对比度、同质性和角二阶,获得像素点i的12维纹理特征;
(1c)将上述10维小波特征向量和12维纹理特征向量合并成22维纹理特征向量,作为第i个像素点的特征;
(1d)对原始图像中的所有像素点重复步骤(1a)-(1c),得到原始图像所有像素点的纹理特征。
所述步骤(4)中f1代表聚类紧凑性,聚类紧凑性是计算所有数据点到其聚类中心的类内距离和,f1(x),通过如下公式进行计算:
其中,f1(x)为待聚类数据集的类内距离和;x为待聚类数据集;∑为算术运算中的累加符号;xk为待聚类数据集的第k类;∈为集合中的属于符号;i为一个类别中的一个数据点;δ(i,μk)为欧式距离函数;μk为待聚类数据的第k类的聚类中心。
所述步骤(4)中第二个目标函数值f2代表聚类连通性,聚类连通性用于评估相邻数据点被划分到同一个类别的相邻度,f2(x)通过如下公式计算:
其中,f2(x)为类间距离和;x为待聚类数据集;m为待聚类数据点的个数;∑为算术运算中的累加符号;i为一个数据点;L是最近邻的个数,L=10;j为近邻点;xi,j为第i个数据点与其第j个最近邻的关系值,当第i个数据点和第j个数据点属于同一类,则xi,j取0,否则取1/j。
所述步骤(7)所标准化目标函数值,按如下公式进行:
其中,fi(x)为第i个目标,i=1,2。
所述步骤(7)中所述的各粒子的聚合函数值,任意粒子j的聚合函数值gj(x|λj,z*),按如下公式进行:
minimize gj(x|λj,z*)=d1+θd2
其中,d1=||(Fj(x)-z*)Tλj||/||λj||,d2=||(Fj(x)-z*)-d1λj/||λj||||,是第j个粒子的权值,x表示一个粒子,Fj(x)表示第j个粒子的目标函数值,z*表示理想点,|是算术运算中的条件符号,||·||表示2范数,(·)T为矩阵转置运算,θ取为0.5。
本发明与现有的技术相比具有以下优点:
1、本发明由于选取了两个互补的目标函数,增加了评价的多样性,保证了图像信息的完整性;
2、本发明将分解理论融入到多目标粒子群中,不仅提高了非支配解集的多样性而且增加了非支配解集的数量,从而获得更优秀的解,进一步提高了分割精确度;
附图说明
图1是本发明的实现流程图;
图2(a)为三类合成纹理图像image1;
图2(b)为图像image1的理想分割结果;
图2(c)为用现有多目标进化聚类方法对图2(a)进行分割得到的结果;
图2(d)为用现有多目标粒子群优化聚类方法对图2(a)进行分割得到的结果;
图2(e)为用本发明方法对图2(a)进行分割得到的结果。
图3(a)为四类合成纹理图像image2;
图3(b)为对图像image2的理想分割结果;
图3(c)为用现有多目标进化聚类方法对图3(a)进行分割得到的结果;
图3(d)为用现有多目标粒子群优化聚类方法对图3(a)进行分割得到的结果;
图3(e)为用本发明方法对图3(a)进行分割得到的结果;
图4(a)为两类机载SAR原图像,分为田地和森林;
图4(b)为用现有多目标进化聚类方法对图4(a)进行分割得到的结果;
图4(c)为用现有多目标粒子群优化聚类方法对图4(a)进行分割得到的结果;
图4(d)为用本发明方法对图4(a)进行分割得到的结果;
图5(a)为三类SAR图像,分为植被、农作物和河流;
图5(b)为用现有多目标进化聚类方法对图5(a)进行分割得到的结果;
图5(c)为用现有多目标粒子群优化聚类方法对图5(a)进行分割得到的结果;
图5(d)为用本发明方法对图5(a)进行分割得到的结果。
具体实施方式
参照图1,本发明的具体实现步骤如下:
步骤一、输入待分割图像,提取该图像的特征。
(1a)对于任意像素点i,利用小波分解,提取图像的10维小波特征向量;
(1b)对于任意像素点i,计算0°,45°,90°,135°四个方向上的灰度共生矩阵,选取该四个矩阵上的三个统计量,即对比度、同质性和角二阶,获得像素点i的12维纹理特征向量;
(1c)将上述10维小波特征向量和12维纹理特征向量合并成22维特征向量,作为第i个像素点的纹理特征;
(1d)对图像中的所有像素点重复步骤(1a)-(1c),得到原始图像所有像素点的特征。
步骤二、计算待分割图像的梯度。
