CN103974966A - 藻类去饱和酶 - Google Patents

藻类去饱和酶 Download PDF

Info

Publication number
CN103974966A
CN103974966A CN201280031865.3A CN201280031865A CN103974966A CN 103974966 A CN103974966 A CN 103974966A CN 201280031865 A CN201280031865 A CN 201280031865A CN 103974966 A CN103974966 A CN 103974966A
Authority
CN
China
Prior art keywords
desaturase
sequence
nucleotide sequence
acid
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280031865.3A
Other languages
English (en)
Inventor
O·基利安
B·维克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurora Biofuels Inc
Original Assignee
Aurora Biofuels Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aurora Biofuels Inc filed Critical Aurora Biofuels Inc
Publication of CN103974966A publication Critical patent/CN103974966A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)

Abstract

本文提供了编码具有去饱和酶活性的多肽的示例性经分离核苷酸序列,所述去饱和酶利用脂肪酸作为底物。

Description

藻类去饱和酶
相关申请的交叉引用
本申请要求2011年4月28日提交的标题为“Desaturases(去饱和酶)”的美国临时专利序列号61/480,353的权益和优先权,其通过引用纳入本文。
本申请涉及2009年10月19日提交的标题为“Homologous Recombination in anAlgal Nuclear Genome(藻类核基因组的同源重组)”的美国非临时专利申请序列号第12/581,812,其通过引用纳入本文。
本申请涉及2009年6月8日提交的标题为“VCP-Based Vectors for Algal CellTransformation(用于藻类细胞转化的基于VCP的载体)”的美国非临时专利申请序列号12/480,635号,其通过引用纳入本文。
本申请涉及2009年6月8日提交的标题为“Transformation of Algal Cells(藻类细胞转化)”的美国非临时专利申请序列号12/480,611,其通过引用纳入本文。
关于序列表
本申请与所附序列表一起提交,其通过引用纳入本文。
发明背景
技术领域
本发明涉及分子生物学,更具体而言,涉及藻类去饱和酶。
发明内容
编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述去饱和酶用脂肪酸作为底物。
附图简要说明
图1为示例性去饱和酶的列表。
图2显示了编码去饱和酶3的核苷酸序列(SEQ ID NO:1)。
图3显示了编码去饱和酶5的核苷酸序列(SEQ ID NO:2)。
图4显示了编码去饱和酶7的核苷酸序列(SEQ ID NO:3)。
图5显示了编码去饱和酶9的核苷酸序列(SEQ ID NO:4)。
图6显示了编码去饱和酶10的核苷酸序列(SEQ ID NO:5)。
图7显示了编码去饱和酶3的氨基酸序列(SEQ ID NO:6)。
图8显示了编码去饱和酶5的氨基酸序列(SEQ ID NO:7)。
图9显示了编码去饱和酶7的氨基酸序列(SEQ ID NO:8)。
图10显示了编码去饱和酶9的氨基酸序列(SEQ ID NO:9)。
图11显示了编码去饱和酶10的氨基酸序列(SEQ ID NO:10)。
发明详述
脂肪酸是具有长脂族尾部(链)的羧酸,可以是饱和或不饱和的。饱和脂肪酸是通常具有12~24个碳原子并且不具有双键的长链羧酸。不饱和脂肪酸在碳原子间有一个或多个双键。大部分天然存在的脂肪酸具有偶数碳原子链,范围为4~28。脂肪酸去饱和酶是去除脂肪酸中两个氢原子从而产生碳/碳双键的酶。这些去饱和酶分为Δ去饱和酶,表示双键在脂肪酸羧基的固定位点产生(例如,Δ9(“Δ9”)去饱和酶在离羧基端的第9位点产生双键),或分为ω去饱和酶(例如,ω3“ω3”去饱和酶,其在离脂肪酸甲基端的第三个和第四个碳之间产生双键)。
