CN103962556A - Pure titanium powder forming method based on selected area laser melting technology - Google Patents
Pure titanium powder forming method based on selected area laser melting technology Download PDFInfo
- Publication number
- CN103962556A CN103962556A CN201410153417.1A CN201410153417A CN103962556A CN 103962556 A CN103962556 A CN 103962556A CN 201410153417 A CN201410153417 A CN 201410153417A CN 103962556 A CN103962556 A CN 103962556A
- Authority
- CN
- China
- Prior art keywords
- node
- pure titanium
- printing
- titanium powder
- laser melting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000002844 melting Methods 0.000 title claims abstract description 26
- 230000008018 melting Effects 0.000 title claims abstract description 26
- 238000005516 engineering process Methods 0.000 title claims abstract description 23
- 238000012545 processing Methods 0.000 claims abstract description 76
- 238000010146 3D printing Methods 0.000 claims abstract description 45
- 238000000465 moulding Methods 0.000 claims abstract description 33
- 238000007639 printing Methods 0.000 claims abstract description 23
- 238000005457 optimization Methods 0.000 claims abstract description 13
- 238000007781 pre-processing Methods 0.000 claims abstract description 11
- 230000008676 import Effects 0.000 claims abstract description 8
- 239000012778 molding material Substances 0.000 claims abstract description 4
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 8
- 238000013461 design Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明公开了一种基于选区激光熔化技术的纯钛粉末成型方法,包括:A、采用优化对比法获取纯钛粉末成型的最优加工参数;B、构建所需制备零件结构的三维模型;C、对构建的三维模型进行分层预处理;D、以获取的最优加工参数作为3D打印参数,对分层预处理后的三维模型进行分层处理,从而生成3D打印所需的打印文件;E、将生成的打印文件导入3D打印设备,并以纯钛粉末为成型材料进行3D打印。本发明基于选区激光熔化技术,可根据实际要求精确制造各种各样结构的金属零件;采用优化对比法获取纯钛粉末成型的最优加工参数,能根据实际所需力学性能情况而设定不同的最优加工参数,灵活度高且动态性能好。本发明可广泛应用于自动化控制领域。
The invention discloses a pure titanium powder molding method based on selective laser melting technology, comprising: A, adopting an optimization comparison method to obtain the optimal processing parameters for pure titanium powder molding; B, constructing a three-dimensional model of the required part structure; C 1. Perform layered preprocessing on the constructed 3D model; D. Using the obtained optimal processing parameters as 3D printing parameters, perform layered processing on the layered 3D model after layered preprocessing, thereby generating the print files required for 3D printing; E. Import the generated printing file into the 3D printing equipment, and use pure titanium powder as the molding material for 3D printing. The invention is based on the selective laser melting technology, and can accurately manufacture metal parts of various structures according to actual requirements; the optimal processing parameters of pure titanium powder molding can be obtained by using the optimization comparison method, and different settings can be made according to the actual required mechanical properties. The optimal processing parameters, high flexibility and good dynamic performance. The invention can be widely used in the field of automatic control.
Description
技术领域 technical field
本发明涉及自动化控制领域,尤其一种基于选区激光熔化技术的纯钛粉末成型方法。 The invention relates to the field of automatic control, in particular to a method for forming pure titanium powder based on selective laser melting technology.
背景技术 Background technique
钛及其合金由于具有优良的力学性能和生物相容性,广泛应用于临床医学骨修复、骨植入和相应加工制造领域。但是,传统的钛及钛合金加工工艺普遍存在影响因素多、流程复杂、内部结构难以精确加工,难以一次净加工成型、难以获得均匀的处理效果等问题。而采用选区激光熔化技术则能够较好地克服上述问题,其具有其它任何一种加工方法都无法比拟的柔性制造特性。然而,目前基于选区激光熔化技术的粉末成型工艺,其加工参数大多为厂商所提供的固定加工参数,灵活度较低且动态性能较差,导致其最终制备的零件难与实际使用环境吻合,严重时甚至会影响零件寿命。 Due to their excellent mechanical properties and biocompatibility, titanium and its alloys are widely used in the fields of clinical bone repair, bone implantation and corresponding processing and manufacturing. However, the traditional titanium and titanium alloy processing technology generally has problems such as many influencing factors, complicated process, difficult to accurately process the internal structure, difficult to clean the shape at one time, and difficult to obtain a uniform treatment effect. The selective laser melting technology can better overcome the above problems, and it has flexible manufacturing characteristics that cannot be matched by any other processing method. However, most of the processing parameters of the current powder molding process based on selective laser melting technology are fixed processing parameters provided by the manufacturer, which has low flexibility and poor dynamic performance, making it difficult for the final parts to be consistent with the actual use environment. Sometimes it will even affect the life of parts.
发明内容 Contents of the invention
为了解决上述技术问题,本发明的目的是:提供一种灵活度高和动态性能好的基于选区激光熔化技术的纯钛粉末成型方法。 In order to solve the above technical problems, the object of the present invention is to provide a pure titanium powder forming method based on selective laser melting technology with high flexibility and good dynamic performance.
本发明解决其技术问题所采用的技术方案是:一种基于选区激光熔化技术的纯钛粉末成型方法,包括: The technical solution adopted by the present invention to solve the technical problem is: a pure titanium powder molding method based on selective laser melting technology, including:
A、采用优化对比法获取纯钛粉末成型的最优加工参数; A. Obtain the optimal processing parameters for pure titanium powder molding by using the optimization comparison method;
B、构建所需制备零件结构的三维模型; B. Construct a three-dimensional model of the required part structure;
C、对构建的三维模型进行分层预处理; C. Perform layered preprocessing on the constructed 3D model;
D、以获取的最优加工参数作为3D打印参数,对分层预处理后的三维模型进行分层处理,从而生成3D打印所需的打印文件; D. Using the obtained optimal processing parameters as 3D printing parameters, perform layered processing on the 3D model after layered preprocessing, so as to generate the printing files required for 3D printing;
E、将生成的打印文件导入3D打印设备,并以纯钛粉末为成型材料进行3D打印。 E. Import the generated printing file into the 3D printing equipment, and use pure titanium powder as the molding material for 3D printing.