对待分割图像分别进行膨胀变换和腐蚀变换,再用膨胀变换后的结果减去其腐蚀变换后的结果,由此得到待分割图像形态梯度图像。
步骤三、对形态梯度图像进行分水岭分割,得到N个互不重叠的区域,N≥1000,对每个区域中所有像素点特征取均值,获得每一个区域的特征向量,作为初始聚类数据点集合:Z={z1,z2…zN}。
步骤四、根据待聚类数据初始化大小为M的种群:
(4a)初始种群各粒子的位置X={x1,x2,....xM}利用Prim算法最小生成树,数的权值是两个数据点之间的欧式距离,根据最小生成树原理和权值矩阵,可得到N个数据点之间的连接图,随机断开K处并通过解码得到个体,每个个体代表一种分割结果。随机初始化种群中各粒子的速度V={v1,v2…vM}。
(4b)将各粒子的当前位置作为各粒子的最优位置,并为每个粒子j分配权重向量λj是第j个粒子的权值;j=1,2,....,M。
步骤五、根据每个粒子的位置计算每个粒子的目标函数值F,F=[f1 f2],其中,f1为类内方差,f2为类间连接。
(5a)第一个目标函数值f1代表聚类紧凑性,聚类紧凑性是计算所有数据点到其聚类中心的类内距离和,f1(x),通过如下公式进行计算:
其中,f1(x)为待聚类数据集的类内距离和;x为待聚类数据集;∑为算术运算中的累加符号;xk为待聚类数据集的第k类;∈为集合中的属于符号;i为一个类别中的一个数据点;δ(i,μk)为欧式距离函数;μk为待聚类数据的第k类的聚类中心。
(5b)第二个目标函数值f2代表聚类连通性,聚类连通性用于评估相邻数据点被划分到同一个类别的相邻度,f2(x)通过如下公式计算:
其中,f2(x)为类间距离和;x为待聚类数据集;m为待聚类数据点的个数;∑为算术运算中的累加符号;i为一个数据点;L是最近邻的个数,L=10;j为近邻点;xi,j为第i个数据点与其第j个最近邻的关系值,当第i个数据点和第j个数据点属于同一类,则xi,j取0,否则取1/j。
步骤六:根据各粒子的位置和目标函数值选择非支配粒子,将非支配粒子存入leader粒子库和外部粒子库,即初始化leader粒子库和外部粒子库。
步骤七、根据各粒子的目标函数值标准化各粒子的目标函数值,并计算各粒子的聚合值。
(7a)为了对每一个粒子达到公平的原则,对目标函数进行标准化,按如下公式计算:
其中,fi(x)为第i个目标,i=1,2。
(7b)第j个粒子的聚合函数值gj(x|λj,z*),按如下公式进行:
minimize gj(x|λj,z*)=d1+θd2
其中,d1=||(Fj(x)-z*)Tλj||/||λj||,d2=||(Fj(x)-z*)-d1λj/||λj||||,是第j个粒子的权值,x表示一个粒子,Fj(x)表示第j个粒子的目标函数值,z*表示理想点,|是算术运算中的条件符号,||·||表示2范数,(·)T为矩阵转置运算,θ取为0.5。
步骤八、根据目标函数值初始化理想点Z*,Z*=[Z1 Z2],其中Z1为第一个目标函数f1到目前为止找到的最小值,其中Z2为第二个目标函数f2到目前为止找到的最小值。
步骤九、升级各个粒子的速度和位置。粒子的速度和位置更新公式,按如下进行,
其中,表示t+1代第i个粒子的速度,表示t代第i个粒子的速度,表示t代第i个粒子的位置;表示t+1代第i个粒子的位置,表示t代第i个粒子的最好位置,表示t代leader粒子库中的粒子,该粒子的选取的规则是选择leader粒子库中聚合值最小的粒子,即leader库中最优的粒子。
步骤十、对每个新粒子进行评价,即对新粒子计算每个目标函数的值。
步骤十一、根据各个新粒子每个目标函数的值,升级种群的理想点:如果所有新粒子的第一个目标函数值的最小值f1 min小于Z1则用f1 min代替Z1,否则Z1不变;如果所有新粒子的第二个目标函数值的最小值小于Z2则用代替Z2,否则Z2不变。
步骤十二、根据各粒子的目标函数值标准化各粒子的目标函数值并计算其聚合函数值。
步骤十三、根据聚合函数的值的大小升级各粒子的最优位置:如果新粒子的聚合函数值比粒子最优位置的聚合值小,则用新粒子的位置代替粒子的最优位置,否则粒子最优位置不变。由此根据支配关系升级leader粒子库。
步骤十四、根据各个新粒子和它们之间的支配关系升级外部粒子库。