本文提供了编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述去饱和酶用脂肪酸作为底物。
发明人对微拟球藻属(genus Nannochloropsis)的整个基因组进行测序并鉴定了涉及脂肪酸代谢的基因。他们鉴定了多种去饱和酶,包括命名为去饱和酶3(“desat3”)、去饱和酶5(“desat5”)、去饱和酶7(“desat7”)、去饱和酶9(“desat9”)和去饱和酶10(“desat10”)示例性去饱和酶。
发明人通过以下方法操作上述示例性去饱和酶基因的活性:
1.用强启动子过度表达所述去饱和酶基因。
2.通过同源重组在基因组中所述去饱和酶基因前面进行启动子取代或启动子插入。
3.通过向基因中插入转化构建体来敲除所述去饱和酶基因或通过同源重组取代部分或完整的所述去饱和酶基因。
对上述方法的示例性支持可参见2009年10月19日提交的标题为“藻类核基因组的同源重组”的美国非临时专利申请序列号12/581,812,2009年6月8日提交的标题为“用于藻类细胞转化的基于VCP的载体”的美国非临时专利申请序列号12/480,635和2009年6月8日提交的标题为“藻类细胞的转化”的美国非临时专利申请序列号12/480,611,所述专利申请都通过引用纳入本文。
因此,发明人能出于改变微拟球藻属中特定脂肪酸含量的目的操作多种示例性去饱和酶的活性。
图1为示例性去饱和酶的列表。该表包括各去饱和酶编号,标题为“去饱和酶号”,相应的序列标识号,标题为“SEQ ID NO”,去饱和酶种类,标题为“去饱和酶种类”,氮气存在或不存在的情况下去饱和酶基因调节的相对提高,标题为“氮气存在/不存在情况下的上调倍数”,第一去饱和酶底物,标题为“底物1”,所得第一产物,标题为“产物1”,第二去饱和酶底物(如果适用),标题为“底物2”,所得第二产物(如果适用),标题为“产物2”,特定突变构建体中去饱和酶基因上调或是下调(有关底物1转化为产物1的反应),标题为“突变体中基因上调/下调”,所观察到的通过突变构建体使相应底物转化为产物的反应提高或降低(相比野生型微拟球藻对照细胞),标题为“底物1向产物1的转化”,特定突变构建体中去饱和酶基因上调或是下调(有关底物2转化为产物2的反应)(如果适用),标题为“突变体中基因上调/下调”,所观察到的通过突变构建体使相应底物转化为产物的反应提高或降低(相比野生型微拟球藻对照细胞),标题为“底物2向产物2的转化”(如果适用)。
如图1所示,发明人鉴定了5个示例性去饱和酶,称为去饱和酶3(“desat3”)、去饱和酶5(“desat5”)、去饱和酶7(“desat7”)、去饱和酶9(“desat9”)和去饱和酶10(“desat10”)。各去饱和酶具有相对应的SEQ ID NO,其反映了各去饱和酶的核苷酸分子。图1中还显示了去饱和酶类型(表示相应的酶活性)。标题为“氮气存在/不存在情况下的上调倍数”的一列反映了在氮气充足(“N+”)或氮气不充足条件(“N-“)下生长的样品的全转录组比较。标题为“底物1向产物1的转化”和“底物2向产物2的转化”(如果适用)的列显示所观察到的通过突变构建体使相应底物转变为产物的反应提高或降低(相对野生型微拟球藻对照细胞)。
再来参见图1中的表格,去饱和酶3(一种Δ12去饱和酶)在氮气不存在的情况下大约上调1.5倍。去饱和酶3使棕榈油酸(Palmitolenic acid)(16:2(n-7))向6,9,12十六碳三烯酸(16:3(n-4))的转化提高大约85%(相比野生型微拟球藻对照细胞)。去饱和酶3还使油酸即顺式-9-十八烯酸(18:1(n-9))向亚油酸即全顺式-9,12-十八碳二烯酸(18:2(n-6))的转化提高大约50%(相比野生型微拟球藻对照细胞)。
如图1中表格所示,去饱和酶5也是Δ12去饱和酶。去饱和酶5在氮气存在或不存在时不受调节。去饱和酶5使油酸即顺式-9-十八烯酸(18:1(n-9))向12-十八碳二烯酸(18:2(n-6))的转化降低大约100%(相比野生型微拟球藻对照细胞)。
如图1中表格所示,去饱和酶7是ω3去饱和酶。去饱和酶7在氮气存在时上调约4.0倍。去饱和酶7的过度表达由于使更多的ARA转化为二十碳五烯酸即全顺式-5,8,11,14,17二十碳五烯酸(20:5(n-3))(“EPA”)从而降低了花生四烯酸即全-顺式-5,8,11,14-二十碳四烯酸(20:4(n-6))(“ARA”)的量(相比野生型微拟球藻对照细胞)。事实上,EPA与ARA之比从约7.5变为约22,大约提高了200%。去饱和酶7使亚油酸即全顺式-9,12-的十八碳二烯酸(18:2(n-6))向α-亚麻酸即全顺式-9,12,15-十八碳三烯酸(18:3(n-3))的转化提高大约650%(相比野生型微拟球藻对照细胞)。事实上,α-亚麻酸即全顺式-9,12,15-十八碳二烯酸(18:3(n-3))与亚麻酸即全顺式-9,12-十八碳二烯酸(18:2(n-6))之比从约2.5变为约15.8,大约提高550%。