进一步,所述钛粉末成型的最优加工参数包括最优加工功率、最优扫描速度、最优扫描间距和最优层厚。 Further, the optimal processing parameters for titanium powder forming include optimal processing power, optimal scanning speed, optimal scanning distance and optimal layer thickness.
进一步,所述步骤A,其包括: Further, said step A, which includes:
A1、构建边长为10毫米的正方体模型; A1, build a cube model with a side length of 10 mm;
A2、根据设定的加工功率节点、扫描速度节点、扫描间距节点、扫描层厚节点和构建的正方体模型进行一一加工,从而得到各个节点相应的零件模型; A2. Process one by one according to the set processing power node, scanning speed node, scanning distance node, scanning layer thickness node and the constructed cube model, so as to obtain the corresponding part model of each node;
A3、采用坐标测量仪采集各个节点相应零件模型的表面扫描轨道图像,然后根据采集的图像初步确定纯钛粉末成型的最优加工参数所对应的节点范围; A3. Use the coordinate measuring instrument to collect the surface scanning track images of the corresponding part models of each node, and then preliminarily determine the node range corresponding to the optimal processing parameters for pure titanium powder molding according to the collected images;
A4、根据阿基米德原理计算初步确定的节点范围内每个节点相应零件模型的密度和致密度,然后根据计算出的密度和致密度确定纯钛粉末成型的最优加工参数。 A4. Calculate the density and density of the corresponding part model of each node within the initially determined node range according to the Archimedes principle, and then determine the optimal processing parameters for pure titanium powder molding according to the calculated density and density.
进一步,所述设定的加工功率节点为50W功率节点、60W功率节点、70W功率节点、80W功率节点、90W功率节点和100W功率节点。 Further, the set processing power nodes are 50W power nodes, 60W power nodes, 70W power nodes, 80W power nodes, 90W power nodes and 100W power nodes.
进一步,所述设定的扫描速度节点为100mm/s速度节点、200mm/s速度节点、300mm/s速度节点、400mm/s速度节点、500mm/s速度节点和600mm/s速度节点。 Further, the set scanning speed nodes are 100mm/s speed node, 200mm/s speed node, 300mm/s speed node, 400mm/s speed node, 500mm/s speed node and 600mm/s speed node.
进一步,所述设定的扫描间距节点为0.07mm间距节点、0.10mm间距节点、0.13mm间距节点、0.16mm间距节点、0.19mm间距节点、0.22mm间距节点和0.25mm间距节点。 Further, the set scanning pitch nodes are 0.07mm pitch nodes, 0.10mm pitch nodes, 0.13mm pitch nodes, 0.16mm pitch nodes, 0.19mm pitch nodes, 0.22mm pitch nodes and 0.25mm pitch nodes.
进一步,所述设定的扫描层厚节点为0.03~0.07mm的层厚节点。 Further, the set scanning slice thickness node is a slice thickness node of 0.03-0.07 mm.
进一步,所述步骤C,其包括: Further, said step C, which includes:
C1、确定打印的方向; C1. Determine the direction of printing;
C2、在三维模型沿打印方向的底部设置支撑结构,并对支撑结构的高度、分布和疏密程度进行设计。 C2. Set up a support structure at the bottom of the 3D model along the printing direction, and design the height, distribution and density of the support structure.
进一步,所述步骤D,其具体为: Further, the step D is specifically:
以获取的最优加工参数作为3D打印参数,沿打印方向按设定的层厚将分层预处理后的三维模型分解为层厚相等的层片,然后将分解的层片数据保存到SLM格式的打印文件中。 Taking the obtained optimal processing parameters as 3D printing parameters, decompose the layered preprocessed 3D model into layers with equal layer thickness along the printing direction according to the set layer thickness, and then save the decomposed layer data to the SLM format in the print file.
进一步,所述步骤E,其包括: Further, said step E, which includes:
E1、等待3D打印设备预热至工作所需的条件; E1. Wait for the 3D printing equipment to warm up to the conditions required for work;
E2、将SLM格式的打印文件导入3D打印设备; E2. Import the print file in SLM format into the 3D printing device;
E3、3D打印设备按照获取的最优加工参数,使用纯钛材料粉末以增材打印的方式进行3D打印。 E3, 3D printing equipment uses pure titanium material powder to perform 3D printing in the way of additive printing according to the optimal processing parameters obtained.
本发明的有益效果是:基于选区激光熔化技术,可根据实际要求精确制造各种各样结构的金属零件;采用优化对比法获取纯钛粉末成型的最优加工参数,能根据实际所需力学性能情况而设定不同的最优加工参数,灵活度高且动态性能好。 The beneficial effects of the invention are: based on the selective laser melting technology, metal parts of various structures can be accurately manufactured according to actual requirements; the optimal processing parameters of pure titanium powder molding can be obtained by using the optimization comparison method, and the mechanical properties can be obtained according to the actual requirements. Different optimal processing parameters are set according to the situation, with high flexibility and good dynamic performance.
附图说明 Description of drawings
下面结合附图和实施例对本发明作进一步说明。 The present invention will be further described below in conjunction with drawings and embodiments.
图1为本发明一种基于选区激光熔化技术的纯钛粉末成型方法的步骤流程图; Fig. 1 is a flow chart of steps of a pure titanium powder forming method based on selective laser melting technology of the present invention;
图2为本发明步骤A的流程图; Fig. 2 is the flowchart of step A of the present invention;
图3为本发明步骤C的流程图; Fig. 3 is the flowchart of step C of the present invention;
图4为本发明步骤E的流程图。 Fig. 4 is a flowchart of step E of the present invention.
具体实施方式 Detailed ways
参照图1,一种基于选区激光熔化技术的纯钛粉末成型方法,包括: Referring to Figure 1, a pure titanium powder molding method based on selective laser melting technology, including:
A、采用优化对比法获取纯钛粉末成型的最优加工参数; A. Obtain the optimal processing parameters for pure titanium powder molding by using the optimization comparison method;
B、构建所需制备零件结构的三维模型; B. Construct a three-dimensional model of the required part structure;
C、对构建的三维模型进行分层预处理; C. Perform layered preprocessing on the constructed 3D model;
D、以获取的最优加工参数作为3D打印参数,对分层预处理后的三维模型进行分层处理,从而生成3D打印所需的打印文件; D. Using the obtained optimal processing parameters as 3D printing parameters, perform layered processing on the 3D model after layered preprocessing, so as to generate the printing files required for 3D printing;
E、将生成的打印文件导入3D打印设备,并以纯钛粉末为成型材料进行3D打印。 E. Import the generated printing file into the 3D printing equipment, and use pure titanium powder as the molding material for 3D printing.