步骤十五、更新迭代次数t,直到迭代次数达到预先设定的最大值maxgen,则输出外部种群,否则返回到步骤九进行下一代迭代;
步骤十六、在输出的外部种群中选择最优解。利用分解过程中得到的聚合值来进行最优解的选取。具体实现是先选择使用者设定的类别数的非支配解作为候选解;然后分别将每个候选解在聚合函数上聚合值最小的个体作为最优个体;最后将最优个体所对应的类别标号作为像素的灰度值,得到图像分割结果。
本发明的的效果可通过以下仿真进一步说明:
1.仿真条件:本发明的仿真在windows XP,SPI,CPU Inter Core 2Duo,基本频率2.33Ghz,软件平台为MatlabR2011a运行。
2.仿真内容:应用本发明方法和多目标进化聚类方法,多目标粒子群优化聚类方法分别对两幅合成纹理图像和两幅SAR图像进行分割实验,并从细节信息的完整性、同质区域的内部一致性和边缘边界的清晰性评价这些方法的各自性能。合成纹理图像还可以用平均分割正确率结果来评价各种方法的性能。
仿真1,用本发明方法以及多目标进化聚类方法,多目标粒子群优化聚类方法分别对两类合成纹理图像image1进行分割,其结果如图2所示。其中图2(a)为三类合成纹理图像image1;图2(b)为图像image1的理想分割结果;图2(c)为用现有多目标进化聚类方法对图2(a)进行分割得到的结果;图2(d)为用现有多目标粒子群优化聚类方法对图2(a)进行分割得到的结果;图2(e)为用本发明方法对图2(a)进行分割得到的结果。
仿真2,用本发明方法以及多目标进化聚类方法,多目标粒子群优化聚类方法对四类合成纹理图像image2进行分割,其结果如图3所示。其中图3(a)为四类合成纹理图像image2;图3(b)为对图像image2的理想分割结果;图3(c)为用现有多目标进化聚类方法对图3(a)进行分割得到的结果;图3(d)为用现有多目标粒子群优化聚类方法对图3(a)进行分割得到的结果;图3(e)为用本发明方法对图3(a)进行分割得到的结果。
仿真3,用本发明方法以及多目标进化聚类方法,多目标粒子群优化聚类方法分别对SAR图像分割,其结果如图4所示。其中图4(a)为两类机载SAR原图像,分为田地和森林;图4(b)为用现有多目标进化聚类方法对图4(a)进行分割得到的结果;图4(c)为用现有多目标粒子群优化聚类方法对图4(a)进行分割得到的结果;图4(d)为用本发明方法对图4(a)进行分割得到的结果。
仿真4,用本发明方法以及多目标进化聚类方法,多目标粒子群优化聚类方法分别对Ku波段的SAR图像分割,其结果如图5所示。其中图5(a)为三类SAR图像,分为植被、农作物和河流;图5(b)为用现有多目标进化聚类方法对图5(a)进行分割得到的结果;图5(c)为用现有多目标粒子群优化聚类方法对图5(a)进行分割得到的结果;图5(d)为用本发明方法对图5(a)进行分割得到的结果。
3.仿真结果分析:
从图2(c),2(d)和2(e)的分割结果中可以看出,本发明在边缘细节保持上都比其他两个现有方法好,且平均分割正确率也是最高的。
从图3(c),3(d)和3(e)的分割结果中可以看出,本发明在边缘细节保持上优于多目标进化聚类算法,区域一致性上优于多目标粒子群优化聚类算法且平均分割正确率也是最高的。
从图4(c),4(d)和4(e)的分割结果中可以看出,本发明在区域一致性上优于多目标进化聚类算法和多目标粒子群优化聚类算法,本发明在森林得到了完整的分割,而其他两个方法均缺少了一小部分森林,本发明得到了最好的分割。
从图5(c),5(d)和5(e)的分割结果中可以看出,本发明相比较多目标进化聚类算法,将一些小的植被区域分割出来,本发明相比较于多目标粒子群优化聚类算法,在农作物区域上保持了一致性,本发明得到了最好的分割。
表1给出了不同的方法对Image1和Image2的独立分割运行20次后的平均分割正确率。多目标进化聚类算法用MOCK表示,多目标粒子群优化聚类算法用MPSO表示,本发明用DMPSO表示。
表1不同的方法对Image1和Image2的分割正确率
图像 MOCK MPSO DMPSO
Image1 0.8959 0.9203 0.9463
Image2 0.8943 0.9486 0.9719
从表1可见,本发明与其他两种算法的对比,得到了最高的平均正确率。