如图1中表格所示,去饱和酶9是Δ9去饱和酶。去饱和酶9在氮气不存在时上调约6.6倍。去饱和酶9使棕榈酸或十六烷酸(16:0)向棕榈油酸即顺式-9-十六烯酸(16:1(n-7))的转变大约提高25%,而使棕榈油酸即顺式-9-十六烯酸(16:1(n-7))与棕榈酸或十六烷酸(16:0)之比从约.48增加至0.6,大约提高25%。
如图1中表格所示,去饱和酶10是Δ9去饱和酶。去饱和酶9在氮气不存在时上调约5.0倍。去饱和酶9使棕榈酸或十六烷酸(16:0)向棕榈油酸即顺式-9-十六烯酸(16:1(n-7))的转变大约提高34%,而使棕榈油酸即顺式-9-十六烯酸(16:1(n-7))与棕榈酸或十六烷酸(16:0)之比从约1.02增加至1.19,大约提高16%。
图2显示了编码去饱和酶3的核苷酸序列(SEQ ID NO:1)。
发明人发现去饱和酶3在氮饥饿的情况下略微上调。发明人用包含强上游启动子的去饱和酶3制备构建体。这使16:3n4和18:2n6脂肪酸的表达量提高。
图3显示了编码去饱和酶5的核苷酸序列(SEQ ID NO:2)。
发明人发现去饱和酶5编码与Δ12去饱和酶具有高度同源性的脂肪酸去饱和酶。发明人还发现,当构建体在氮饥饿条件下生长时(请注意:在氮饥饿条件下诱导启动子),该去饱和酶基因在诱导型脲酶启动子调控下的过度表达导致18:1n9脂肪酸和具有18个或更多碳原子的多不饱和脂肪酸(“PUFA”)的表达水平更高。
在其它实验中,发明人确定Δ12位点上的去饱和步骤可能是使碳进入PUFA生物合成通路的主要瓶颈。虽然18:1n9脂肪酸在氮饥饿期间稳步上升,18:2n6脂肪酸(衍生自所述18:1n9脂肪酸的Δ12去饱和)是降低的(在所有脂肪酸的百分比基础上),因为该通路中所有脂肪酸引起二十碳五烯酸(“EPA”)生成。发明人得出结论,如果去饱和酶5基因过度表达,去饱和酶5基因增加氮饥饿期间进入PUFA生物合成通路的碳通量。
图4显示了编码去饱和酶7的核苷酸序列(SEQ ID NO:3)。
发明人制备多种构建体(启动子取代,敲除和过度表达构建体)并发现去饱和酶7基因的下调导致更低的EPA/花生四烯酸(“ARA”)比例,即更少的ARA被去饱和成为EPA。发明人在突变构建体中观察到,更少的去饱和酶7转录是由于野生型微拟球藻细胞中天然启动子的交换。发明人观察到,突变构建体相比野生型微拟球藻对照细胞具有近两倍的ARA水平和更低水平的EPA。
发明人还发现去饱和酶7基因的上调导致更高的18:3n3/18:2n6和EPA/ARA比例,即更多18:2n6转化为18:3n3,且更多ARA转化为EPA。因此,发明人观察到EPA/ARA比例几乎翻倍。
图5显示了编码去饱和酶9的核苷酸序列(SEQ ID NO:4)。
图6显示了编码去饱和酶10的核苷酸序列(SEQ ID NO:5)。
发明人发现去饱和酶9和去饱和酶10似乎都是Δ9去饱和酶,其主要作用于16:0脂肪酸或结合其它化合物的16:0脂肪酸。启动子交换实验中发明人用强启动子交换天然野生型微拟球藻启动子,揭示在氮缺乏条件下所述活性上调。因此在氮饥饿的情况下,高百分比的脂肪酸通过去饱和酶9的作用导向16:1n7脂肪酸的累积,这意味着更少的脂肪酸进入PUFA通路。发明人还用中等强度的启动子取代去饱和酶9基因的启动子,推定当细胞进入氮饥饿时其不会受到调节,目的是在饥饿期间避免碳通量进入16:1n7和18:1n7脂肪酸的生物合成并提高碳通量进入PUFA生物合成通路。发明人发现这些基因是为了提高PUFA生物合成而过度表达的极佳靶标。例如,通过在各去饱和酶基因前方取代内源启动子或插入更弱的启动子而下调这些(或其它)基因可产生更高含量的短链脂肪酸。在一些情况下也可通过在各去饱和酶基因前方插入常见强启动子实现转录的下调,可能通过改变去饱和酶基因周围的各染色质排列从而导致更低的转录水平。同样,在去饱和酶基因前方通过同源重组两侧来插入另一个启动子时,向去饱和酶基因导入点突变,这可能导致各基因产物的活性改变。
发明人还发现,在氮充足的条件下所选去饱和酶10的过度表达突变体中16:1n7脂质增加,这清楚地表明,相比相同实验中的野生型微拟球藻细胞,该突变体中的16:1n7脂肪酸增加了大约34%。
图7显示了编码去饱和酶3的氨基酸序列(SEQ ID NO:6)。
图8显示了编码去饱和酶5的氨基酸序列(SEQ ID NO:7)。
图9显示了编码去饱和酶7的氨基酸序列(SEQ ID NO:8)。
图10显示了编码去饱和酶9的氨基酸序列(SEQ ID NO:9)。
图11显示了编码去饱和酶10的氨基酸序列(SEQ ID NO:10)。
尽管以上描述了多个实施方式,但应理解,它们仅以举例方式呈现,并不构成限制。因此,优选实施方式的广度和范围不应受任何上述示例性实施方式的限制。