其中,优化对比法是指,对加工成型影响因素如功率、扫描速度、扫描间距和层厚等进行优化对比。以功率为例,在进行优化对比时,会先设定不同的功率,然后按照设定的功率一一加工出对应的零件,接着对加工出的零件进行一一性能比对,最后根据比对的结果获取最优加工功率。 Among them, the optimization comparison method refers to the optimization and comparison of processing and shaping factors such as power, scanning speed, scanning distance and layer thickness. Taking power as an example, when performing optimization comparison, different powers will be set first, and then the corresponding parts will be processed one by one according to the set power, and then the performance of the processed parts will be compared one by one, and finally according to the comparison The result is to obtain the optimal processing power.
本发明的纯钛粉采用ASTM标准二级纯钛粉,其粉末为球状颗粒。 The pure titanium powder of the present invention adopts ASTM standard grade two pure titanium powder, and its powder is spherical particle.
3D打印设备采用德国SLM Solutions Gmbh公司生产的型号为SLM-125HL的YLR-100-WC光纤选择性激光熔化设备,其支持SLM格式的文件。 The 3D printing equipment adopts the YLR-100-WC optical fiber selective laser melting equipment of the model SLM-125HL produced by the German SLM Solutions Gmbh company, which supports the SLM format file.
对分层预处理后的三维模型进行分层处理,所采用的软件为3D打印设备自带的SLM AutoFab64 1.8软件。 The layered processing is performed on the 3D model after layered preprocessing, and the software used is the SLM AutoFab64 1.8 software that comes with the 3D printing equipment.
进一步作为优选的实施方式,所述钛粉末成型的最优加工参数包括最优加工功率、最优扫描速度、最优扫描间距和最优层厚。 As a further preferred embodiment, the optimal processing parameters for titanium powder forming include optimal processing power, optimal scanning speed, optimal scanning distance and optimal layer thickness.
参照图2,进一步优选的实施方式,所述步骤A,其包括: With reference to Fig. 2, further preferred embodiment, described step A, it comprises:
A1、构建边长为10毫米的正方体模型; A1, build a cube model with a side length of 10 mm;
A2、根据设定的加工功率节点、扫描速度节点、扫描间距节点、扫描层厚节点和构建的正方体模型进行一一加工,从而得到各个节点相应的零件模型; A2. Process one by one according to the set processing power node, scanning speed node, scanning distance node, scanning layer thickness node and the constructed cube model, so as to obtain the corresponding part model of each node;
A3、采用坐标测量仪采集各个节点相应零件模型的表面扫描轨道图像,然后根据采集的图像初步确定纯钛粉末成型的最优加工参数所对应的节点范围; A3. Use the coordinate measuring instrument to collect the surface scanning track images of the corresponding part models of each node, and then preliminarily determine the node range corresponding to the optimal processing parameters for pure titanium powder molding according to the collected images;
A4、根据阿基米德原理计算初步确定的节点范围内每个节点相应零件模型的密度和致密度,然后根据计算出的密度和致密度确定纯钛粉末成型的最优加工参数。 A4. Calculate the density and density of the corresponding part model of each node within the initially determined node range according to the Archimedes principle, and then determine the optimal processing parameters for pure titanium powder molding according to the calculated density and density.
其中,构建边长为10毫米的正方体模型,是为了使各个进行优化对比的对象具有更好的可对比性。 Among them, the purpose of constructing a cube model with a side length of 10 mm is to make each object for optimization comparison have better comparability.
表面扫描轨道,是指激光进行行列扫描所形成的熔池熔道。 The surface scanning track refers to the melting channel of the molten pool formed by the laser scanning in rows and columns.
密度,是指实际零件的宏观密度。 Density refers to the macroscopic density of the actual part.
设定的加工功率节点、扫描速度节点、扫描间距节点和扫描层厚节点均为两个或两个以上的节点。 The set processing power node, scanning speed node, scanning distance node and scanning layer thickness node are all two or more nodes.
根据先验知识,纯钛粉末成型的最优加工参数所对应的致密度一般在95%以上。 According to prior knowledge, the density corresponding to the optimal processing parameters of pure titanium powder molding is generally above 95%.
进一步作为优选的实施方式,所述设定的加工功率节点为50W。 As a further preferred embodiment, the set processing power node is 50W.
功率节点、60W功率节点、70W功率节点、80W功率节点、90W功率节点和100W功率节点。 Power node, 60W power node, 70W power node, 80W power node, 90W power node and 100W power node.
进一步作为优选的实施方式,所述设定的扫描速度节点为100mm/s速度节点、200mm/s速度节点、300mm/s速度节点、400mm/s速度节点、500mm/s速度节点和600mm/s速度节点。 Further as a preferred embodiment, the set scanning speed nodes are 100mm/s speed nodes, 200mm/s speed nodes, 300mm/s speed nodes, 400mm/s speed nodes, 500mm/s speed nodes and 600mm/s speed nodes node.
进一步作为优选的实施方式,所述设定的扫描间距节点为0.07mm间距节点、0.10mm间距节点、0.13mm间距节点、0.16mm间距节点、0.19mm间距节点、0.22mm间距节点和0.25mm间距节点。 Further as a preferred embodiment, the set scanning spacing nodes are 0.07mm spacing nodes, 0.10mm spacing nodes, 0.13mm spacing nodes, 0.16mm spacing nodes, 0.19mm spacing nodes, 0.22mm spacing nodes and 0.25mm spacing nodes .
进一步作为优选的实施方式,所述设定的扫描层厚节点为0.03~0.07mm的层厚节点。 As a further preferred embodiment, the set scanning slice thickness node is a slice thickness node of 0.03-0.07 mm.
参照图3,进一步作为优选的实施方式,所述步骤C,其包括: Referring to Fig. 3, further as a preferred embodiment, the step C includes:
C1、确定打印的方向; C1. Determine the direction of printing;
C2、在三维模型沿打印方向的底部设置支撑结构,并对支撑结构的高度、分布和疏密程度进行设计。 C2. Set up a support structure at the bottom of the 3D model along the printing direction, and design the height, distribution and density of the support structure.