Claims (5)

1.基于改进多目标粒子群优化聚类的图像分割方法,其特征在于:包括如下步骤:
(1)输入待分割图像,提取待分割图像的特征,并计算该待分割图像的梯度,得到梯度图像,对梯度图像进行分水岭分割,得到N个互不重叠的区域,N≥1000;
(2)对每个区域中所有像素点特征取均值,获得每一个区域的特征向量,作为初始聚类数据点集合W={w1,w2…wN};
(3)利用初始聚类数据点集合,随机初始化大小为M的种群:
(3a)随机初始化各粒子的位置X={x1,x2…xM}、速度V={v1,v2…vM},每个粒子的位置xm代表一种分割结果,m=1,2,…M,M=50;
(3b)将各粒子的当前位置作为各粒子的最优位置;
(4)根据每个粒子的位置计算每个粒子的目标函数值F,F=[f1 f2],其中,f1为类内方差,f2为类间连接;
(5)根据各粒子的位置和目标函数值初始化leader粒子库和外部粒子库;
(6)根据目标函数值初始化理想点Z*,Z*=[Z1 Z2],其中Z1为第一个目标函数f1到目前为止找到的最小值,其中Z2为第二个目标函数f2到目前为止找到的最小值;
(7)根据各粒子的目标函数值标准化各粒子的目标函数值,并计算各粒子的聚合函数值;
(8)升级各个粒子的速度和位置;升级公式按如下进行:
v i t + 1 = v i t + ( p i t - x i t ) + ( p g t - x i t )
x i t + 1 = x i t + v i t + 1
其中,表示t+1代第i个粒子的速度,表示t代第i个粒子的速度,表示t代第i个粒子的位置;表示t+1代第i个粒子的位置,表示t代第i个粒子的最好位置,表示t代leader粒子库中的粒子;
(9)对每个新粒子进行评价,即对新粒子计算每个目标函数的值;
(10)根据每个目标函数的值,升级种群的理想点;
(11)根据每个粒子的目标函数值计算每个粒子的聚合函数值;
(12)根据每个粒子的聚合函数的值的大小升级每个粒子的最优位置:如果新粒子的聚合函数值比粒子最优位置的聚合函数值小,则用新粒子的位置代替粒子的最优位置,否则粒子最优位置不变;
(13)升级leaders粒子库和外部粒子库;
(14)更新迭代次数t,直到迭代次数达到预先设定的最大值max gen,则输出外部种群,否则返回到步骤(6)进行下一代迭代;
(15)在输出的外部种群中选择最优解;利用分解过程中得到的聚合函数值来进行最优解的选取;具体实现是先选择使用者设定的类别数的非支配解作为候选解;然后分别将每个候选解在聚合函数上聚合函数值最小的个体作为最优个体;最后将最优个体所对应的类别标号作为像素的灰度值,得到图像分割结果。
2.根据权利要求1所述的基于改进多目标粒子群优化聚类的图像分割方法,其特征在于:所述步骤(4)中f1为类内方差,类内方差是计算所有数据点到其聚类中心的类内距离和,f1(x)通过如下公式进行计算:
f 1 ( x ) = Σ x k ∈ x Σ i ∈ x k δ ( i , μ k )
其中,f1(x)为待聚类数据集的类内距离和;x为待聚类数据集;∑为算术运算中的累加符号;xk为待聚类数据集的第k类;∈为集合中的属于符号;i为一个类别中的一个数据点;δ(i,μk)为欧式距离函数;μk为待聚类数据的第k类的聚类中心。
3.根据权利要求1所述的基于改进多目标粒子群优化聚类的图像分割方法,其特征在于:所述步骤(4)中第二个目标函数值f2为类间连接,类间连接用于评估相邻数据点被划分到同一个类别的相邻度,f2(x)通过如下公式计算:
f 2 ( x ) = Σ i = 1 m ( Σ j = 1 L x i , j )
其中,f2(x)为类间距离和;x为待聚类数据集;m为待聚类数据点的个数;∑为算术运算中的累加符号;i为一个数据点;L是最近邻的个数,L=10;j为近邻点;xi,j为第i个数据点与其第j个最近邻的关系值,当第i个数据点和第j个数据点属于同一类,则xi,j取0,否则取1/j。
4.根据权利要求1所述的基于改进多目标粒子群优化聚类的图像分割方法,其特征在于:所述步骤(7)标准化各粒子的目标函数值,按如下公式进行:
S ( f i ( x ) ) = 1 / ( 1 + e - f i ( x ) )
其中,fi(x)为第i个目标,i=1,2。
5.根据权利要求1所述的基于改进多目标粒子群优化聚类的图像分割方法,其特征在于:所述步骤(7)中所述的各粒子的聚合函数值,任意粒子j的聚合函数值gj(x|λj,z*),按如下公式进行:
minimize gj(x|λj,z*)=d1+θd2
其中,d1=||(Fj(x)-z*)Tλj||/||λj||,d2=||(Fj(x)-z*)-d1λj/||λj|| ||,是第j个粒子的权值,x表示一个粒子,Fj(x)表示第j个粒子的目标函数值,z*表示理想点,|是算术运算中的条件符号,||·||表示2范数,(·)T为矩阵转置运算,θ取为0.5。
CN201410079278.2A 2014-03-05 2014-03-05 基于改进多目标粒子群优化聚类的图像分割方法 Active CN103985112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410079278.2A CN103985112B (zh) 2014-03-05 2014-03-05 基于改进多目标粒子群优化聚类的图像分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410079278.2A CN103985112B (zh) 2014-03-05 2014-03-05 基于改进多目标粒子群优化聚类的图像分割方法