Claims (19)

1.一种编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述核苷酸序列与SEQ ID NO:1具有至少95%的序列相同性。
2.如权利要求1所述的经分离核苷酸序列,其特征在于,所述序列编码功能活性去饱和酶,所述去饱和酶利用脂肪酸作为底物。
3.如权利要求2所述的经分离核苷酸序列,其特征在于,所述功能活性去饱和酶包含具有SEQ ID NO:6所示序列或与所述序列至少95%相同序列的氨基酸。
4.一种编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述核苷酸序列与SEQ ID NO:2具有至少95%的序列相同性。
5.如权利要求4所述的经分离核苷酸序列,其特征在于,所述序列编码功能活性去饱和酶,所述去饱和酶利用脂肪酸作为底物。
6.如权利要求5所述的经分离核苷酸序列,其特征在于,所述功能活性去饱和酶包含具有SEQ ID NO:7所示序列或与所述序列至少95%相同序列的氨基酸。
7.一种编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述核苷酸序列与SEQ ID NO:3具有至少95%的序列相同性。
8.如权利要求7所述的经分离核苷酸序列,其特征在于,所述序列编码功能活性去饱和酶,所述去饱和酶利用脂肪酸作为底物。
9.如权利要求8所述的经分离核苷酸序列,其特征在于,所述功能活性去饱和酶包含具有SEQ ID NO:8所示序列或与所述序列至少95%相同序列的氨基酸。
10.一种编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述核苷酸序列与SEQ ID NO:4具有至少95%的序列相同性。
11.如权利要求10所述的经分离核苷酸序列,其特征在于,所述序列编码功能活性去饱和酶,所述去饱和酶利用脂肪酸作为底物。
12.如权利要求11所述的经分离核苷酸序列,其特征在于,所述功能活性去饱和酶包含具有SEQ ID NO:9所示序列或与所述序列至少95%相同序列的氨基酸。
13.一种编码具有去饱和酶活性的多肽的经分离核苷酸序列,所述核苷酸序列与SEQ ID NO:5具有至少95%的序列相同性。
14.如权利要求13所述的经分离核苷酸序列,其特征在于,所述序列编码功能活性去饱和酶,所述去饱和酶利用脂肪酸作为底物。
15.如权利要求14所述的经分离核苷酸序列,其特征在于,所述功能活性去饱和酶包含具有SEQ ID NO:10所示序列或与所述序列至少95%相同序列的氨基酸。
16.如权利要求1所述的经分离核苷酸序列,其特征在于,所述序列来自藻类。
17.如权利要求16所述的经分离核苷酸序列,其特征在于,所述藻类是微拟球藻属。
18.如权利要求7所述的经分离核苷酸序列,其特征在于,所述序列来自藻类。
19.如权利要求18所述的经分离核苷酸序列,其特征在于,所述藻类是微拟球藻属。
CN201280031865.3A 2011-04-28 2012-04-27 藻类去饱和酶 Pending CN103974966A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161480353P 2011-04-28 2011-04-28
US61/480,353 2011-04-28
PCT/US2012/035633 WO2012149457A2 (en) 2011-04-28 2012-04-27 Algal desaturases