其中,支撑结构,用于零件与3D打印设备基板的连接和加工过程中的散热,并方便零件与基板的分离。 Among them, the support structure is used for the connection between the parts and the substrate of the 3D printing equipment and the heat dissipation during the processing, and to facilitate the separation of the parts and the substrate.
进一步作为优选的实施方式,所述步骤D,其具体为: Further as a preferred embodiment, the step D is specifically:
以获取的最优加工参数作为3D打印参数,沿打印方向按设定的层厚将分层预处理后的三维模型分解为层厚相等的层片,然后将分解的层片数据保存到SLM格式的打印文件中。 Taking the obtained optimal processing parameters as 3D printing parameters, decompose the layered preprocessed 3D model into layers with equal layer thickness along the printing direction according to the set layer thickness, and then save the decomposed layer data to the SLM format in the print file.
参照图4,进一步作为优选的实施方式,所述步骤E,其包括: Referring to Fig. 4, further as a preferred embodiment, the step E includes:
E1、等待3D打印设备预热至工作所需的条件; E1. Wait for the 3D printing equipment to warm up to the conditions required for work;
E2、将SLM格式的打印文件导入3D打印设备; E2. Import the print file in SLM format into the 3D printing device;
E3、3D打印设备按照获取的最优加工参数,使用纯钛材料粉末以增材打印的方式进行3D打印。 E3, 3D printing equipment uses pure titanium material powder to perform 3D printing in the way of additive printing according to the optimal processing parameters obtained.
其中,工作所需的条件是指,3D打印设备的基台温度为0-200℃,加工舱内氧气含量低于0.2%。在3D打印设备预热前还需先通入99.999%的纯氩气作为保护气体。 Among them, the conditions required for work refer to the temperature of the abutment of the 3D printing equipment at 0-200°C, and the oxygen content in the processing cabin is less than 0.2%. Before the 3D printing equipment is preheated, 99.999% pure argon must be introduced as a protective gas.
下面结合具体实施例对本发明作进一步详细说明。 The present invention will be described in further detail below in conjunction with specific embodiments.
实施例一 Embodiment one
本实施例对本发明用于制备纯钛多孔结构零件的过程进行介绍。 This embodiment introduces the process of the present invention for preparing a pure titanium porous structure part.
本发明采用了德国SLM Solutions Gmbh公司生产的型号为SLM-125HL的3D打印设备,而使用的配套软件是该3D打印设备自带的SLM AutoFab MCS1.1或SLM AutoFab64 1.8软件。 The present invention adopts the 3D printing equipment of the model SLM-125HL produced by the German SLM Solutions Gmbh company, and the supporting software used is the SLM AutoFab MCS1.1 or SLM AutoFab64 1.8 software that comes with the 3D printing equipment.
本发明用于制备纯钛多孔结构零件的过程,包括: The present invention is used for the process of preparing pure titanium porous structure parts, comprises:
S1、在计算机中建立所需制备的多孔结构的三维模型。 S1. Establish a three-dimensional model of the porous structure to be prepared in the computer.
根据所需制备零件的实际结构,使用solidworks、UG、ProE等工程制图软件,设计和建立实际多孔结构的三维模型,并将其保存为STL格式。其中,三维模型的参数以多孔结构的实际参数为准,包括外在整体的形状、尺寸,内部结构形状、多边形边长和壁厚等。 According to the actual structure of the parts to be prepared, use solidworks, UG, ProE and other engineering drawing software to design and build the 3D model of the actual porous structure, and save it in STL format. Among them, the parameters of the three-dimensional model are subject to the actual parameters of the porous structure, including the shape and size of the external whole, the shape of the internal structure, the side length of the polygon, and the wall thickness.
S2、对建立的三维模型进行分层预处理。 S2. Perform hierarchical preprocessing on the established three-dimensional model.
进行的分层预处理包括:确定打印方向,然后沿打印方向在三维模型的底部设置支撑结构,并根据实际情况对支撑结构的高度、分布和疏密程度进行设计。 The layered preprocessing includes: determining the printing direction, then setting the support structure at the bottom of the 3D model along the printing direction, and designing the height, distribution and density of the support structure according to the actual situation.
S3、设置3D打印参数,对三维模型进行分层处理,然后保存并导出SLM格式的文件。 S3. Setting 3D printing parameters, performing layered processing on the 3D model, and then saving and exporting a file in SLM format.
其中,3D打印参数包括零件的摆放位置、摆放方式以及激光的扫描方式、扫描速度、功率等。 Among them, the 3D printing parameters include the placement position and placement method of the parts, as well as the laser scanning method, scanning speed, power, etc.
对三维模型进行分层处理,即将三维模型沿打印方向分解成多个层厚相等的三维结构:使用SLM AutoFab64 1.8软件,沿着打印方向将该三维模型分割成若干层厚相等的层片,一般层厚为30~70μm,需根据3D打印设备中使用的纯钛材料粉末的粒度而具体设定。 The 3D model is layered, that is, the 3D model is decomposed into multiple 3D structures with equal thickness along the printing direction: using SLM AutoFab64 1.8 software, the 3D model is divided into several layers with equal thickness along the printing direction, generally The layer thickness is 30-70 μm, which needs to be set according to the particle size of the pure titanium material powder used in the 3D printing equipment.
最后,保存并以SLM格式导出,所述SLM格式为3D打印设备可识别的文件格式。 Finally, save and export in SLM format, which is a file format recognizable by 3D printing equipment.
S4、将导出的SLM格式文件导入3D打印设备,进行3D打印。 S4. Import the exported SLM format file into a 3D printing device for 3D printing.
在本实施例中,使用了德国SLM Solutions Gmbh公司生产的型号为SLM-125HL的3D打印设备进行零件加工。 In this embodiment, a 3D printing equipment model SLM-125HL produced by SLM Solutions Gmbh in Germany is used for part processing.
实施例二 Embodiment two
本实施例对采用优化对比法获取纯钛粉末成型的最优加工参数的具体过程进行介绍。 This embodiment introduces the specific process of obtaining the optimal processing parameters for pure titanium powder molding by using the optimization comparison method.
本发明先构建统一结构的立方体模型结构,然后根据不同变化加工参数所产生的显著技术效果进行对比和计算。 The invention firstly builds a cube model structure with a unified structure, and then compares and calculates the remarkable technical effects produced by different processing parameters.