Publications (2)

Publication Number Publication Date
CN103985112A CN103985112A (zh) 2014-08-13
CN103985112B true CN103985112B (zh) 2017-05-10

Family

ID=51277070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410079278.2A Active CN103985112B (zh) 2014-03-05 2014-03-05 基于改进多目标粒子群优化聚类的图像分割方法

Country Status (1)

Country Link
CN (1) CN103985112B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376529B (zh) * 2014-11-25 2017-08-11 深圳北航天汇创业孵化器有限公司 一种基于glcm的灰度图像彩色化系统和方法
CN104751449A (zh) * 2015-04-28 2015-07-01 江西科技学院 一种基于粒子群优化的sar图像分割方法
CN107220985B (zh) * 2017-05-18 2020-02-07 西安电子科技大学 基于图划分粒子群优化的sar图像自动分割方法
CN109993718B (zh) * 2019-03-05 2021-04-13 北京当红齐天国际文化科技发展集团有限公司 一种多通道投影图像融合方法及装置
CN110442143B (zh) * 2019-07-05 2020-10-27 北京航空航天大学 一种基于组合多目标鸽群优化的无人机态势数据聚类方法
CN111932498B (zh) * 2020-07-09 2022-06-24 西南交通大学 无规则形状颗粒堆积体系中接触数定量表征方法
CN113034521B (zh) * 2021-03-31 2023-01-24 西安电子科技大学 基于多目标进化的极化sar图像超像素分割方法
CN114332120A (zh) * 2021-12-24 2022-04-12 上海商汤智能科技有限公司 图像分割方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923712A (zh) * 2010-08-03 2010-12-22 苏州大学 基于粒子群优化的K-means聚类算法的基因芯片图像分割法
CN101923715A (zh) * 2010-09-02 2010-12-22 西安电子科技大学 基于粒子群优化空间纹理信息约束聚类的图像分割方法
CN102496156A (zh) * 2011-11-17 2012-06-13 西安电子科技大学 基于协同量子粒子群算法的医学图像分割方法
CN102903113A (zh) * 2012-10-08 2013-01-30 南京邮电大学 基于协作量子粒子群算法的多阈值图像分割方法
CN103593855A (zh) * 2013-12-04 2014-02-19 西安电子科技大学 基于粒子群优化和空间距离测度聚类的图像分割方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852766B2 (ja) * 2005-11-11 2012-01-11 国立大学法人北陸先端科学技術大学院大学 クラスタリングシステム、及び、それを備える画像処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923712A (zh) * 2010-08-03 2010-12-22 苏州大学 基于粒子群优化的K-means聚类算法的基因芯片图像分割法
CN101923715A (zh) * 2010-09-02 2010-12-22 西安电子科技大学 基于粒子群优化空间纹理信息约束聚类的图像分割方法
CN102496156A (zh) * 2011-11-17 2012-06-13 西安电子科技大学 基于协同量子粒子群算法的医学图像分割方法
CN102903113A (zh) * 2012-10-08 2013-01-30 南京邮电大学 基于协作量子粒子群算法的多阈值图像分割方法