Publications (1)

Publication Number Publication Date
CN103974966A true CN103974966A (zh) 2014-08-06

Family

ID=47068401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280031865.3A Pending CN103974966A (zh) 2011-04-28 2012-04-27 藻类去饱和酶

Country Status (7)

Country Link
US (2) US8440805B2 (zh)
JP (1) JP2014519810A (zh)
CN (1) CN103974966A (zh)
AU (1) AU2012249377A1 (zh)
IL (1) IL229086A0 (zh)
MX (1) MX2013012565A (zh)
WO (1) WO2012149457A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029137B2 (en) 2009-06-08 2015-05-12 Aurora Algae, Inc. ACP promoter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119859B2 (en) 2008-06-06 2012-02-21 Aurora Algae, Inc. Transformation of algal cells
US20100022393A1 (en) * 2008-07-24 2010-01-28 Bertrand Vick Glyphosate applications in aquaculture
US8809046B2 (en) 2011-04-28 2014-08-19 Aurora Algae, Inc. Algal elongases
US10123986B2 (en) 2012-12-24 2018-11-13 Qualitas Health, Ltd. Eicosapentaenoic acid (EPA) formulations
US9629820B2 (en) 2012-12-24 2017-04-25 Qualitas Health, Ltd. Eicosapentaenoic acid (EPA) formulations
JP6785769B2 (ja) * 2015-08-05 2020-11-18 花王株式会社 脂質の製造方法
JP6983784B2 (ja) 2016-09-07 2021-12-17 花王株式会社 脂質の製造方法
AU2017333801A1 (en) * 2016-09-27 2019-04-11 Kao Corporation Method of Producing Lipid
US11891640B1 (en) 2021-01-20 2024-02-06 National Technology & Engineering Solutions Of Sandia, Llc Crop protection in algae by exogenous terpene expression
WO2023144851A1 (en) * 2022-01-25 2023-08-03 Tmci Padovan S.P.A. Method for producing a genetically modified plant organism and genetically modified organism obtainable thereby

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448055B1 (en) * 1997-02-27 2002-09-10 Suntory Limited Δ9-desaturase gene
CN101289659A (zh) * 2008-06-19 2008-10-22 中国海洋大学 一种海洋微藻delta6脂肪酸去饱和酶及其应用
US20110015415A1 (en) * 2004-04-22 2011-01-20 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926780A (en) 1931-11-11 1933-09-12 John W Lippincott Endless water course
FR94705E (fr) 1966-06-01 1969-10-24 Inst Francais Du Petrole Procédé perfectionné de culture d'algues et dispositif de mise en oeuvre.
US3962466A (en) 1972-11-10 1976-06-08 Dai-Nippon Sugar Manufacturing Co., Ltd. Method for treatment of microorganisms
US4003337A (en) 1974-10-23 1977-01-18 Kerry Lamar Moore Fish growing tank and method
US4267038A (en) 1979-11-20 1981-05-12 Thompson Worthington J Controlled natural purification system for advanced wastewater treatment and protein conversion and recovery
US4365938A (en) 1980-01-14 1982-12-28 Warinner Archie F Modular low head high volume water pump and aquaculture system
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US5668298A (en) 1984-12-24 1997-09-16 Eli Lilly And Company Selectable marker for development of vectors and transformation systems in plants
US4658757A (en) 1985-11-14 1987-04-21 Ocean Ventures-1 Method and apparatus for improved aquaculture/mariculture
US5105085A (en) 1989-11-17 1992-04-14 Mcguire Danny G Fluid analysis system
US7037692B1 (en) * 1990-03-16 2006-05-02 Calgene, Inc. Plant desaturases compositions and uses
US5527456A (en) 1992-06-02 1996-06-18 Jensen; Kyle R. Apparatus for water purification by culturing and harvesting attached algal communities
US5661017A (en) 1993-09-14 1997-08-26 Dunahay; Terri Goodman Method to transform algae, materials therefor, and products produced thereby
US5417550A (en) 1993-11-02 1995-05-23 Marine Gikens Co., Ltd. Submersed jet pump for generating a stream of water
ES2256856T3 (es) 1995-04-06 2006-07-16 Seminis Vegetable Seeds, Inc. Proceso de seccion de celulas transgenicas.
US6027900A (en) 1996-04-12 2000-02-22 Carnegie Institution Of Washington Methods and tools for transformation of eukaryotic algae
US6297054B1 (en) 1996-06-14 2001-10-02 Rutgers, The State University Of New Jersey Editing-based selectable plastid marker genes
US5823781A (en) 1996-07-29 1998-10-20 Electronic Data Systems Coporation Electronic mentor training system and method
US6117313A (en) 1996-12-27 2000-09-12 Goldman; Joshua Method and apparatus for aquaculture and for water treatment related thereto
JP2001512029A (ja) 1997-08-01 2001-08-21 マーテック・バイオサイエンスィズ・コーポレーション Dha含有栄養組成物およびそれらの製造方法
US7834855B2 (en) 2004-08-25 2010-11-16 Apple Inc. Wide touchpad on a portable computer
US6166231A (en) 1998-12-15 2000-12-26 Martek Biosciences Corporation Two phase extraction of oil from biomass
KR101591834B1 (ko) 2000-01-19 2016-02-18 마텍 바이오싸이언스스 코포레이션 무용매 추출 방법
US6831040B1 (en) 2000-01-27 2004-12-14 The Regents Of The University Of California Use of prolines for improving growth and other properties of plants and algae
ES2254285T3 (es) 2000-05-24 2006-06-16 Dsm Ip Assets B.V. Proceso para la produccion de astaxantina.
WO2001098335A2 (en) 2000-06-20 2001-12-27 Phycotransgenics, Llc Transgenic algae for delivering antigens to an animal
US20070178451A1 (en) 2001-08-02 2007-08-02 Molian Deng Nucleic acid sequences from Chlorella sarokiniana and uses thereof
DE10040814A1 (de) 2000-08-21 2002-03-07 Thor Gmbh Synergistische Biozidzusammensetzung
US6871195B2 (en) 2000-09-13 2005-03-22 E-Promentor Method and system for remote electronic monitoring and mentoring of computer assisted performance support
DE01979431T1 (de) 2000-09-30 2004-10-21 Diversa Corp., San Diego Konstruktion ganzer zellen durch mutagenese eines wesentlichen anteils eines ausgangsgenoms, kombination von mutationen und gegebenfalls wiederholung
FR2821855B1 (fr) 2001-03-09 2004-04-02 Cayla Genes synthetiques et plasmides bacteriens depourvus de cpg
US6723243B2 (en) 2001-04-19 2004-04-20 Aquafiber Technologies Corporation Periphyton filtration pre- and post-treatment system and method
US7547551B2 (en) 2001-06-21 2009-06-16 University Of Antwerp. Transfection of eukaryontic cells with linear polynucleotides by electroporation
US6736572B2 (en) 2001-07-18 2004-05-18 Brian Geraghty Method and apparatus for reducing the pollution of boat harbors
US7238477B2 (en) 2001-09-24 2007-07-03 Intel Corporation Methods to increase nucleotide signals by Raman scattering
US7381326B2 (en) 2002-02-15 2008-06-03 Israel Haddas Mega flow system
ATE392472T1 (de) 2002-02-28 2008-05-15 Takara Bio Inc Promotor und intron aus algen
US9101151B2 (en) 2002-05-03 2015-08-11 Dsm Ip Assets B.V. High-quality lipids produced by enzymatic liberation from biomass
EP1509076A4 (en) 2002-05-13 2008-01-16 Greenfuel Technologies Corp PHOTOBIOREACTOR AND METHOD FOR PRODUCING BIOMASS AND MITIGATING POLLUTANTS IN CARBON GASES
US20050064577A1 (en) 2002-05-13 2005-03-24 Isaac Berzin Hydrogen production with photosynthetic organisms and from biomass derived therefrom
US7821425B2 (en) 2002-07-12 2010-10-26 Atmel Corporation Capacitive keyboard with non-locking reduced keying ambiguity
US20040161364A1 (en) 2003-02-10 2004-08-19 Carlson Peter S. Carbon sequestration in aqueous environments
WO2004106238A2 (en) 2003-05-27 2004-12-09 Fmc Corporation Method for control of aquatic vegetation
AU2003903453A0 (en) 2003-07-07 2003-07-17 The University Of Queensland Production of hydrogen
US20050095569A1 (en) 2003-10-29 2005-05-05 Patricia Franklin Integrated multi-tiered simulation, mentoring and collaboration E-learning platform and its software
KR100754687B1 (ko) 2003-12-12 2007-09-03 삼성전자주식회사 휴대단말기의 멀티입력부 및 그의 제어방법
WO2005062783A2 (en) 2003-12-19 2005-07-14 Edumedia Development Corporation Mentor based computer assisted learning
US7834250B2 (en) 2004-04-22 2010-11-16 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
WO2005108586A1 (en) 2004-05-07 2005-11-17 Universität Regensburg A method for increasing the ratio of homologous to non-homologous recombination
WO2006017624A2 (en) 2004-08-03 2006-02-16 Mentornet Mentor-protege matching system and method
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US7402428B2 (en) 2004-09-22 2008-07-22 Arborgen, Llc Modification of plant lignin content
WO2006047445A2 (en) 2004-10-22 2006-05-04 Martek Biosciences Corporation Process for preparing materials for extraction
US8039230B2 (en) 2004-11-08 2011-10-18 Chromagenics B.V. Selection of host cells expressing protein at high levels
US20060155558A1 (en) 2005-01-11 2006-07-13 Sbc Knowledge Ventures, L.P. System and method of managing mentoring relationships
KR100606803B1 (ko) 2005-05-16 2006-08-01 엘지전자 주식회사 스크롤 휠 장치를 이용한 기능 수행 기능을 갖는 이동통신단말기 및 이를 이용한 기능 수행 방법
US7770322B2 (en) 2005-06-07 2010-08-10 Hr Biopetroleum, Inc. Continuous-batch hybrid process for production of oil and other useful products from photosynthetic microbes
CN1956335B (zh) 2005-10-27 2010-06-23 盛群半导体股份有限公司 邻近感应装置及其感应方法
WO2007084078A1 (en) 2006-04-22 2007-07-26 Simlab Inventions & Consultancy Private Limited A keyboard for a mobile phone or other portable communication devices
US7745696B2 (en) 2006-06-12 2010-06-29 The Regents Of The University Of California Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae
US8003379B2 (en) 2006-08-01 2011-08-23 Brightsource Energy, Inc. High density bioreactor system, devices, and methods
US8088614B2 (en) 2006-11-13 2012-01-03 Aurora Algae, Inc. Methods and compositions for production and purification of biofuel from plants and microalgae
US9637714B2 (en) 2006-12-28 2017-05-02 Colorado State University Research Foundation Diffuse light extended surface area water-supported photobioreactor
US20080160488A1 (en) 2006-12-28 2008-07-03 Medical Simulation Corporation Trainee-as-mentor education and training system and method
KR20100051041A (ko) 2007-03-07 2010-05-14 엔벤타 바이오파마슈티칼스 코퍼레이션 이중-가닥 봉쇄형 핵산 조성물
US8790914B2 (en) 2007-06-01 2014-07-29 Solazyme, Inc. Use of cellulosic materials for cultivation of microorganisms
US8993314B2 (en) 2007-07-28 2015-03-31 Ennesys Sas Algae growth system for oil production
US20090148931A1 (en) 2007-08-01 2009-06-11 Bionavitas, Inc. Illumination systems, devices, and methods for biomass production
KR101442542B1 (ko) 2007-08-28 2014-09-19 엘지전자 주식회사 입력장치 및 이를 구비한 휴대 단말기
US8598378B2 (en) 2008-03-14 2013-12-03 University Of Hawaii Methods and compositions for extraction and transesterification of biomass components
US9487790B2 (en) 2008-03-31 2016-11-08 Kuehnle Agrosystems, Inc. Nuclear based expression of genes for production of biofuels and process co-products in algae
US8119859B2 (en) 2008-06-06 2012-02-21 Aurora Algae, Inc. Transformation of algal cells
US20090319338A1 (en) 2008-06-23 2009-12-24 Parks Eric J Method and system for virtual mentoring
US20090325270A1 (en) 2008-06-25 2009-12-31 Bertrand Vick Use of 2-hydroxy-5-oxoproline in conjunction with algae
US20100022393A1 (en) 2008-07-24 2010-01-28 Bertrand Vick Glyphosate applications in aquaculture
WO2010027455A1 (en) 2008-09-04 2010-03-11 Ciris Energy, Inc. Solubilization of algae and algal materials
US8170976B2 (en) 2008-10-17 2012-05-01 The Boeing Company Assessing student performance and providing instructional mentoring
US20100198659A1 (en) 2009-02-04 2010-08-05 Sirota Consulting LLC Methods for matching and managing mentors and mentees and systems thereof
US8314228B2 (en) 2009-02-13 2012-11-20 Aurora Algae, Inc. Bidirectional promoters in Nannochloropsis
WO2010094015A2 (en) 2009-02-16 2010-08-19 Advanced Lab Group Cooperative System and related method for concentrating biological culture and circulating biological culture and process fluid
US8865468B2 (en) 2009-10-19 2014-10-21 Aurora Algae, Inc. Homologous recombination in an algal nuclear genome
US9101942B2 (en) 2009-06-16 2015-08-11 Aurora Algae, Inc. Clarification of suspensions
US20100323387A1 (en) 2009-06-19 2010-12-23 Shaun Bailey Optimization of Response to Light
US8404473B2 (en) 2009-06-30 2013-03-26 Aurora Algae, Inc. Cyanobacterial isolates having auto-flocculation and settling properties
WO2011011463A2 (en) 2009-07-20 2011-01-27 Aurora Biofuels, Inc. Manipulation of an alternative respiratory pathway in photo-autotrophs
US8722359B2 (en) 2011-01-21 2014-05-13 Aurora Algae, Inc. Genes for enhanced lipid metabolism for accumulation of lipids
US8709766B2 (en) 2011-10-17 2014-04-29 Colorado School Of Mines Use of endogenous promoters in genetic engineering of Nannochloropsis gaditana

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448055B1 (en) * 1997-02-27 2002-09-10 Suntory Limited Δ9-desaturase gene
US20110015415A1 (en) * 2004-04-22 2011-01-20 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
CN101289659A (zh) * 2008-06-19 2008-10-22 中国海洋大学 一种海洋微藻delta6脂肪酸去饱和酶及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU JIANZHONG,等: "Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae)", 《CHINESE JOURNAL OF OCEANOLOGY AND LIMNOLOGY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9029137B2 (en) 2009-06-08 2015-05-12 Aurora Algae, Inc. ACP promoter

Also Published As

Publication number Publication date
US20130281683A1 (en) 2013-10-24
WO2012149457A2 (en) 2012-11-01
US8440805B2 (en) 2013-05-14
AU2012249377A1 (en) 2013-11-14
JP2014519810A (ja) 2014-08-21
US20120277417A1 (en) 2012-11-01
WO2012149457A3 (en) 2014-05-08
MX2013012565A (es) 2013-11-21
IL229086A0 (en) 2013-12-31
US8785610B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
CN103974966A (zh) 藻类去饱和酶
Van Erp et al. Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis
Thevenieau et al. Microorganisms as sources of oils
Kikukawa et al. Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review
Xu et al. Microbial oil production from various carbon sources and its use for biodiesel preparation
Li‐Beisson et al. Metabolism of acyl‐lipids in Chlamydomonas reinhardtii
Hu et al. The phosphatidylcholine diacylglycerol cholinephosphotransferase is required for efficient hydroxy fatty acid accumulation in transgenic Arabidopsis
Ruiz-López et al. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants
US7893320B2 (en) Method for producing multiple unsaturated fatty acids in plants
Hao et al. Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina
Sakuradani et al. Single cell oil production by Mortierella alpina
Lunn et al. Tri-hydroxy-triacylglycerol is efficiently produced by position-specific castor acyltransferases
EP0495096A1 (en) Plant fatty acid synthases
EP1831358A2 (de) Verfahren zur herstellung von mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
Yue et al. Lipid distribution pattern and transcriptomic insights revealed the potential mechanism of docosahexaenoic acid traffics in Schizochytrium sp. A-2
Baba et al. Transcriptome analysis of an oil-rich race A strain of Botryococcus braunii (BOT-88-2) by de novo assembly of pyrosequencing cDNA reads
JP2012529912A5 (zh)
CN106947706B (zh) 一株裂殖壶菌菌株、其构建方法及应用
Jia et al. Understanding the functions of endogenous DOF transcript factor in Chlamydomonas reinhardtii
CN103397007B (zh) CeDGAT1基因及其应用
Lunn et al. Castor LPCAT and PDAT1A act in concert to promote transacylation of hydroxy-fatty acid onto triacylglycerol
Snapp et al. Engineering industrial fatty acids in oilseeds
Lunn et al. A multigene approach secures hydroxy fatty acid production in Arabidopsis
Karki et al. The effect of light conditions on interpreting oil composition engineering in Arabidopsis seeds
Walsh et al. Producing the omega‐3 fatty acids DHA and EPA in oilseed crops

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140806