进行对比观察和计算时,本发明采用坐标测量仪Quick View 200观察模型的表面扫描轨道,通过将构建的立方模型进行加工,去除支撑结构和磨平底面后的零件置于坐标测量仪的平台上,并选取放大倍数1.5~2倍,以清晰全面地观察表面熔道状态。 When performing comparative observation and calculation, the present invention uses the coordinate measuring instrument Quick View 200 to observe the surface scanning track of the model, and by processing the constructed cubic model, the parts after removing the support structure and grinding the bottom surface are placed on the platform of the coordinate measuring instrument , and select a magnification of 1.5 to 2 times to clearly and comprehensively observe the state of the surface melt channel.
本发明根据不同变化加工参数所产生的显著技术效果进行对比包括: The present invention compares the significant technical effects produced according to different processing parameters including:
a.功率 a. Power
在其它加工参数默认的状态下,本发明分别选取功率50W、60W、70W、80W、90W和100W作为功率节点,分别进行加工制造,并在最终成型后取件测试,从而获得其性能对比表,如下表1所示。同时采用坐标测量仪Quick View 200观察的模型表面扫描轨道。由表1和观察的结果可知,扫描功率为50W、60W时,激光扫描路径未形成轨道(致密度小于95%),表面球化现象很严重,此时,激光能量输入不够,导致粉末扫描范围内的粉末不能完全熔化,因此该模型的成型需要更高的激光功率。当扫描功率为70W时具有形成轨道的雏形(致密度等于95%),而扫描功率为80W、90W、100W时都已形成完整的轨道(致密度大于95%),因此最优扫描功率应为70W-100W。 In the default state of other processing parameters, the present invention selects powers of 50W, 60W, 70W, 80W, 90W, and 100W as power nodes, and performs processing and manufacturing respectively, and takes parts for testing after final molding, thereby obtaining its performance comparison table, As shown in Table 1 below. At the same time, the surface of the model observed by the coordinate measuring instrument Quick View 200 was scanned. It can be seen from Table 1 and the observed results that when the scanning power is 50W and 60W, the laser scanning path does not form a track (the density is less than 95%), and the surface spheroidization phenomenon is very serious. At this time, the laser energy input is not enough, resulting in powder scanning range The powder inside cannot be completely melted, so the molding of this model requires higher laser power. When the scanning power is 70W, there is a rudiment of the orbit (the density is equal to 95%), and when the scanning power is 80W, 90W, and 100W, the complete orbit has been formed (the density is greater than 95%), so the optimal scanning power should be 70W-100W.
表1 不同功率下成型零件的性能对比 Table 1 Performance comparison of molded parts under different power
b.功率 b. power
在其它参数默认的状态下,本发明分别选取扫描速度100mm/s、200mm/s、300mm/s、400mm/s、500mm/s和600mm/s作为扫描速度节点分别进行加工制造,并在最终成型后取件测试,从而获得其性能对比表,如下表2所示。同时采用坐标测量仪Quick View 200观察的模型表面扫描轨道。由表2和观察的结果可知,当扫描速度在400mm/s时候,零件表面会出现大量缺陷(其致密度小于95%),此类缺陷将会严重影响零件成型质量,因此最优扫描速度应不大于400mm/s。 In the default state of other parameters, the present invention respectively selects scanning speeds of 100mm/s, 200mm/s, 300mm/s, 400mm/s, 500mm/s and 600mm/s as scanning speed nodes for processing and manufacturing respectively, and in the final molding After the pick-up test, the performance comparison table is obtained, as shown in Table 2 below. At the same time, the surface of the model observed by the coordinate measuring instrument Quick View 200 was scanned. It can be seen from Table 2 and the observed results that when the scanning speed is 400mm/s, a large number of defects (the density of which is less than 95%) will appear on the surface of the part, and such defects will seriously affect the quality of the part. Therefore, the optimal scanning speed should be Not more than 400mm/s.
表2 不同扫描速度下成型零件的性能对比 Table 2 Performance comparison of formed parts at different scanning speeds
c.扫描间距 c. Scanning distance
在其它参数默认的状态下,本发明分别选取扫描间距为0.07mm、0.1mm、0.13mm、0.16mm、0.19mm、0.22mm和0.22mm作为扫描间距节点进行优化对比,分别进行加工制造,并在最终成型后取件测试,从而获得其性能对比表,如下表3所示。同时采用坐标测量仪Quick View 200观察的模型表面扫描轨道。由表3和观察的结果可知,扫描间距为70μm、100μm、130μm和160μm时,加工出来的零件表面较平整、沟痕较浅、表面较清晰,不同激光熔区相互搭接较好(致密度大于95%);扫描间距大于160μm后,加工出来的零件表面平整度逐渐下降,沟痕逐渐加深,球化现象逐渐严重,在激光熔区出现未熔化现象(致密度小于95%)。因此,适合加工纯钛加工的激光最优扫描间距应不超过160μm。 In the default state of other parameters, the present invention respectively selects the scanning distances of 0.07mm, 0.1mm, 0.13mm, 0.16mm, 0.19mm, 0.22mm and 0.22mm as the scanning distance nodes for optimization and comparison, respectively performs processing and manufacturing, and After the final molding, the parts were taken and tested to obtain the performance comparison table, as shown in Table 3 below. At the same time, the surface of the model observed by the coordinate measuring instrument Quick View 200 was scanned. From Table 3 and the observed results, it can be seen that when the scanning distance is 70 μm, 100 μm, 130 μm and 160 μm, the surface of the processed parts is smoother, the grooves are shallower, the surface is clearer, and the overlapping of different laser melting zones is better (density greater than 95%); when the scanning distance is greater than 160 μm, the surface flatness of the processed parts gradually decreases, the groove marks gradually deepen, the spheroidization phenomenon gradually becomes serious, and unmelted phenomena appear in the laser melting zone (density less than 95%). Therefore, the optimal laser scanning distance suitable for processing pure titanium should not exceed 160 μm.
表3 不同扫描间距下成型零件的性能对比 Table 3 Performance comparison of formed parts under different scanning distances
d.扫描层厚 d. Scan layer thickness
实际的研究表明,扫描层厚增大可提高加工效率,但是却会影响加工质量,因此需要同时对其他参数(如功率、扫描速度、扫描间距等)作出相应的调整,以得到表面质量较好和性能良好零件。本实施例选取扫描速度作为相应调整的参数,对扫描层厚进行优化对比。 Actual research shows that increasing the scanning layer thickness can improve the processing efficiency, but it will affect the processing quality. Therefore, it is necessary to make corresponding adjustments to other parameters (such as power, scanning speed, scanning distance, etc.) at the same time to obtain better surface quality. and good performance parts. In this embodiment, the scanning speed is selected as a parameter to be adjusted accordingly, and the scanning layer thickness is optimized and compared.
在其它参数默认的状态下,本发明分别选取扫描层厚为0.03mm和0.07 mm作为扫描间距节点,同时还分别选取175mm/s、275mm/s、375mm/s和400mm/s的扫描速度进行加工制造,并在最终成型后取件测试进行对比。同时采用坐标测量仪Quick View 200观察的模型表面扫描轨道。从观察的扫描平面来看:扫描层厚为0.03mm时,在扫描速度分别为175mm/s、275mm/s、375mm/s处的加工出来的零件表面轨道熔池较为平整,缺陷较少,加工效果较为理想;当扫描速度调整为400mm/s时,加工出来的零件表面出现较为明显的球化缺陷,表明此时的能量密度(能量密度=功率/(扫描层厚×扫描速度×扫描间距))较低,加工效果较差,因此可以推断出对于扫描层厚为0.03mm的纯钛粉末来说,其加工扫描速度不应超过400mm/s,同理也可推断出扫描层厚为0.07mm的纯钛粉末,其加工扫描速度不应超过375mm/s。 In the default state of other parameters, the present invention respectively selects the scanning layer thicknesses of 0.03mm and 0.07 mm as the scanning spacing nodes, and also selects scanning speeds of 175mm/s, 275mm/s, 375mm/s and 400mm/s for processing Manufactured and tested for comparison after final molding. At the same time, the surface of the model observed by the coordinate measuring instrument Quick View 200 was scanned. From the observed scanning plane: when the scanning layer thickness is 0.03mm, the orbital molten pool on the surface of the machined parts at the scanning speeds of 175mm/s, 275mm/s, and 375mm/s is relatively flat, with fewer defects and the processing The effect is ideal; when the scanning speed is adjusted to 400mm/s, obvious spherical defects appear on the surface of the processed parts, indicating that the energy density at this time (energy density = power / (scanning layer thickness × scanning speed × scanning distance) ) is low, and the processing effect is poor, so it can be inferred that for pure titanium powder with a scanning layer thickness of 0.03mm, the processing scanning speed should not exceed 400mm/s, and it can also be inferred that the scanning layer thickness is 0.07mm The processing scanning speed of pure titanium powder should not exceed 375mm/s.
综上所述,对于纯钛粉末来说,适合其加工的参数(即最优加工参数)为:扫描层厚为0.03~0.07mm,扫描速度不超过400mm/s,扫描间距不大于0.16mm/s,功率可选择区间为70W~100W。在实际加工中还需根据零件所需要的使用环境,在最优加工参数内选择具体的加工参数。 To sum up, for pure titanium powder, the parameters suitable for its processing (that is, the optimal processing parameters) are: the scanning layer thickness is 0.03-0.07mm, the scanning speed does not exceed 400mm/s, and the scanning distance is not greater than 0.16mm/ s, the power can be selected from 70W to 100W. In actual processing, it is also necessary to select specific processing parameters within the optimal processing parameters according to the use environment required by the parts.
与现有技术相比,本发明基于选区激光熔化技术,可根据实际要求精确制造各种各样结构的金属零件;采用优化对比法获取纯钛粉末成型的最优加工参数,能根据实际所需力学性能情况而设定不同的最优加工参数,灵活度高且动态性能好。 Compared with the prior art, the present invention is based on the selective laser melting technology, and can accurately manufacture metal parts of various structures according to actual requirements; the optimal processing parameters of pure titanium powder molding can be obtained by using the optimization comparison method, and can be processed according to actual needs. Different optimal processing parameters are set according to the mechanical properties, with high flexibility and good dynamic performance.
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。 The above is a specific description of the preferred implementation of the present invention, but the invention is not limited to the described embodiments, and those skilled in the art can also make various equivalent deformations or replacements without violating the spirit of the present invention. , these equivalent modifications or replacements are all within the scope defined by the claims of the present application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410153417.1A CN103962556A (en) | 2014-04-16 | 2014-04-16 | Pure titanium powder forming method based on selected area laser melting technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410153417.1A CN103962556A (en) | 2014-04-16 | 2014-04-16 | Pure titanium powder forming method based on selected area laser melting technology |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103962556A true CN103962556A (en) | 2014-08-06 |
Family
ID=51232829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410153417.1A Pending CN103962556A (en) | 2014-04-16 | 2014-04-16 | Pure titanium powder forming method based on selected area laser melting technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103962556A (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104308153A (en) * | 2014-10-27 | 2015-01-28 | 西安交通大学 | High-entropy alloy hot-end part manufacturing method of turbine engine on basis of selective laser melting |
CN104325641A (en) * | 2014-10-17 | 2015-02-04 | 康子纯 | 3D (three dimensional) printing process with laser beam scanning in archimedes spiral way |
CN104368815A (en) * | 2014-11-14 | 2015-02-25 | 山东省科学院新材料研究所 | Method for preparing nanoscale spherical Si-phase Al-Si alloy through selective laser melting |
CN104608391A (en) * | 2015-03-02 | 2015-05-13 | 英华达(上海)科技有限公司 | Method and system for confirming printing direction of stereoscopic printing machine |
CN104625060A (en) * | 2015-01-22 | 2015-05-20 | 燕山大学 | Three-dimensional printing processing method of multi-dimension force sensor elastic body |
CN105105838A (en) * | 2015-07-27 | 2015-12-02 | 广州中国科学院先进技术研究所 | Personalized maxillofacial surgery guide plate and manufacturing method thereof |
CN105509935A (en) * | 2014-10-13 | 2016-04-20 | 恩德莱斯和豪瑟尔两合公司 | Ceramic pressure sensor and method for its production |
CN107530901A (en) * | 2015-03-17 | 2018-01-02 | 辛特印刷有限公司 | Reactive increasing material manufacturing |
CN108050824A (en) * | 2017-12-11 | 2018-05-18 | 广州恒尚科技有限公司 | Integrated air knife and its increasing material manufacturing method |
CN108202142A (en) * | 2016-12-16 | 2018-06-26 | 北京有色金属研究总院 | A kind of laser substep increasing material manufacturing method |
CN108213427A (en) * | 2018-01-10 | 2018-06-29 | 南方科技大学 | Manufacturing process of high-performance titanium material |
CN108472729A (en) * | 2015-12-09 | 2018-08-31 | 韩国生产技术研究院 | The stereoforming method of controllable microstructure and the metal material using 3D printing of precipitation-hardening |
CN108772562A (en) * | 2018-05-11 | 2018-11-09 | 上海大学 | Cobalt-chromium alloy powder forming method based on precinct laser fusion |
CN109386399A (en) * | 2018-10-30 | 2019-02-26 | 首都航天机械有限公司 | A kind of band detour inner flow passage structure and its manufacturing method |
CN109416622A (en) * | 2016-09-01 | 2019-03-01 | 深圳市大富网络技术有限公司 | A kind of 3D printing method, device and equipment |
CN109396436A (en) * | 2018-12-04 | 2019-03-01 | 陕西理工大学 | A kind of pure titanium 3D printing increasing material manufacturing method |
CN109499561A (en) * | 2018-12-18 | 2019-03-22 | 华中科技大学 | A kind of method of increasing material manufacturing three-dimensional photocatalysis material of titanium dioxide |
CN109530687A (en) * | 2018-10-30 | 2019-03-29 | 北京星航机电装备有限公司 | A kind of 3D printing technical parameter adjustment method |
CN109648081A (en) * | 2019-01-15 | 2019-04-19 | 华中科技大学 | A kind of laser gain material manufacture manufacturing process of five mold materials mechanical performance of In-sltu reinforcement |
CN109676136A (en) * | 2018-12-12 | 2019-04-26 | 超创网络科技(深圳)有限公司 | A kind of laser gain material manufacturing method for jewelry or the art work |
CN109967741A (en) * | 2019-03-29 | 2019-07-05 | 贵州翰凯斯智能技术有限公司 | A kind of 3D printing technique optimization method based on enhancing study |
CN110680567A (en) * | 2019-11-07 | 2020-01-14 | 江苏科技大学 | A method and system for making a porous tibial implant |
CN111496257A (en) * | 2020-05-29 | 2020-08-07 | 华中科技大学 | A metal minimally curved gradient porous heat dissipation element and its additive manufacturing method |
CN118137762A (en) * | 2023-12-13 | 2024-06-04 | 广东省科学院新材料研究所 | E-shaped iron core and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2450891C1 (en) * | 2010-12-16 | 2012-05-20 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Method of part sintering by laser layer-by-layer synthesis |
CN103231056A (en) * | 2013-05-13 | 2013-08-07 | 苏州大学 | Direct laser forming method for unequal-width member |
CN103240414A (en) * | 2013-05-27 | 2013-08-14 | 哈尔滨德昱健行科技有限公司 | Parameter selecting method for manufacturing metal parts by selective laser melting technology and substrate samples |
CN103302292A (en) * | 2012-03-12 | 2013-09-18 | 中国科学院沈阳自动化研究所 | Laser direct forming process for titanium alloy part |
CN203265634U (en) * | 2013-05-27 | 2013-11-06 | 哈尔滨德昱健行科技有限公司 | Substrate sample used for selecting parameters of metal parts manufactured through laser melting technology |
CN103495731A (en) * | 2013-09-03 | 2014-01-08 | 广州中国科学院先进技术研究所 | Method for manufacturing pure titanium porous structure through selective laser melting |
-
2014
- 2014-04-16 CN CN201410153417.1A patent/CN103962556A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2450891C1 (en) * | 2010-12-16 | 2012-05-20 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Method of part sintering by laser layer-by-layer synthesis |
CN103302292A (en) * | 2012-03-12 | 2013-09-18 | 中国科学院沈阳自动化研究所 | Laser direct forming process for titanium alloy part |
CN103231056A (en) * | 2013-05-13 | 2013-08-07 | 苏州大学 | Direct laser forming method for unequal-width member |
CN103240414A (en) * | 2013-05-27 | 2013-08-14 | 哈尔滨德昱健行科技有限公司 | Parameter selecting method for manufacturing metal parts by selective laser melting technology and substrate samples |
CN203265634U (en) * | 2013-05-27 | 2013-11-06 | 哈尔滨德昱健行科技有限公司 | Substrate sample used for selecting parameters of metal parts manufactured through laser melting technology |
CN103495731A (en) * | 2013-09-03 | 2014-01-08 | 广州中国科学院先进技术研究所 | Method for manufacturing pure titanium porous structure through selective laser melting |
Non-Patent Citations (2)
Title |
---|
王迪: "选区激光熔化成型不锈钢零件特性与工艺研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
赵灿等: "选择性激光熔化316L不锈钢粉成形优化工艺", 《黑龙江科技学院学报》 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105509935B (en) * | 2014-10-13 | 2019-07-30 | 恩德莱斯和豪瑟尔欧洲两合公司 | Ceramic pressure sensor and its production method |
CN105509935A (en) * | 2014-10-13 | 2016-04-20 | 恩德莱斯和豪瑟尔两合公司 | Ceramic pressure sensor and method for its production |
CN104325641A (en) * | 2014-10-17 | 2015-02-04 | 康子纯 | 3D (three dimensional) printing process with laser beam scanning in archimedes spiral way |
CN104308153A (en) * | 2014-10-27 | 2015-01-28 | 西安交通大学 | High-entropy alloy hot-end part manufacturing method of turbine engine on basis of selective laser melting |
CN104368815A (en) * | 2014-11-14 | 2015-02-25 | 山东省科学院新材料研究所 | Method for preparing nanoscale spherical Si-phase Al-Si alloy through selective laser melting |
CN104625060A (en) * | 2015-01-22 | 2015-05-20 | 燕山大学 | Three-dimensional printing processing method of multi-dimension force sensor elastic body |
CN104608391A (en) * | 2015-03-02 | 2015-05-13 | 英华达(上海)科技有限公司 | Method and system for confirming printing direction of stereoscopic printing machine |
CN104608391B (en) * | 2015-03-02 | 2017-02-01 | 英华达(上海)科技有限公司 | Method and system for confirming printing direction of stereoscopic printing machine |
CN107530901A (en) * | 2015-03-17 | 2018-01-02 | 辛特印刷有限公司 | Reactive increasing material manufacturing |
CN107530901B (en) * | 2015-03-17 | 2021-03-12 | 元件3D有限公司 | Reactive additive manufacturing |
CN105105838A (en) * | 2015-07-27 | 2015-12-02 | 广州中国科学院先进技术研究所 | Personalized maxillofacial surgery guide plate and manufacturing method thereof |
CN108472729A (en) * | 2015-12-09 | 2018-08-31 | 韩国生产技术研究院 | The stereoforming method of controllable microstructure and the metal material using 3D printing of precipitation-hardening |
CN109416622A (en) * | 2016-09-01 | 2019-03-01 | 深圳市大富网络技术有限公司 | A kind of 3D printing method, device and equipment |
CN108202142A (en) * | 2016-12-16 | 2018-06-26 | 北京有色金属研究总院 | A kind of laser substep increasing material manufacturing method |
CN108050824A (en) * | 2017-12-11 | 2018-05-18 | 广州恒尚科技有限公司 | Integrated air knife and its increasing material manufacturing method |
CN108213427A (en) * | 2018-01-10 | 2018-06-29 | 南方科技大学 | Manufacturing process of high-performance titanium material |
CN108772562A (en) * | 2018-05-11 | 2018-11-09 | 上海大学 | Cobalt-chromium alloy powder forming method based on precinct laser fusion |
CN109386399A (en) * | 2018-10-30 | 2019-02-26 | 首都航天机械有限公司 | A kind of band detour inner flow passage structure and its manufacturing method |
CN109530687B (en) * | 2018-10-30 | 2020-11-27 | 北京星航机电装备有限公司 | 3D printing equipment process parameter debugging method |
CN109530687A (en) * | 2018-10-30 | 2019-03-29 | 北京星航机电装备有限公司 | A kind of 3D printing technical parameter adjustment method |
CN109396436A (en) * | 2018-12-04 | 2019-03-01 | 陕西理工大学 | A kind of pure titanium 3D printing increasing material manufacturing method |
CN109676136A (en) * | 2018-12-12 | 2019-04-26 | 超创网络科技(深圳)有限公司 | A kind of laser gain material manufacturing method for jewelry or the art work |
CN109499561A (en) * | 2018-12-18 | 2019-03-22 | 华中科技大学 | A kind of method of increasing material manufacturing three-dimensional photocatalysis material of titanium dioxide |
CN109499561B (en) * | 2018-12-18 | 2020-07-10 | 华中科技大学 | Method for additive manufacturing of three-dimensional titanium dioxide photocatalytic material |
CN109648081A (en) * | 2019-01-15 | 2019-04-19 | 华中科技大学 | A kind of laser gain material manufacture manufacturing process of five mold materials mechanical performance of In-sltu reinforcement |
CN109967741A (en) * | 2019-03-29 | 2019-07-05 | 贵州翰凯斯智能技术有限公司 | A kind of 3D printing technique optimization method based on enhancing study |
CN109967741B (en) * | 2019-03-29 | 2021-02-02 | 贵州翰凯斯智能技术有限公司 | 3D printing process optimization method based on reinforcement learning |
CN110680567A (en) * | 2019-11-07 | 2020-01-14 | 江苏科技大学 | A method and system for making a porous tibial implant |
CN111496257A (en) * | 2020-05-29 | 2020-08-07 | 华中科技大学 | A metal minimally curved gradient porous heat dissipation element and its additive manufacturing method |
CN118137762A (en) * | 2023-12-13 | 2024-06-04 | 广东省科学院新材料研究所 | E-shaped iron core and preparation method thereof |
CN118137762B (en) * | 2023-12-13 | 2025-02-25 | 广东省科学院新材料研究所 | An E-type iron core and a method for preparing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103962556A (en) | Pure titanium powder forming method based on selected area laser melting technology | |
CN103495731B (en) | A kind of selective laser melting prepares the method for pure titanium loose structure | |
Hussein et al. | Advanced lattice support structures for metal additive manufacturing | |
CN103407134B (en) | The special-shaped cooling water line structure of mould and the processing method with this structure mold | |
CN103495729B (en) | The laser solid forming method of large scale titanium aluminium base alloy | |
WO2019091086A1 (en) | Metal fine porous structure forming method based on selective laser melting | |
CN111318701A (en) | Residual stress control method in additive manufacturing process of thin-wall special-shaped metal component | |
CN108772562A (en) | Cobalt-chromium alloy powder forming method based on precinct laser fusion | |
CN108115137A (en) | A kind of double high energy beam metal increasing material manufacturing methods | |
JP2017165095A (en) | Method for additive manufacturing and connection support | |
CN103240414B (en) | Parameter selecting method for manufacturing metal parts by selective laser melting technology and substrate samples | |
CN108629086A (en) | A kind of Stress relief method suitable for increasing material manufacturing part | |
CN111872395B (en) | Preparation method of nickel-based alloy single crystal or directional solidification part | |
JP6208148B2 (en) | Production method of porous structure | |
CN107914014B (en) | Electron beam selective melting forming method for pure tungsten metal parts | |
CN110181048A (en) | A kind of electron beam increasing material manufacturing method of molybdenum-base alloy powder | |
CN114713848A (en) | A method and additive manufacturing equipment for improving the surface quality of additively manufactured parts | |
CN107866568A (en) | Melt manufacturing process in a kind of selective laser suitable for hydraulic valve block | |
CN111922341A (en) | Method for forming bionic lobster eye complex thin-wall structure by laser | |
CN116618679A (en) | Pure tungsten grid and preparation method and application thereof | |
CN106392071A (en) | Method used for improving manufacturing efficiency and precision of additive formed through powder bed fusion | |
CN105239110A (en) | Three-dimensional electroforming machining method and system | |
CN114099769A (en) | A material and method for 3D printing dental all-ceramic restorations using viscoelastic paste | |
CN109079136B (en) | 3D printing method | |
Khandelwal et al. | 3D printing enabled rapid manufacture of metal parts at low cost |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140806 |