CN103593855A (zh) * 2013-12-04 2014-02-19 西安电子科技大学 基于粒子群优化和空间距离测度聚类的图像分割方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"An Evolutionary Approach to Multiobjective Clustering";Julia Handl and Joshua Knowles;《IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 1, FEBRUARY 2007》;20071231;第11卷;第56-76页 *
"MOEA/D: A Multiobjective Evolutionary Algorithm";Qingfu Zhang etc;《IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 11, NO. 6, DECEMBER 2007》;20071231;第11卷;第712-731页 *
"Multi-Objective Optimisation of Cancer";Noura Al Moubayed etc;《2011 IEEE Symposium on Computational Intelligence in multicriteria Decision-Making》;20111231;第81-88页 *

Also Published As

Publication number Publication date
CN103985112A (zh) 2014-08-13

Similar Documents

Publication Publication Date Title
CN103985112B (zh) 基于改进多目标粒子群优化聚类的图像分割方法
CN112052754B (zh) 基于自监督表征学习的极化sar影像地物分类方法
CN104268593B (zh) 一种小样本情况下多稀疏表示的人脸识别方法
CN110458187B (zh) 一种恶意代码家族聚类方法和系统
CN103593855B (zh) 基于粒子群优化和空间距离测度聚类的图像分割方法
CN102999762B (zh) 基于Freeman分解和谱聚类的极化SAR图像分类方法
CN109359525B (zh) 基于稀疏低秩的判别谱聚类的极化sar图像分类方法
CN102945553B (zh) 基于自动差分聚类算法的遥感图像分割方法
CN108388907B (zh) 基于多视角学习的极化sar数据分类器实时更新方法
CN102903102A (zh) 基于非局部的三马尔可夫随机场sar图像分割方法
CN109919202A (zh) 分类模型训练方法及装置
CN104680179A (zh) 基于邻域相似度的数据降维方法
Wang et al. Energy based competitive learning
CN108428236B (zh) 基于特征公平集成的多目标sar图像分割方法
CN111062428A (zh) 一种高光谱图像的聚类方法、系统及设备
CN113723492A (zh) 一种改进主动深度学习的高光谱图像半监督分类方法及装置
Bayá et al. Clustering stability for automated color image segmentation
CN104318271A (zh) 一种基于适应性编码和几何平滑汇合的图像分类方法
CN103456017A (zh) 基于种子集的半监督权重核模糊聚类的图像分割方法
CN108921853B (zh) 基于超像素和免疫稀疏谱聚类的图像分割方法
CN111814804B (zh) 基于ga-bp-mc神经网络的人体三维尺寸信息预测方法及装置
Chavan et al. Mini batch k-means clustering on large dataset
CN110533078A (zh) 基于字典对的多视角识别方法
CN114626459A (zh) 使用粒子群优化多核支持向量机的高光谱图像空谱联合分类方法及系统
CN114548197A (zh) 一种基于自律学习sdl模型的聚类方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant